GeneABEL Exercise
From Statistical Genetics Courses
GeneABEL Exercise
R:
# Load files library(GenABEL) convert.snp.tped(tped = "gwa_gabel_qtl.tped", tfam = "gwa_gabel_qtl.tfam", out = "gwa_gabel_qtl.raw", strand = "u") g.dat <- load.gwaa.data(phen = "gwa_gabel_qtl.praw", gen = "gwa_gabel_qtl.raw", force = T) slotNames(g.dat) slotNames(g.dat@gtdata) colnames(g.dat@phdata) # sample size sample.size <- g.dat@gtdata@nids # number of SNPs snps.total <- g.dat@gtdata@nsnps print(c(sample.size, snps.total)) # Trait summary(g.dat@phdata$disease) hist(g.dat@phdata$disease, main="Quantitative Phenotype data summary", xlab = "Systolic pressure measure", freq = F,breaks=20, col="gray") rug(g.dat@phdata$disease) ### # tests for association ### # GLM test test.snp <- scan.glm('disease ~ CRSNP', family = gaussian(), data = g.dat) names(test.snp) alpha <- 5e-8 test.snp$snpnames[test.snp$P1df < alpha] test.snp$P1df[test.snp$P1df < alpha] # Score test test.qt <- qtscore(disease, data = g.dat, trait = "gaussian") slotNames(test.qt) names(test.qt@results) test.qt@lambda descriptives.scan(test.qt) rownames(results(test.qt))[results(test.qt)$P1df < alpha] results(test.qt)$P1df[results(test.qt)$P1df < alpha] results(test.qt)$Pc1df[results(test.qt)$Pc1df < alpha] # QQ plot obs <- sort(results(test.qt)$P1df) ept <- c(1:length(obs)) / (length(obs) + 1) plot(-log10(ept), -log10(obs), main = "GWAS QQ plot, qtl", xlab="Expected -log10(pvalue)", ylab="Observed -log10(pvalue)") abline(0, 1, col = "red") abline(h = 8, lty = 2) # Manhattan plot plot(test.qt, col = "black") # Adding confounders test.qt.sex <- qtscore(disease ~ sex, data = g.dat, trait = "gaussian") rownames(results(test.qt.sex))[results(test.qt)$P1df < alpha] summary(lm(disease ~ sex, data = g.dat)) ### # MDS ### gkin <- ibs(g.dat, weight = "freq") gkin[1:10,1:10] cps.full <- cmdscale(as.dist(.5 - gkin), eig = T, k = 10) names(cps.full) cps <- cps.full$points plot(cps[,1], cps[,2], pch = g.dat@phdata$popn) legend(-0.16, 0.06, c("TSI","MEX", "CEU"), pch = c(1,2,3)) ### # Corrected test ### # Incorporating PCs as predictors colnames(cps)<-c('C1','C2','C3','C4','C5','C6','C7','C8','C9','C10') gpc.dat <- g.dat gpc.dat@phdata<-cbind(g.dat@phdata, cps) test.pc.a <- scan.glm('disease ~ CRSNP + C1 + C2 + C3 + C4 + C5', family=gaussian(), data = gpc.dat) test.pc.a$snpnames[test.pc.a$P1df < alpha] test.pc.a$P1df[test.pc.a$P1df < alpha] test.pc.b <- qtscore(disease ~ C1 + C2 + C3 + C4 + C5, data = gpc.dat, trait = "gaussian") test.pc.b@lambda # scree plot plot(cps.full$eig[1:10]/sum(cps.full$eig), axes = F, type = "b", xlab = "Components", ylim = c(0,0.05), ylab = "Proportion of Variations", main = "MDS analysis scree plot") axis(1, 1:10) axis(2) # cumulative plot plot(cumsum(cps.full$eig[1:10])/sum(cps.full$eig), axes = F, type = "b", ylim = c(0,0.2), xlab = "Components", ylab = "Proportion of Variations", main = "MDS analysis cumulative plot") axis(1, 1:10) axis(2) # Genomic control # Uncorrected GIF test.qt@lambda # Corrected p-value row.names(results(test.qt))[results(test.qt)$Pc1df < alpha] results(test.qt)$Pc1df[results(test.qt)$Pc1df < alpha] # Check for inflation of statistic obs <- sort(results(test.qt)$chi2.1df) ept <- sort(qchisq(1:length(obs) / (length(obs) + 1), df = 1)) plot(ept, obs, main = "Genomic control (slope is the inflation factor)", xlab="Expected chisq, 1df", ylab="Observed chisq, 1df") abline(0, 1, col = "red") abline(0, test.qt@lambda[1], lty = 2) # Definition of GIF # Conventional definition median(results(test.qt)$chi2.1df)/0.456 # GenABEL definition lm(obs~ept)$coef[2] # QQ plot obs <- sort(results(test.qt)$Pc1df) ept <- c(1:length(obs)) / (length(obs) + 1) plot(-log10(ept), -log10(obs), main = "GWAS QQ plot adj. via Genomic Control", xlab="Expected -log10(pvalue)", ylab="Observed -log10(pvalue)") abline(0, 1, col = "red") abline(h = 8, lty = 2) # EIGENSTRAT adj.gkin = gkin diag(adj.gkin) = hom(g.dat)$Var # naxes = 3 is default value test.eg <- egscore(disease, data = g.dat, kin = adj.gkin, naxes = 2) descriptives.scan(test.eg) snp.eg <- row.names(results(test.eg))[results(test.eg)$P1df < alpha] pvalue.eg <- results(test.eg)$P1df[results(test.eg)$P1df < alpha] lambda.eg <- test.eg@lambda snp.eg pvalue.eg lambda.eg # Change #PCs for (k in 1:10){ test.tmp <- egscore(disease, data = g.dat, kin = adj.gkin, naxes = k) print(test.tmp@lambda$estimate) } # QQ plot obs <- sort(results(test.eg)$Pc1df) ept <- c(1:length(obs)) / (length(obs) + 1) qqplot(-log10(ept), -log10(obs), main = "GWAS QQ plot adj. w/ EIGENSTRAT", xlab="Expected -log10(pvalue)", ylab="Observed -log10(pvalue)") abline(0, 1, col = "red") abline(h = 8, lty = 2) # Manhattan plot comparison plot(test.qt, col = "black") add.plot(test.eg, col = "gray", pch = 3) legend("topright", c("Original plot","After correction w/ EIGENSTRAT"), pch = c(1,3)) ### # Basic test, binary trait ### # load files to GenABEL convert.snp.tped(tped = "gwa_gabel.tped", tfam = "gwa_gabel.tfam", out = "gwa_gabel.raw", strand = "u") b.dat <- load.gwaa.data(phen = "gwa_gabel.praw", gen = "gwa_gabel.raw", force = T) slotNames(b.dat) slotNames(b.dat@gtdata) colnames(b.dat@phdata) # sample size b.dat@gtdata@nids # number of cases and controls case.size <- length(which(b.dat@phdata$disease == 1)) control.size <- length(which(b.dat@phdata$disease == 0)) case.size control.size # number of SNPs snpsb.total <- b.dat@gtdata@nsnps # GLM test testb.snp <- scan.glm('disease ~ CRSNP', family = binomial(), data = b.dat) names(testb.snp) alpha <- 5e-8 testb.snp$snpnames[testb.snp$P1df < alpha] testb.snp$P1df[testb.snp$P1df < alpha] # Score test testb.qt <- qtscore(disease, data = b.dat, trait = "binomial") slotNames(testb.qt) descriptives.scan(testb.qt) row.names(results(testb.qt))[results(testb.qt)$P1df < alpha] results(testb.qt)$P1df[results(testb.qt)$P1df < alpha] results(testb.qt)$Pc1df[results(testb.qt)$Pc1df < alpha]