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Data Quality Control
NGS and Genotype Array Data

1

• Blood samples
– For unlimited supply of DNA

• Transformed cell lines
– Is expensive

• Whole genome amplification
– Allows for the creation of large amounts of DNA from initial small DNA sample

» Perform WGA on each sample three or more times and use pooled samples

– Can experience lower call rates and higher genotyping error rates
– Not recommend for whole genome sequencing or copy number variant (CNV) analysis

• Buccal Swabs
• Small amounts of DNA

• DNA not stable

• Saliva (Origene collection kit) 

• Nanodrop
• Picogreen

DNA Collection

Measurement of DNA Concentrations

2

• For family-based association studies - Trios
– Can  increase both type I and II error

• Population based studies
– Increases type II error only

Effect of Genotyping Error – Same Error Rates for 
Cases and Controls

Quantitative Traits 
If genotyping error is not correlated with
trait values type II errors will be
increased

3

• Cases and controls are sequenced/genotyped
– At different times
– Different institutions
– Or one group, e.g., case or control, is predominately 

sequenced/genotyped in the same batch

• Can lead to different genotyping error rates in cases and controls
– In this situation both type I and II error can be increased

• If sequencing/genotyping cases and controls
– Randomize cases and controls so they are spread evenly across batches

Effects of Genotyping Error – Different Error 
Rates for Cases and Controls

Quantitative Traits 
If genotyping error is correlated with trait values, it will
also increase type I and II errors, e.g., individuals with
elevated systolic blood pressure are genotyped in one
batch and those with systolic blood pressure within the
normotensive range in another batch

4

• Genotype markers which can be used as DNA fingerprint
• Allows for Assessment of DNA quality
• Aids in determining the the genetic sex of study subjects

– To aid in identification of potential sample swaps

• Detects cryptic duplicates
• For family data

– Aids in determining close familial relationships
• Non-paternity

• Sample swaps

• Cryptic relationships

Genotype SNPs (~20-96) before Exome or Whole 
Genome Sequencing

5

• Duplicate samples genotyped using arrays to detect 
inconsistencies 

– Can use duplicate samples  that are inconsistent to adjust clusters to 
improve allele calls

• Will not detect systematic errors

• Usually generated only for genotype array data 
– Due to expense, duplicate samples are usually not generated for exome or 

whole genome sequencing studies 

Detecting Genotyping Errors

6
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Variant Calling Pipeline -Step 1 Preprocessing 

FastQ or uBAM files 

Map to Reference Burrows-Wheeler Aligner

Mark Duplicates Picard

Recalibrate Bases
Base quality score recalibration (BQSR)

GATK

BAM

BAM

7

Variant Calling Pipeline-Step 2 Variant Discovery 

Call Variants 

Merge

Joint Calling

Optional - Can be used 
for large datasets

Variant quality score recalibration (VQSR)

GATK

gVCF

VCF

gVCF

Flags  variant 
sites which are 

likely to be false 
positives

GATK

Recommend HaplotypeCaller
UnifiedGenotyper - outdated

8

Variant Calling Pipeline - Step 3 Call Set Refinement 

CalculateGenotypePosteriors

VariantFiltration Flags genotypes with GQ<20

VariantAnnotator

Functional annotation

GATK

VCF

VCF

VCF

Refines genotype calls & 
GQ scores using info on 
variant MAFs. For families 
uses info on each trio pair 
within a family

Flags possible de novo events 
(trio data)

Not performed by GATK

9

A Short List of Additional Software to Detect 
Genetic Variation

• Exome data Copy Number Variation
– CoNIFER (Copy Number Inference From Exome Reads)

• Krumm et al. 2012

– XHMM
• Fromer et al. 2014

• WGS data structural variation
– MetaSV

• Mohiyuddin et al. 2015

– LUMPY
• Layer et al. 2014

10

Variant Calling

• BAM files are large and take considerable resources
– Storage is expensive 
– One 30x whole genome is ~80-90 gigabytes
– A small study of 1,000 samples will consume 80 terabytes of 

disk space

• The cost of cloud computing to call variants 
– (Souilmi et al. 2015)
– $5 per exome
– $50 per genome 

• For 1,000 samples
– $5,000 exome

– $50,000 genome 

11

Working with gVCF Files

• Instead of obtaining VCF files  
• Can obtain gVCF files to perform joint calling and 

complete the GATK pipeline
– A whole genome gVCF

• ~1 Gigabyte
– 1/100th the size of a BAM file for one individual

12
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Influences on Sequence Quality

• DNA quality
– Age of sample
– Extraction method
– Source of sample

• e.g., blood, skin punch, buccal

• Sequencing machines (read length)
• Median sequencing depth
• Alignment 
• Variant calling method used

– Single nucleotide variants and insertion/deletions
– Structural variants

13

NGS Data Quality Control

• Extremely important to perform before data analysis
– Poor data quality can increase type I and II errors
– Due to inclusion of false positive variant sites or incorrect 

genotype calls 

• Protocols for data QC are still in their infancy
– No set protocols for QC

• QC is data specific
– Dependent on read depth 
– Batch effects
– Availability of duplicate samples
– etc.

14

NGS Data Quality – Removal of Genotype Calls 
and Samples 

• Sequence depth of coverage
– DP_variant

• High DP could be an indication of copy number variants 
– Which can introduce false positive variant calls 

» Due to down sampling in GATK maximum DP is 250

– DP_genotype
• Concerned if depth is too low or too high

– Low insufficient reads to call a variant site
• Remove genotypes with low read depth, e.g., DP<8 

• Genotype quality (GQ) score
– Removal of sites with low genotype quality core, e.g., GQ< 20

15

NGS Data Quality – Removal of Genotype Calls 
and Samples 

• Sequence depth of coverage
– DP_variant

• High DP could be an indication of copy number variants 
– Which can introduce false positive variant calls 

» Due to down sampling in GATK maximum DP is 250

– DP_genotype
• Concerned if depth is too low or too high

– Low insufficient reads to call a variant site

• Remove genotypes with low read depth, e.g., DP<8 

• Genotype quality (GQ) score
– Removal genotypes with a low genotype quality core, e.g., GQ< 20

16

VCF Example

17

• Genetic analysis tools are usually developed to analyze 
variant sites that are diallelic

• Some sites may have >2 alleles
• The alleles at these sites need to be split

– New loci are made each multi-allelic site each with only 2
alleles

• bcftools

• Multiallelic sites can have higher error rates compared 
to diallelic sites

Variants with more than 2 Alleles

18
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• Removal of sites with missing data
– e.g., missing > 10% of genotypes

• Removal of “novel” variant sites which only occur in 
one batch and the alternative allele is observed 
multiple times or the minor allele frequency (MAF) is 
high in overall sample 

• Removal of sites that deviate from Hardy-Weinberg 
Equilibrium (HWE)
– Must be performed by population, e.g., African American 

and European American
– Related individuals should be removed from the sample 

before testing for deviations from HWE

NGS Data Quality – Removal of Genotype Calls 
and Samples 

19

NGS Data Quality Control

• GATK - Variant Quality Score Recalibration (VQSR)
– Used to determine variant sites of bad quality

• Variant site is a false positive call

• However even after this step 
– Concordance of duplicates (when available) and 
– and Ti/Tv ratios are often low 

• Additional QC steps needs to be performed

20

NGS Data Quality Control

• Values which are used for DP (genotype), GQ, and 
missing data cut offs are based upon 
– Concordance rates 

• If there are duplicate samples are available

– Ti/Tv ratios
• By individual
• By batch
• Entire data set

– Amount of data removed
• QC can remove substantial amounts of data which should be 

avoided 
– e.g., >15% of variant sites

21

Transition/Transversion (Ti/TV) Ratios

A C

GT

Transition
Transversion

• Transition
• Purine                 Purine
• Pyrimidine Pyrimidine

• Transversion
• Purine              Pyrimidine
• Pyrimidine Purine

22

Transition/Transversion (Ti/TV) Ratios

A C

GT

Transition
Transversion

• Ti/Tv Ratios
• Whole genome ~2.0 
• Exome novel ~2.7 
• Exome known ~3.5

• Ti/Tv ratios can be calculated by 
• Sample or
• Dataset

• Ti/Tv ratios can be evaluated for subsets of data
• e.g., by batch 

23

Sequence Data QC Overview

• Variant and genotype call level
– Evaluation of batch effects

• Genotype call level – Removal of genotype calls
– Low or high depth of coverage DP< 8 
– Low genotype quality score GQ< 20

• Removal of individual samples
– >20% missing data

• After taking the intersect of capture arrays

– Samples without phenotype information

24
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Sequence Data QC Overview

• Variant level – removal of variant sites
– Low call rate

• i.e., missing call rate > 10%

– “Novel” variant sites observed >2 only in a single batch
– Deviation from Hardy-Weinberg-Equilibrium

• Population specific
• Unrelated individuals 

– e.g.,  p<5 x 10-8 , p<5x10-15

25

• When data is collected on study subjects they are 
asked about their gender/sex and not their genetic sex
– Differences in gender/sex and genetic sex can be due to

• Sample swaps
• Study subjects who are not cisgender

• Some study subjects may have neither a XX nor XY 
karyotype
– Turner syndrome X0
– Klinefelter syndrome XXY 

Data Clean – Assessing Sex Chromosomes

26

• Study subjects labeled as females with an excess of 
homozygous genotypes on the X chromosome can 
denote
– That their genetic sex is male
– Turner Syndrome

Data Clean – Assessing Chromosomal Sex

27

• Study subjects labeled as males with an excess of 
heterozygous SNPs* on the X chromosome can 
denote
– That their genetic sex is female
– Klinefelter syndrome

• Note: Individuals who are XY will also be 
heterozygous for markers in the pseudoautosomal
regions

• Availability of Y chromosome data
– Can greatly aid in determining genetic sex and if an individual has 

Turner or Klinefelter syndrome

Data Clean – Assessing Chromosomal Sex

*Both males and females have two alleles for each locus on the X chromosome in 
the datafile, although males are hemizygous 

28

• Individuals whose labeled gender/sex does not match 
their genetic sex are removed from the analysis

• This observation may be due to a sample swap 
– When samples are swapped 

• Phenotype data will be incorrect
– e.g., may be a case when labeled as a control

Data Clean – Assessing Sex Chromosomes

29

• Duplicate samples are sometimes included in a study as 
part of quality control to detect inconsistencies

– Will not detect systematic errors
– Usually not included in exome and whole genome sequencing studies 
– Intentional duplicates can easily be removed before data quality control

• Cryptic duplicates (unintentional)
– DNA sample aliquoted  more than once
– Individual ascertained more than once for a study

• e.g.  The same individual undergoes the same operation more than once and is 
ascertained each time

• Individuals who are related to each other may 
participate in the same study

– Unknown to the investigator
– Or be part of the study design

Checking for Duplicate and Related Individuals

30
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• For duplicate samples
– Only one can be retained

• For related individuals
– PCA is performed first with unrelated individuals and related individuals 

are then projected onto the PCs of unrelated individuals
– Mixed-models need to be used to analyze the data if related individuals 

are included*
• Case-Control

– Generalized linear mixed models (GLMM)

• Quantitative traits
– Linear mixed models (LMM)

– If not type I error rates can be increased

Duplicate and Related Individuals Need to be 
Identified

*If only a few related individuals in sample, may wish to remove them or use LMM/GLMM
to control type I errors. Must use LMM/GLMM if related individuals are included in the
dataset. If possible, opt for LMM/GLMM since it can help to control type I error due to
other types of structure in the data, even when no closely related individuals are included
in the analysis.

31

• Duplicate and related individuals can be detected
– By examining Identity-by-State (IBS) adjusted for allele 

frequencies (p-hat) between all pairs of individuals within a 
sample

– Identify-by-descent (IBD) sharing can be estimated

Identifying Duplicate and Related Individuals

32

Identity by Descent (IBD)/Identity-by-State (IBS)

1/1 1/3

1/2 1/3

1/2 1/2

1/2 1/3

1/3 1/2

1/2 1/3

IBD=0  

IBS=1

IBD=1  

IBS=1

IBD=2  

IBS=2

33

• PLINK (Purcell et al. 2007) 
• Uses sequence (or genotype array) data to check IBD

– Prune markers to remove those in LD 
• e.g., r2<0.1

• P-hat is calculated using the “population” allele frequency
• Used to approximates IBD sharing
• IBD is the number of alleles of alleles which are shared between 

a pair of individuals
– Can either share 0, 1, and 2 alleles

IBD Sharing Estimated Pairwise for all Individuals 
in a Samples 

34

• Monozygote twins and duplicate samples will share 
100% of their alleles IBD
– IBD=2 is 1.0 (can be lower due to genotyping error)

• Siblings and child-parent pairs will share 50% of their 
alleles IBD
– For parent-child IBD=1 is 1.0 (IBD=0 is 0 & IBD=2 is 0)
– For sibs IBD=1 is ~0.50 (IBD=0 is ~0.25 & IBD=2 is ~0.25)

• For more distantly related individuals the IBD measure will be lower

Identifying Duplicate and Related Individuals

35

• KING [Kinship-based INference for Gwas
(Manichaikul et al. 2010)] can also be used to identify 
duplicate and related individuals
– KING is more robust to population substructure and 

admixture
• Prune markers for LD (e.g., r2<0.1)

– Provides kinship coefficients
• Duplicate samples

– Kinship coefficient equals 0.5

• Siblings
– Kinship coefficient equals 0.25

Identifying Duplicate and Related Individuals

36

20



King Graphical Output

37

• If individuals in sample come from different populations
– e.g., individuals from the same population within the sample will have 

inflated p-hat values due to incorrect allele frequencies
• Incorrectly appear to be related to each other

• “Relatedness” amongst many individuals can also be observed 
when batches are combined if they have different error rates

– Individuals from the same batch appear to be related

• DNA contamination can cause “relatedness” between multiple 
individuals 

Multiple Individuals observed that are distantly 
“Related” 

38

• Can be used to identify outliers
• Population substructure  

– Individuals from different ancestry
• e.g., African American samples included in samples of European 

Americans

• Batch effects
• Use a subset of markers which have been LD pruned 

– Only very low levels of LD between marker loci
• e.g., r2<0.1

– MAF cutoff dependent on sample size
• e.g MAF> 0.01 

– Can use lower MAF for large sample sizes

Principal Components Analysis (PCA) / 
Multidimensional Scaling (MDS)

39

• Unrelated individuals are used to generate PC plots
– Related individuals are projected onto to the PC plots

• Plot 1st component vs. 2nd component 
– Additional PCs should also be plotted

• e.g.. PCs 1-10

• Mahalanobis distance can be used to determine outliers
– e.g., <1

Principal Components Analysis (PCA) / 
Multidimensional Scaling (MDS)

40

• Individuals of different ancestry
– e.g., African American samples included  with European 

Americans samples
– Can use samples from HapMap/1000 genomes to help to 

determine the ancestry for samples that are outliers
• Should not include HapMap/1000 genomes samples when calculating 

components to control for population substructure/admixture

• Batch effects

PCA/MDS Can be Used to Identify Outliers

41

Principal Components Analysis Example

Exclusion of Outliers using Mahalanobis distance (0.997)

42
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Detecting Outliers Using PCA and HapMap 
Sample

YRI

Cases

Wellcome Trust
1958 Birth Cohort
Controls

CE
U

CHB/JPT

YRI

43

Detecting Outliers Using PCA and 
HapMap Sample

Wellome Trust 
1958 birth cohort
Controls

CEU

Cases

CHB/JPT

YRI

44

• Testing for deviations from HWE not very powerful to 
detect genotyping errors

• The power to detect deviations from HWE dependent on: 
– Error rates
– Underlying error model

• Random 
• Heterozygous genotypes  -> homozygous genotypes
• Homozygous genotypes ->Heterozygous genotype

– Minor allele frequencies (MAF)

Detecting Genotyping Error – Examining HWE 

45

• Controls and Cases are evaluated separately 
– Deviation found only in cases can be due to an association

• Test for deviation from HWE only in samples of the same 
ancestry
– Population substructure can introduce deviations from HWE

• Do not include related individuals when testing for 
deviations from HWE
– Can cause deviations from HWE

Detecting Genotyping Error – Examining HWE 

46

• What criterion is used to remove variants due to a 
deviation from HWE
– GWAS studies have used 5.0 x 10-7 to 5.0 x 10-15

• Quantitative Traits
– Caution should be used removing markers which deviate from 

HWE may be due to an association
• Remove markers with extreme deviations from HWE and Flag markers 

with less extreme deviations from HWE

• When performing imputation need to be more stringent in 
removing variants which deviate from HWE

Detecting Genotyping Error – Examining HWE 

47

Sequence Data QC Overview
• Remove variant sites that fail VQSR
• Remove genotypes with low DP, GQ scores, etc.
• Remove variant sites with large percent of missing data
• Remove samples with missing large percent of missing 

data
• Evaluate genetic sex of individuals based upon X and Y 

chromosomal data
– Sample mix-ups
– Individuals with Turner or Klinefelter Syndrome

48
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Sequence Data QC Overview
• Evaluate samples for cryptically related individuals and 

duplicates
– Use variants which have been pruned for LD

• e.g., r2<0.1
– King or Plink algorithm

• Always remove duplicate individuals
– Retaining only one in the sample

• If sample includes related samples use linear mix models 
(LMM)/Generalized LMM (GLMM) to control for relatedness

– Best to perform even for data without related individuals

• If only a few related individuals can retain only one individual of a 
relative group if not using LMM or GLMM

49

Sequence Data QC Overview
• Detection of sample outliers   

– Perform principal components analysis (PCA) or 
multidimensional scaling (MDS) to detect outliers

• Use variants pruned for LD
– e.g. r2<0.1

• Use unrelated individuals and then project related individuals 
onto the PCs

• Due to population substructure/admixture and batch effects
• Remove effects by 

– Additional QC
– Removal of outliers  (can be determined by Mahalanobis distance) 

and\or 
– Inclusion of MDS or PCA components in the association analysis

50

Sequence Data QC Overview
• Remove/flag variant sites that deviate from HWE in 

controls 
– HWE should be only be tested in unrelated individuals from the 

same population

• Post Analysis - Quantile-Quantile (QQ) plots
– To evaluate uncontrolled batch effects and population 

substructure/admixture

51

• Thousands of variants/genes are tested simultaneously
• The p-values of neutral markers follow the uniform 

distribution
• If there are systematic biases, e.g., population 

substructure, genotyping errors, there will be a 
deviation from the uniform distribution 

• QQ plots offers an intuitive way to visually detect 
biases

• Observed p-values are ordered from largest to 
smallest and their -log10(p) values are plotted on the y 
axis and the expected -log10(p) values under the null 
(uniform distribution) on the x axis

QQ Plots - Genome Wide Association Diagnosis

52

QQ Plot of Exome Wide P Values
UK Biobank 200K

𝝀 = 0.942

Hearing aid users

Case N= 6,436
Controls N= 96,601

𝝀 = 1.046

Cases N=65,660
Controls N= 96,601

Problem hearing 
with background noise

53

• Genomic Inflation Factor (GIF): ratio of the median of 
the test statistics to expected median and is usually 
represented as λ
– No inflation of the test statistic λ=1
– Inflation λ>1
– Deflation λ<1

• Can be observed when a study is underpowered

• Problematic to examine the mean of the test statistic
– Can be large if many variants are associated

• Particularly if they have very small p-values
• Should not be used

Genomic Inflation Factor to Evaluate Inflation of 
the Test Statistic 

54

23



Phenotype Covariate Mean Chi-Square GIF (λ)
BP 1.23829 1.16932

BP Age 1.24119 1.18025

BP Age-EV1 1.09471 1

BP Age-EV2 1.0881 1

BP Age-EV4 1.08385 1

BP Age-EV10 1.09582 1.00402

BPI 1.14931 1.08921

BPI Age 1.15139 1.08113

BPI Age-EV1 1.05079 1.01148

BPI Age-EV2 1.0428 1
BPI Age-EV4 1.04204 1

BPI Age-EV10 1.05421 1.01724

BPII 1.17283 1.25664
BPII Age 1.17583 1.26996

BPII Age-EV1 1.09874 1.15065

BPII Age-EV2 1.09904 1.16425

BPII Age-EV4 1.09502 1.14609

BPII Age-EV10 1.10046 1.1418

BPII Sex,Age-EV1 1.05958 1.06424

BPII Sex,Age-EV4 1.05817 1.05323
BPII Sex,Age-EV10 1.06338 1.05581

55

Example -Project Description

• 1,667 Samples
• Seven cohorts
• Two sequencing centers

– Center 1
• Two capture arrays

– NimbleGen V2Refseq 2010 (CA1): 1082
» Batch 1 and 3

– NimbleGen bigexome 2011 (CA2): 234
» Batch 2

– Center 2
• One capture array

– Agilent SureSelect
» Batch 4

• Four batches
• No intentional duplicate samples

56

Example Project Description

• Intersection of the three capture arrays used
– NimbleGen V2Refseq 2010

• Batch 1 and 3

– NimbleGen bigexome 2011
• Batch 2

– Agilent Sure Select 
• Batch 4

• Sequencing machine
– Illumina HiSeq

• Sequence alignment
– BWA

• Multi-sample variant calling
– GATK

57

MDS First 2 Components Before QC*
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Mean GP (genotype) by Batch

59

Mean GQ by Batch
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Genotypes Removed by DP (genotype) Cut-off by Batch
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Genotypes Removed by GQ Cut-offs by Batch
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Genotypes Removed by DP (genotype) Cut-off by Batch 
(First removing genotypes with GQ < 20)
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Genotypes Removed by GQ Cut-offs by Batch 
(First removing genotypes with a DP<8)
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Missing Rate Criteria & Sites Removed

Variant sites 
removed if  

missing
>10% of their 

genotypes

Variant sites 
removed if 

missing
>5% of their 
genotypes

Percent of genotype data removed

Before QC* 2.5% 3.9%
After QC 12.9% 18.3%

Variant sites missing >10% of their data were removed

*After VQSR

65

Ti/Tv Ratios during QC Process 

Known Novel All

Before VQSR 2.95 ± 0.05 1.18 ± 0.29 2.86 ± 0.07

Before additional QC 3.12 ± 0.03 2.01 ± 0.32 3.11 ± 0.03

Genotype QC DP<8, GQ<20 3.18 ± 0.04 2.10 ±0.32 3.16 ± 0.03

Remove sites missing >10% genotypes 3.39 ± 0.04 2.42 ± 0.52 3.39 ± 0.04

Remove batch specific novel sites >2 
N=17,835 3.39 ± 0.04 2.41 ± 0.53 3.39 ± 0.04

Remove sites deviating from HWE p<5x10-8

N=4,414
3.41 ± 0.04 2.39 ± 0.54 3.40 ± 0.04

66
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Ti/Tv Ratios by Individual Before and After QC

All                   Known                Novel All                  Known               
Novel  

Before QC                                                              After QC

Ti/Tv Ratios
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Sequence Data QC

• Batch effects can sometimes be removed with 
additional QC 

• Extreme outliers should be removed
• Additionally, MDS\PCA components can be included in 

the analysis to control for population 
substructure\admixture and batch effects
– Unless correlated with the outcome (phenotype)
– The MDS or PCA components should be recalculated after QC 

only including those samples included in the analysis

• Batch (dummy coding) may be included as a covariate 
in the analysis
– Unless correlated with the outcome (phenotype)

69

• Can reduce the cost of a study 
• Genotype data 
• Type I error can be increased

– Ascertainment from different population
– Differential genotyping error

• Even if performed at the same facility

• Proper QC can reduce or remove biases

Convenience Controls

70

• Obtain BAM files and recall cases and control together
– Can still have differential errors between cases and controls
– Check variant frequency by variant types in cases and control

• Synonymous variants should have the same frequencies 

• Would not expect large differences in numbers of variants between cases and 
controls

• For single variants can compare difference in frequencies with 
gnomAD but is problematic

– Differences in frequencies can be due to differences in ancestry and/or 
sequencing errors

– Cannot adjust for confounders
• e.g., sex, population substructure/admixture

• Don’t perform an aggregate test using frequency information 
obtained from databases,  e.g., gnomAD, TOPMed Bravo

Convenience Controls–Sequence Data

71

• Initially remove DNA samples from individuals who are missing 
>10% or their genotype data

• For variant sites with a minor allele frequency (MAF)>0.05
– Remove variants sites missing >5% of their genotype data

• For variant sites with a MAF<5% 
– Remove variant sites missing > 1% of their genotype data

• The genotypes for variant sites with missing data may have 
higher genotype error rates

Genotype Array Data 
Genotype Data QC – Population Based Studies

72
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• Remove samples missing >10% genotype data
• Remove SNPs with missing genotype data 

– If minor allele frequency >5% 
• Remove markers with >5% missing genotypes 

– If minor allele frequency <5% 
• Remove markers with >1% missing genotypes

• Remove samples missing >3% genotype calls 
• Check genetic sex of individuals based on X-chromosome 

markers & Y chromosome marker data (if available)
– Remove individual whose reported gender/sex is inconsistent with 

genetic data
• Could be due to a sample mix-up

• Check for cryptic duplicates and related individuals
– Used “trimmed data set of markers which are not in LD

• e.g. r2<0.1

– Remove duplicate samples

Order of Data Cleaning-Genotype Array Data

73

• Perform PCA or MDS to check for outliers
– Use trimmed data set of markers which are not in LD

• e.g., r2<0.1

– First with unrelated individuals and then project related individuals on 
the components

– Remove  outliers from data
• e.g., Mahalanobis distance

• Check for deviations from HWE
– Separately in cases and controls
– Only unrelated individuals
– If more than one ancestry group

• Separately for each ancestry group
– As determined via PCA or MDS

• Examine QQ plots for potential problems with the data
– e.g., not controlling adequately for population admixture

Order of Data Cleaning-Genotype Array

74
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Complex Trait Association Analysis of 
Rare Variants Obtained from 

Sequence Data

1

Complex Diseases (Traits)

T.A. Manolio, et al. J clin Invest, 2001

D. Kenneth, et al. NCHS Date Brief No. 293, 2017

Genetic and environmental contribution to 
complex disorders

Top 10 leading causes of 
death in the United States

2

Heritability for Common Traits 

Human height heritability is ~80% 

• Strongly associated common 
variation explain 21—29% 

• All common variation explains 60% of 
height heritability

3

Allelic Architecture 

T. A. Manolio et al. Nature, 2009

4

• Disease susceptibility is conferred by variants which are 
common within populations

– Variants are old and widespread

• These variants have modest phenotypic effect

• This model is supported by a large number of replicated 
examples

– Age Related Macular Degeneration (Klein et al. 2005)
• Complement factor H (CFH) gene

Complex Disease – Common Variant
Associations 

5

• Hundreds of thousands of Single nucleotide polymorphism 
(SNPs) genotyped and analyzed

– Indirect mapping
• Markers usually had a  minor allele frequency (MAF) > 0.05

• Usually not pathogenic – tag SNPs 

• In linkage disequilibrium with disease susceptibility variant

Studying Complex Traits – Common Variant 
Associations

6
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Complex Trait – Common Variant Associations

• Although 
highly 
successful in 
identifying 
thousands of 
complex trait 
loci 

• Usually 
pathogenic 
susceptibility 
variant(s) not 
identified

7

• Complex traits are the result of multiple rare variants
– Although first thought to large effects, there effect sizes are usually small 

• Although these variants are rare, e.g., MAF<0.005
– Collectively they may be quite common

• Direct tests of this hypothesis where first reported >15 years ago 
– Dallas Heart Study

• Small sample ~1,200 individuals
– Multi-ancestry 
– Used “extreme” sampling 

• Plasma low density lipoprotein levels (Cohen et al. 2004)
– NPC1L1 

Complex Disease – Rare Variant Associations

8

• Testing individual variants with low effect sizes and minor allele 
frequencies (MAFs)

– Underpowered to detect associations

• Testing variants in aggregate increases MAFs
– Improving the power to detect associations

Rationale for Rare Variant Aggregate 
Association Tests 

Gene 1 Gene 2 Gene 3

9

Caveats - Aggregate Rare Variant Association Tests

• Misclassification of variants can reduce power
– Inclusion of non-causal variants
– Exclusion of causal variants

• Analysis is limited to 
– Genes 
– Genes within pathways

• Analysis outside of exonic regions is problematic
– Unlikely a sliding window approach will work

• Size of window unknown and will differ across the genome
– A better understanding of functionality outside the coding regions is 

necessary
• Predicted functional regions, enhancer regions, transcription factors, DNase 

I hypersensitivity sites, etc.

10

Analysis of Rare Variants
• For biobank sized datasets higher frequency rare variants, 

e.g., 0.5% can be analyzed individually
– Using same same methods implemented for common 

variants

Example
α=5 x 10-8*
Disease prevalence 5%
1-β =0.80

*Note: a more stringent significance 
criterion may be necessary for genome-
wide sequence data. Due to a larger 
number of effective tests compared to 
analysis of common variant GWAS 
panels 

11

A Few Rare Variant Association Tests
• Combined Multivariate Collapsing (CMC)

– Li and Leal AJHG 2008

• Burden of Rare Variants (BRV)
– Auer, Wang, Leal  Genet Epidemiol 2013

• Weighted Sum Statistic (WSS)
– Madsen and Browning PloS Genet 2009

• Kernel based adaptive cluster  (KBAC)
– Liu and Leal PloS Genet 2010

• Variable Threshold (VT)
– Price et al. AJHG 2010

• Sequence Kernel Association Test (SKAT)
– Wu et al. AJHG 2011

• SKAT-0 
– Lee et al. AJHG 2012

Fixed Effect 
Tests

Random Effect
Test

Optimal  test

12
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• Frequency cut offs used to determine which variants to include in 
the analysis 

– Rare Variants (e.g., MAF<0.05% frequency)
– Rare and low (MAF=0.05-5%) frequency variants 

• Maximization approaches
• Tests developed to detection associations when variants effects 

are bidirectional 
– e.g., protective and detrimental

• Incorporate weights based upon annotation
– Frequency 

• e.g., gnomAD

– Functionality
• CADD c-scores

Types of Aggregate Analyses

13

• Combined multivariate & collapsing (CMC)
– Li & Leal, AJHG 2008

• Collapsing scheme which can be used in the regression 
framework

– Can use various criteria to determine which variants to collapse into 
subgroups

• Variant frequency

• Predicted functionality

Methods to Detect Rare Variant Associations
Using Variant Frequency Cut-offs

14

• Define covariate Χj  for individual j as

• Compute Fisher exact test for 2x2 table

CMC

X=1 X=0

cases

controls

Number of cases for 
which one or more rare 
variants are observed 
e.g., nonsynonymous  
variants freq. <1%

Number of  
controls without 
a rare variants

Number of controls 
for which one or more 
rare variants are 
observed

Number of cases 
without a rare 
variants

Can also use same coding in a regression framework

15

• Example of coding used in regression framework:
– Binary coding 

– Gene region with 5 variant sites 
–

•

CMC

1 1

2 1

3 0

Rare Variant Sites
Green bars: Major allele is observed in the study subject 
Red bars: Minor allele has been observed

Individual Coding  

16

• Gene-or Region-based Analysis of  Variants of Intermediate and 
Low frequency (GRANVIL)

– Aggregate number of rare variants used as regressors in a linear 
regression model

– Can be extended to case-control studies
• Morris & Zeggini 2010 Genet. Epidemiol

– Test also referred to as MZ

Methods to Detect Rare Variant Associations
Using Variant Frequency Cut-offs

17

• Example of coding used in regression framework
– Gene region with 5 variant sites – data available on all sites
–

• Missing data for three of the five variant sites

GRANVIL

Coded 2/5 (0.4)  Note same 
coding for heterozygous and 
homozygous genotypes

Coded 2/5 (0.4)

Coded 1/2 (0.5)

Individual 1

Individual 2

Individual 3

Burden Rare Variant  (BRV) extension (Auer et al. 2013 Genet Epidemiol) 
Individual 1:  Coded 2
Individual 2: Coded 3
Individual 3: Coded 1

18
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• Group-wise association test for rare variants using the 
Weighted Sum Statistic (WSS)

– Variants are weighted inversely by their frequency in controls (rare 
variants are up-weighted)

• Madsen & Browning, PLoS Genet 2009

• Kernel based adaptive cluster (KBAC)
– Adaptive weighting based on multilocus genotype 

• Liu & Leal, PLoS Genet 2010 

Methods to Detect Rare Variant Associations
Weighted Approaches

19

• Variable Threshold (VT) method 
– Uses variable allele frequency thresholds and maximizes the test statistic
– Can also incorporate weighting based on functional information

• Price et al. AJHG 2010

• RareCover
– Maximizes the test statistic over all variants with a region using a greedy 

heuristic algorithm
• Bhatia et al. 2010 PLoS Computational Biology

Methods to Detect Rare Variant Associations
Maximization Approaches

20

• C-alpha
– Detects variants counts in cases and controls that deviate from the 

expected binomial distribution
• For qualitative traits only

– Neale et al. 2011 PLoS Genet

• Sequence Kernel Association Test (SKAT)
• Variance components score test performed in a regression framework

– Can also incorporate weighting

• Wu et al. 2011 AJHG

Methods to Detect Associations with Protective 
& Detrimental Variants within a Region

21

• SKAT-O
– Maximizes power by adaptively using the data to combine a burden test 

and the sequence kernel association tests
• Lee et al. 2012 AJHG

Optimal Test

22

• For exome data where individual genes are analyzed usually a 
Bonferroni correction for the number of genes tested is used

– There is very little to no linkage disequilibrium between genes

• Bonferroni correction used
– e.g., p<2.5 x 10-6 (Correction for testing 20,000 genes)

Significance Level for Rare Variant 
Association Tests

23

• MAF cut-offs are frequently used to determine which variants 
to analyze in aggregate rare variant association tests

• MAF from controls should not be used
– Increases in type I error rates 

• Determine variant frequency cut-offs from databases
– Using population frequencies for those understudy
– gnomAD

• http://gnomad.broadinstitute.org/

Determine MAF Cut-offs for Aggregate Rare 
Variant Association Tests

24
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• Same frequency of missing variant calls in cases and controls
– Decrease in power

• More variant calls missing for either cases or controls
– Increase in Type I error 
– Decrease in power 

• Remove variant sites which are missing genotypes, e.g., >10%
• Can impute missing genotypes using observed allele frequencies

– For the entire sample
• Not based on case or control status

• Analyze imputed data using dosages

Problem of Missing Genotypes for Aggregate 
Rare Variant Association Tests

25

• Genotypes are no longer assigned 0 (1/1), 1 (1/2) or 2 (2/2)
– Due to uncertainty

• Each genotype is assigned a probability
– Probabilities sum to 1

• For example
– Probability of  0 (1/1) genotype is 0.98 and 1 (1/2) genotype is 0.015

• The dosage can be estimated for this example as follows

• Instead of using the most likely genotype the dosage is used

Dosages

0 x 0.98 = 0
1 x 0.015 =  0.015
2 x 0.005 = 0.01
Dosage = 0.025

26

Results

27

• Ideally should be performed in a regression framework to adjust 
for covariates

– Logistic 
– Linear regression 

• Almost all rare variant aggregate methods have been extended 
to be implemented within a regression framework

• Some have also been implemented in a linear mixed model 
(LMM)/generalized LMM

– Usually limited to fix effect tests

Rare Variant Aggregate Methods  

28

• Most rare variant aggregate analysis methods can be performed 
on quantitative traits

• If phenotype data includes outliers or deviates from normality
– Can increase type I errors

Analyzing Quantitative Variants 

29

• For data that deviates from normality
– Quantile-quantile normalization 

• For data that includes outliers
– Winsorize

• Don’t winsorize and then normalize
• Instead of analyzing quantitative trait values

– Residual can be generated
• Adjusting for confounders

Analyzing Quantitative Variants 

30
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Family-based Methods for Rare Variant 
Aggregate Association Analysis 

Fixed Effect  Tests

Variance-Component Tests

RV-TDT

Epstein’s ASP

GSKAT
FSKAT

FarVAT
FBAT

RV-GDT

FFBSKAT

famSKAT

Trios

Sib-Pairs

Nuclear and 
Multiplex 
Families

Binary Traits

Quantitative Traits

famSKAT

gTDT

31

Linear Mixed Model (LMM) & generalized LMM (GLMM)
Analysis of Related & Unrelated Individuals 

• LMM is an extension of the linear model to allow for both 
fixed & random effects and also allows for non-
independence of samples
– Early implementations calculated the kinship matrix Φ on the 

basis of known relationships
– Amin et al. (2007) proposed to estimate kinships based on 

genome-wide variant data
• The generalized relationship matrix (GRM) can be estimated for all 

individuals using for example identical-by-descent (IBD) sharing 

• Extended to binary (case-control) traits  - GLMM

32

LMM and GLMM:
Analysis of Related & Unrelated Individuals 

• Can be applied to analyze families, cryptically related, & unrelated 
individuals

– e.g., UK Biobank
• 500K study subjects of which 30.3% are < 3rd degree relatives & 4.5% sib-pairs

• More recent implementation for large scale data using a variety of 
methods

– BOLT-LMM (Loh et al. 2015) • REGENIE (Mbatchou et al. 2020) *
– FastGWA (Jiang et al. 2019)  • SMMAT (Chen et al. 2019)**
– SAIGE (Zhao et al. 2015)*

• *Can be used to analyze data where case to control ratio is very 
unbalanced

– e.g., 20 cases for every control

• **Cannot be used for UK Biobank Scale data

33

LMM and GLMM:
Analysis of Related & Unrelated Individuals 

• To allow for use with very biobank sized data 
• REGENIE does not use the GRM

– It uses whole genome regression, i.e., the ridge regression 
• In essence, it includes all the SNVs as covariates in the null model

– Performed by blocks to avoid having to load the entire genome in memory
» Using different effect size differences per block

• This large-scale approximation may not control type I 
error for individuals that are closely related
– e.g., when only families are being analyzed
– Can use for example SMMAT

• Which uses the GRM

34

LMM and GLMM:
Analysis of Related & Unrelated Individuals 

• A few programs which can perform rare variant aggregate 
analysis
– REGENIE  - Burden test
– SMMAT - Burden, SKAT, & SKAT-O tests
– rvtests (Zhan 2020) implements BOLT-LMM to perform burden 

association analysis

• An alternative for rare variant aggregate analysis
– Recode variants within gene regions and then analyze 

35

• Can control for covariates in the analysis which are potential 
confounders

– Age 
– Sex
– Batch
– Body Mass Index (BMI)
– Smoking pack years

Rare Variant Aggregate Methods  

36
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Confounder -Population Substructure and Admixture  

37

• If proportion of cases and controls sampled from each 
population is different
– Can occur due to

• Disease frequency is different between populations 
• Sloppy sampling 

• Population substructure\admixture can cause 
detection of differences in variant frequencies within a 
gene which is due to sampling and not disease status
– False positive findings can be  increased  

Population Substructure and Admixture 

38

Example River People

39

• Currently PCA or MDS are used 
to control for population 
substructure\admixture 

– Controls on the global level
– May not be sufficient in 

particular for admixed 
populations

Population Substructure and Admixture

40

• When analyzing different populations, e.g.,
– Africans 
– Europeans

• When analyzing data from different source
– Analyze each group separately 

• Meta-analysis can be used to combine the results from 
each group

Rare Variant Aggregate Association Analysis

41

• Best to obtain principal components to include in the 
regression model (including LMM and GLMM) 

– using variants which are not in LD e.g., r2<0.1  (pruned)
– covering a wide range of the allelic frequency spectrum e.g., >0.1% 
– Evaluate how many components need to be included

• Don’t include a fix number of components

– e.g., 5 or 10 components

Rare Variant Aggregate Methods  

• Success of  PCA\MDS  in 
controlling for population 
substructure\admixture can be 
evaluated through lambda and 
examining Quantile-Quantile 
(QQ) plots

𝝀 = 0.942

42
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Part II
Example of a Rare Variant Association 

Study

Analysis of UK Biobank Exome Data to 
Study the Etiology of Late-onset 

Hearing Impairment

43

Age-related Hearing Impairment (ARHI)
(aka Presbycusis)

• ARHI can impact quality of life and daily functioning
• ARHI is one of the most common adult conditions

– In the USA
• ARHI affects 50% of individuals >75 years of age
• It is estimated that 30-40 million will be affected with significant 

ARHI by 2030

44

Goals of the Study
• Using data from the UK Biobank to detect 

associations between self-reported measures of 
ARHL and genetic variants
– H-aid self-reported hearing aid use (f.3393: “Do you use a 

hearing aid most of the time?”)
– H-diff self-reported hearing difficulty (f.2247: “Do you have any 

difficulty with your hearing?”)
– H-noise self-reported hearing difficulty with background noise 

(f.2257: “Do you find it difficult to follow a conversation if there 
is background noise e.g., TV, radio, children playing)?

– H-both individuals with both H-diff and H-noise

• With an emphasis of understanding the role that 
rare variation plays in ARHL
– Current analysis - exome sequence data

45

UK Biobank
• 500,000 individuals randomly sampled 

– Aged 40-69 at time of enrollment
• To be followed for at least 20 years 
• Predominantly white Europeans

– Also includes South Asians and individuals of African Ancestry and smaller number of 
individuals of a few other ancestries

• Extensive phenotype data
– Qualitative and quantitative traits

• ICD-10 and ICD-9 codes
• Self reports
• Cognitive test
• Brain MRIs
• NMR-metabolomics data

• Genetic Data
– Genotype and imputed data
– Exome sequence data
– Whole  genome sequence data 

• 200K currently available 
• Remining sample - Quarter 1 2023

– Telomere length data

*
*Data showcase can be used to examine phenotypes and sample sizes available 

46

• Exome data
– ~200,000 participants

• Imputed variant data (secondary replication 
sample for common variants)
– ~300,000 participants

• Did not have exome data at the time of the study

Genetic Data Analyzed

47

pVCF Quality Control
Exome Data 

48

35



N=200,619
Individuals with exomes and phenotype data

N=200,386
Individuals consistent for sex

N=189,001
Individuals self-report to be of European ancestry

N=187,908
After removal of outliers based on PCA analysis – Mahalanobis distance 

(<0.997) 

N=180,318
After applying phenotype exclusion criteria (ICD10, ICD9, & self-report)

Filtering Strategy

49

Principal Components Analysis and 
Exclusion of Outliers 

50

Exclusion Criteria 
Obtained from ICD10, ICD9, & Self Report

• Deafness
• Early-onset hearing impairment
• Otosclerosis
• Meniere’s
• Labyrinthitis
• Disorders of acoustic nerve
• Bell’s palsy 
• History of chronic suppurative and nonsuppurative otitis 

media
• Meningitis 
• Encephalitis, myelitis, and encephalomyelitis
• Etc.

51

N=200,619
Individuals with exomes and phenotype data

N=200,386
Individuals consistent for sex

N=189,001
Individuals self-report to be of European ancestry

N=187,908
After removal of outliers based on PCA analysis – Mahalanobis distance 

(<0.997) 

N=180,318
After applying phenotype exclusion criteria (ICD10, ICD9, & self-report)

Filtering Strategy

52

• Based on answers obtained from a touch screen 
• Cases - self-reported hearing difficulty 

– f.2247: “Do you have any difficulty with your 
hearing?”

• Controls - did not have any self-reported 
hearing problems
– H-aid hearing aid use (f.3393)
– H-diff self-reported hearing difficulty (f.2247)
– H-noise self-reported hearing difficulty with 

background noise (f.2257)

Defining Cases and Controls

53

Hearing difficulty/problems -Data field 2247

569,977* items of data are available, covering 498,704 participants

*Due to repeat visits

54
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Repeat measures*

• Individuals with inconsistent answers removed

Problems 
Hearing 

Visit 1 Visit 2

No Hearing
Problems 

No Hearing
Problems 

No Hearing
Problems 

No Hearing
Problems 

Study subject A

Visit 3 Visit 4

No Hearing
Problems Study subject B

Problems 
Hearing 

Inconsistent
Remove 

Problems 
Hearing 

Consistent
(Case)

*Majority of study subjects currently have data from only one visit

No Hearing
Problems 

No Hearing
Problems 

No Hearing
Problems 

No Hearing
Problems 

Consistent
(Control)Study subject C

55

Analysis of Exome Data
• Analysis performed using generalized linear mixed 

models (GLMM) (REGENIE)
– To control for inclusion of related individuals

• For the UK Biobank data 30.3% of participants are < 3rd degree relatives & 4.5% 
sib-pairs

– Genotype array data (~800K) were used for the ridge regression
• Data pruned to remove variants with a r2>0.1

– Using exome data for the ridge regression led to an an inflated lambda value

𝝀 = 1.044

QQ Plot using exome data for ridge regression QQ Plot using genotype data for ridge regression

𝝀 = 1.068

56

Analysis of Exome Data

• Analysis limited to individuals of white European 
Ancestry

• Sex, age, and two PCAs included as covariates
– Age for cases first report of hearing difficulty & 

controls age at last visit
– The PCAs where recalculated for only individuals 

included in the analysis
• Using the pruned genotypes array data (r2<0.1) 

57

Analysis of Exome data – Single Variant

• All variants with four or more alternative 
alleles observed in the sample analyzed
– A very low minor allele frequency was used since it 

was hypothesized some of the variants may have 
large effect sizes

58

Analysis of Exome data – Single Variant

• Discovery sample
– Second release of 150K exome

• Replication sample 
– First release of 50K exomes

• Entire exome sample (200K)
• Secondary Replication Sample* 

– To replicate findings from the entire exome sample 
– Genotype and Imputed data (Haplotype Reference 

Consortium Panel)
• 300K individuals who were not included in the exome 

data
– Imputed variants with an INFO score > 0.3 were analyzed

*Only used for replication of common variants

59

Significance Levels
• Discovery sample

– A genome-wide significance level was used to reject 
the null hypothesis of no association

• p<5.0x10-8

• Replication sample
– Permutation was used to obtain empirical p-values

• Adjusting for the phenotypes and variants brought to 
replication

– p<0.05 For the replication it is not necessary to use a genome-wide
significance level of 5 x 10-8 for single variant tests or 2.5 x 10-6
for gene-based rare variant aggregate analysis. Significance
level is adjusted for the number of variants/genes tested in the
replication sample
• Bonferroni correction
• Estimate empirical p-values

60
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Hearing Difficulty - Data Field 2247 

Cases N=45,502
Controls N= 96,601

Manhattan Plot QQ Plot

𝝀 = 1.044

Genome-wide significance level 5 x 10-8 (red line)

61

Hudson Plot Discovery and Replication
Hearing Difficulty Data Field 2247

Exome Sequence data: N=~200K
(Cases N=45,502 and Controls N= 96,601)

Genotype array/imputed sequence data: N= ~300K
(Cases N=64,953 and Controls N=141,001)

62

Analysis of Exome Data 
Rare Variant Aggregate Analysis

• Genes with at least two variants were analyzed, 
e.g., predicated loss of function (pLoF) variants

• Max coding was used
• Two masks were used

– Mask 1 – pLoF variants
– Mask 2 – pLoF and missense variants

• Minor allele frequency cut-off of <0.01 was used
– The frequencies for each variant site were obtained 

from gnomAD non-Finnish Europeans 

63

REGENIE Rare Variant Aggregate Analysis

https://rgcgithub.github.io/regenie/options/

• Three different codes can be used
• Max 
• Sum
• Comphet

• This term is not correct because the phase is unknown
• Variants may be on the same haplotype

64

Selection of Variants to Include in Rare 
Variant Aggregate Association Tests

Annotation File Mask File 

+
AAF file

1:55039839:T:C PCSK9 LoF
1:55039842:G:A PCSK9 missense

1:55039839:T:C 1.53e-05
1:55039842:G:A 2.19e-06

Mask1 LoF
Mask2 LoF,missense +

REGENIE will use information from the annotation and alternative allele 
frequency  (AAF) files to build the Masks (variants to be included in the 
association testing)

1:55039839:T:C PCSK9 CADD30 
1:55039842:G:A PCSK9 CADD20

Mask1 CADD score > 30
Mask2 CADD score > 20+ 1:55039839:T:C 1.53e-05

1:55039842:G:A 2.19e-06+

65

Analysis of Exome Data 
Rare Variant Aggregate Analysis

• Exome sample was split
– Second release of 150K exome were used as the discovery sample.
– First release of 50K exome were used as the replication sample

• Entire exome sample (200K) was also analyzed*

• Discovery sample significance level 
– p<2.5x10-6

• 0.05/20.000 Bonferroni correction for testing 20,000 genes

• Replication sample significant level
– p<0.05
– Empirical p-values generated

• Permutation used to adjust for the number of phenotypes and genes brought 
to replication (pLoF and pLOF & missense)

*No replication sample available for these findings

66
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Hearing Difficulty - Data Field 2247 
pLoF Variants

pLoF and missense variants

𝝀 = 1.038

𝝀 = 1.035

Exome-wide significance level
2.5 x 10-6 (blue line)

Cases N=45,502
Controls N= 96,601

Genes N=16,821

Genes N=18,010

67

Expression - gEAR

68

• Replicated some previously reported ARHL genes
– Some which had not been previously replicated

• e.g., BAIAP2L2, CRIP3, KLHDC7B, MAST2, and SLC22A7

• Identified and replicated a new HL gene which has 
not been previously reported
– Inner ear expression in humans and mice supports the 

involvement of gene in HL etiology
• Rare-variant aggregate analysis demonstrated the 

important contribution of Mendelian HL genes, 
i.e. MYO6, TECTA, and EYA4 the genetics of ARHL 

Results

69

• Rare variants for ARHL tend to have larger effect 
sizes than those for common variants 
– Rare variants should play an important role in risk 

prediction by increasing accuracy 
• Although most of the studies findings were 

replicated in independent samples of white 
Europeans
– Additional studies are necessary to elucidate whether 

these variants/genes play a role in the genetic etiology 
of ARHL in other populations

Results

70
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The Ethics and 
Regulation of Human 

Subjects Research 

Judy Matuk, M.S.
Independent Consultant

1

The Nuremberg Code 
(1947)

Ten Basic Principles, including:
“The voluntary consent of the human subject is absolutely 

essential…”
“The experiment should be conducted as to avoid all 

unnecessary physical and mental suffering and 
injury…”

“No experiment should be conducted where there is an a 
priori reason to believe that death or disabling injury will 
occur; except, perhaps, in those experiments where the 
experimental physicians also serve as subjects.”

“During the course of the experiment, the human subject  
should be at liberty to bring the experiment to an end if 
he has reached the physical or mental state where 
continuation of the experiment seems to him to be 
impossible.”

During the course of the experiment the scientist in 
charge must be prepared to terminate the experiment 
at any stage, if he has probable cause to believe…that 
a continuation of the experiment is likely to result in 
injury, disability, or death to the experimental subject.

2

Tuskegee Study of Untreated Syphilis 
in the Negro Male (1932-1972) 

3

National Research Act (1974)

Required the creation of the National Commission for 
the Protection of Human Subjects of Biomedical and 

Behavioral Research.

4

The Ethics of Conducting Research with 
Humans: The Belmont Report (1979)

n Beneficence
n maximize benefits, minimize risks

n Justice
n Who should bear the burdens of the

research? 
n Who should benefit from results?

n Respect for Persons
n Autonomy 
n Protect those with diminished autonomy

5

The Belmont Report was the basis for 
federal requirements of human 

research protections
Office for Human Research Protections 

• 45 CFR 46 Subpart A (‘Common Rule’) 
• Subpart B (Pregnant Women, Fetuses, and 

Nonviable/Questionable Viable Neonates), 
• Subpart C (Prisoners), 
• Subpart D (Minors)  

Food & Drug Administration
(jurisdiction: clinical investigations of drugs, devices, biologics)

• 21 CFR 50: Protection of Human Subjects 
• 21 CFR 56: Institutional Review Boards
• 21 CFR 312: Investigational Drugs  
• 21 CFR 812: Investigational Devices

6
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What is the 
Common 

Rule? 

It is the Federal Policy for the 
Protection of Human Subjects

Originally promulgated in 1991, with 
no significant changes, until 1/21/19! 

Rockefeller’s Federal Wide Assurance 
(FWA) certifies compliance with this 
federal policy (for human research 
conducted or supported by Common 
Rule agencies…)

7

What’s so 
Common 

about the 
Common 

Rule? 

ü19 federal agencies follow the new 
Common Rule, e.g.,

• DHHS, including NIH (45 CFR 46, 
Subpart A)*

• DoD  (32 CFR 219)
• NSF (45 CFR 690)
• DoEnergy (10 CFR 745)
• Department of VA (38 CFR 16)
• DoEducation (34 CFR 97)

*FDA is within DHHS, but also has its own 
regulations 

*DoJ has not signed on yet

8

First Question: Is your 
activity “human subjects 
research” (HSR)?

9

Specifically:

1. Is it HSR according to the Common Rule?
2. Is it HSR according to FDA?    

(could be both!)

10

Start with the Common Rule 

First assess:

Does the activity involve Research?

11

Common Rule Definition of 
Research:

“…a systematic investigation, including 
research development, testing and 
evaluation, designed to develop or 
contribute to generalized knowledge…”

(Both parts of the definition must be met)

12
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Part I of the definition:
What’s a Systematic Investigation?

an activity that involves a prospective plan 
which incorporates data collection, either 
quantitative and/or qualitative, and data 

analysis to answer a question

Does a case study involve a systematic 
investigation?

13

Part II: What does ‘designed to develop 
or contribute to generalizable 

knowledge’ mean?
…designed to draw general conclusions:

üwhat we know about what is being tested is not 
yet firmly established or accepted; 

and
üthe activity is not dependent on the unique 

characteristics of the target population or system in 
which it will be implemented

14

An activity is not likely to be 
generalizable if the intent is:

The evaluation or improvement of a process, practice, or 
program at the site where the activity is being conducted

Results only to be applied to populations, or inform practice 
within the target population or within the site where the activity 
is being conducted 

Implementation and evaluation of an evidence-based practice, 
process, or program (is it functioning as intended within the site 
where the activity is being conducted or with the local target 
population

15

If the activity IS research: 
Does the research involve human subjects, 

according to the Common Rule? 

A living individual about whom an investigator conducting 
research: 
(i) Obtains information or biospecimens through intervention 
or interaction with the individual, and uses, studies, or 
analyzes the information or biospecimens; or 
(ii) Obtains, uses, studies, analyzes, or generates identifiable 
private information or identifiable biospecimens.

16

Once you determine if the activity is or is 
not human subjects research according to 

the Common Rule…

You still need to assess if the activity is human 
subjects research according to FDA

17

FDA Decisions

Does the activity evaluate an FDA-regulated test article (i.e., 
drug, biologic, device)?

Does the activity involve Human Subjects? 
An individual who is, or becomes, a participant in research, 
either as a recipient of the test article or as a control. A 
subject may be either a healthy human or a patient. Also 
included in the FDA human subject definition: The use of a 
biological specimen –even if de-identified-from an individual 
used to test an investigational device

Does the activity involve research (clinical investigation)?
Any experiment that involves a test article and one or more 
human subjects...

18
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If the activity IS human 
subjects research, next 
question: Is it exempt 
from the federal 
regulations? *

*this does not mean exempt from institutional 
review!

19

Focus on: Exemption #4

Secondary research* for which consent is not required

*Secondary research only! (i.e., re-using identifiable information and/or 
identifiable biospecimens that were, or will be, are collected for another 

reason, e.g., clinical or research)

20

Exemption #4: Secondary research uses 
of identifiable private information or 

identifiable biospecimens can be 
exempt under this category, if at least 

one of the following criteria is met:

21

Exemption 4(ii)

Identifiable private information…is recorded by the 
investigator in such a manner that the identity of the 
human subjects cannot readily be ascertained directly or 
through identifiers linked to the subject, the investigator 
does not contact the subjects, and the investigator will 
not re-identify subjects; 

22

Exemption 4 (iii) 

“The research involves only information collection and analysis 
involving the investigator’s use of identifiable health information 
when that use is regulated under 45 CFR parts 160 AND 164, 
subparts A and E [HIPAA], for the purposes of “health care 
operations” or “research” as those terms are defined at 45 CFR 
164.501 or “public health activities and purposes” as described 
under 45 CFR 164.512(b)”

23

What are the ethical standards that should 
be considered for all exempt studies? 

Criteria Yes No NA

The research holds out no m ore than m inim al risk to participants ☐ ☐

Selection of participants is equitable ☐ ☐

If there is recording of identifiable inform ation, there are adequate provisions to m aintain the 

confidentiality of the data
☐ ☐ ☐

If there are interactions w ith participants, there are adequate provisions to protect the privacy 

interests of participants
☐ ☐ ☐

If there are interactions w ith participants, the consent process or inform ation provided to potential subjects includes 

the follow ing:     ☐ N/A – there are no interactions and no other need for consent

That the activity involves research ☐ ☐ ☐

A description of the procedures ☐ ☐ ☐

For Category 3 research that involves subject deception: A statem ent that subjects w ill be 

unaw are of or m isled regarding the nature or purposes of the research
☐ ☐ ☐

That participation is voluntary ☐ ☐ ☐

Nam e and contact inform ation for the researcher ☐ ☐ ☐

24

83



If the activity IS human 
subjects research, but does 
not qualify for exemption, it 
is HSR that is not exempt, 
i.e., it is subject to federal 
regulations governing human 
research protection…

…including review by a 
federally mandated  
Institutional Review Board 
(IRB)

25

Two Types of Non-Exempt Review

1. Expedited Review

2. Full Board Review

26

For a non-exempt study to qualify for 
Expedited (not full IRB Board) 

Review…
…The research must be all of the following:  
• no greater than minimal risk
• not involve prisoners (per OHRP guidance)
• not be classified 
• not involve identifiable data that would place subjects at risk of 

criminal or civil liability or be damaging to the subjects financial 
standing, employability, insurability, reputation, or be 
stigmatizing. If it could, reasonable protections must be in place 
so that risks related to invasion of privacy and breach of 
confidentiality are no greater than minimal, and

• Fit into one or more of these categories: 
https://www.hhs.gov/ohrp/regulations-and-
policy/guidance/categories-of-research-expedited-review-
procedure-1998/index.html

27

If the nonexempt 
research doesn’t qualify 
for expedited review, it 
must be reviewed at a 
convened IRB meeting.  

28

Whether expedited or full board, a 
study must meet federally-defined 

criteria in order to be approved

i.e.,

“The .111 Criteria”

29

§ 46.111 Criteria for IRB approval of 
research.
(a) In order to approve research 
covered by this policy the IRB shall 
determine that all of the following 
requirements are satisfied:

30
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1. Risks to subjects are minimized:

(i) By using procedures which are consistent with 
sound research design and which do not 
unnecessarily expose subjects to risk, and 

(ii) Whenever appropriate, by using procedures 
already being performed on the subjects for 
diagnostic or treatment purposes

31

2. Risks to subjects are reasonable in 
relation to anticipated benefits, if any, to 

subjects, and the importance of the 
knowledge that may reasonably be 

expected to result

32

3. Selection of Subjects is Equitable
Consider:
• The setting in which the research will be conducted
• Who is included, who is excluded? Does it make 

scientific sense? Ethical sense? 
• If applicable: Are children in a study involving a test 

article that hasn’t first been tested in adults? 
Pregnant women before non-pregnant women?
• Costs or compensation that may impact ‘fairness’
• Screening and recruitment?
• What about non-English speakers?

33

4. Informed consent will be sought from 
each prospective subject or the 

subject's legally authorized 
representative, in accordance with, and 

to the extent required by, §46.116

If not:
Are ALL the criteria for waiving informed 
consent or for altering/excluding specific 
elements of informed consent met?

34

5. Informed consent will be 
appropriately documented or 

appropriately waived in accordance with 
§46.117

If not:
Does the research meet one of the 
allowable criteria to waive 
documentation?

35

6. When appropriate, the research plan makes 
adequate provision for monitoring the data 
collected to ensure the safety of subjects

• What data will be monitored for safety purposes? 
When? How?
• Who will be responsible for evaluating safety data? 

Is a DSMB needed? 
• Stopping Rules? 
• Communication plan of findings to investigators 

and IRBs (from the IRB of Record or Sponsor)

36
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7.When appropriate, there are 
adequate provisions to protect the 

privacy of subjects… 

Consider:
• Settings where recruitment, consent, and research 

procedures and interactions will occur
• Provisions to ensure privacy for each of the above
• Provisions to ensure privacy when contacting or 

soliciting information from subjects

37

…and to protect the confidentiality of 
subject data

General:

• How will the data/biospecimens be stored?  
• If identifiers will be removed or replaced, is there a 

possibility that such information/biospecimens could be re-
identified?

• Will the data/biospecimens be shared/transmitted/ 
transferred to a third party or otherwise disclosed or 
released? How?

• Is there a potential risk of harm to individuals if the 
data/biospecimens are lost, stolen, compromised, or 
otherwise used in a way contrary to the parameters of the 
study?

• Plans for data retention and destruction?

38

A closer look at data security: minimize the risk 
of disclosure or breach of data 

• Obtaining the data
• What is the sensitivity of the data? Are all the data points that will be 

accessed or gathered for the research necessary to achieve the objectives 
of the research? 

• Recording the data
• What (if any) identifiers, including codes, will be recorded for the 

research?

• Storing the data
• Where will paper research records, including signed consent forms, be 

stored? How will paper records be kept secure and restricted to 
authorized project personnel?

• Where will the electronic research data be study be stored (University-
provided database application like REDCap, IT file server, etc.)?

• If there a key that links code numbers to identifiers, that list should be 
kept separate from the coded data, including copies of signed informed 
consent forms. Additionally, access to that list/key must be restricted to 
authorized research personnel.

39

Data security, continued 

• Transporting or transmitting the data
• If any research data will be collected on a mobile device, such as an 

electronic tablet, cell phone, or wireless activity tracker, details are needed 
regarding the physical security of the device, electronic security, and how 
the transfer of data from device to research storage location will be securely 
accomplished.

• If any research data will be directly entered/sent by subjects over the 
internet or via email, will a University-provided database application (like 
REDCap) be used, or is there an encrypted tunnel to the site/application?

• Access to the data 
• How will the investigators ensure only approved research personnel have 

access to the stored research data? Password-protected files, role-based 
security, etc.? 

• Sharing of the data 
• Will data be transferred or disclosed to or from the University? Is a contract 

or data transfer agreement necessary? What (if any) identifiers will be 
included? How will the data be securely transferred or disclosed (University-
approved secure file transfer, etc.)?

40

And (111.b) When some or all of the subjects are likely to be vulnerable to 
coercion or undue influence, such as children, prisoners, individuals with 

impaired decision-making capacity, or economically or educationally 
disadvantaged persons, additional safeguards have been included in the 

study to protect the rights and welfare of these subjects.

(set aside issues with children, pregnant women/fetuses, prisoners, 
regulations for which are codified in the Common Rule subparts---more 
on that in a moment)

• What are some considerations when determining if additional 
safeguards are necessary and sufficient?  

• Examples:
• For economically disadvantaged…is there payment? What 

is the amount?  schedule?
• For educationally disadvantaged…is the consent process 

particularly simplified? Should there be a witness to the 
consent process? 

41

That’s it for the .111 criteria…
but that’s not all! 

Pregnant Women?
Subpart B of 45 CFR 46

Prisoners?
Subpart C of 45 CFR 46

Children?
Subpart D of 45 CFR 46

Department of Education (ED)? 
Family Educational Rights and Privacy Act (FERPA) (34 CFR 99)

and the Protection of Pupil Rights Amendment (PPRA) (34 CFR 98) 
See resources provided by ED when developing your research protocol

Investigational Drugs, biologics, devices?
FDA regulations at 21 CFR 50, 21 CFR 56, 21 CFR 312, 21 CFR 812

HIPAA?
45 CFR Part 160 and Subparts A and E of Part 164

42

86

http://www2.ed.gov/policy/gen/guid/fpco/index.html
http://familypolicy.ed.gov/ppra?src=fpco
http://www2.ed.gov/about/offices/list/ocfo/humansub.html
http://www.access.gpo.gov/nara/cfr/waisidx_07/45cfr160_07.html
http://www.access.gpo.gov/nara/cfr/waisidx_07/45cfr164_07.html


43

87



Andrew DeWan, PhD, MPH
Associate Professor of Epidemiology

Director, Yale Center for Perinatal, Pediatric and Environmental Epidemiology
Yale School of Public Health

From cross-phenotype associations to 
pleiotropy in human genetic studies

Work done in collaboration with Yasmmyn Salinas, PhD, MPH, Assistant Professor of Epidemiology, 
Yale School of Public Health

1

Pleiotropy

• Phenomenon in which a genetic locus affects more than 
one trait or disease

• Molecular level
– Single gene with multiple physiological function
– Two domains of a single gene product with different functions 

and affecting multiple phenotypes
– Gene product with a single function that affects multiple 

phenotypes acting in multiple tissues
• Statistical level

– A locus displaying cross-phenotype associations is often 
considered pleiotropic

– Can be at the variant, gene or region level

2

2

Solovieff et al. Nat Rev Genet. 2013 July ; 14(7): 483–495. doi:10.1038/nrg3461.

3

v

Early example of “pleiotropy”
Gregor Mendel documented one of the earliest examples of 

pleiotropy in his pea plant experiments

4

White flowers
- Seed coats = white
- Axils = white and unspotted 

Violet flowers
- seed coats = brown-grey 
- axils = red and spotted

Mendel, J. G., 1866 Experiments in plant hybridization. Verhandlungen des naturforschenden Vereines in Brunn 4: 3–47 (in German). 

4

Examples in humans
• Marfan syndrome 

– FBN1 (fibrillin-1)
– thinness, joint hypermobility, limb elongation, lens dislocation, 

and increased susceptibility to heart disease. 
• Holt-Oram syndrome, 

– TBX5 (transcription factor)
– cardiac and limb defects 

• Nijmegen breakage syndrome
– NBS1 (DNA damage repair protein)
– microcephaly, immunodeficiency, and cancer predisposition

5

Pleiotropy and complex disease 
comorbidity

• Examples of correlated (comorbid) disease
– Obesity, hypertension, dyslipidemia, type 2 diabetes 

(metabolic disorder)
– Depression, anxiety, personality disorders (psychiatric 

disorder)
– Asthma, obesity (pro-inflammatory conditions)

• Why do certain disease occur together
– Causality
– Shared environmental risk factors
– Shared genetic risk factors

6
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Pleiotropy and complex disease 
comorbidity

7

Pleiotropy and complex disease 
comorbidity

• Pleiotropy-informed analyses consider multiple 
phenotypes together and take into account the 
correlation between the phenotypes

– Analyzing multiple correlated phenotype (e.g. 
comorbid diseases) is equivalent to analyzing a single 
narrowly-defined phenotype with low heterogeneity

8

Pleiotropy and complex disease comorbidity

• Detecting shared genetics and/or molecular pathways 
between comorbid diseases can help us understand exactly 
how the etiology of the diseases overlap 

• Etiologic overlaps:
• provide opportunities for novel interventions that prevent 

or treat the comorbidity, rather than preventing/treating 
each disease separately

• facilitate drug repurposing (that is, known drugs targeting 
a pleiotropic locus may be repurposed to treat other 
diseases controlled by that locus, precluding the need for 
the development and testing of a brand-new drug)

9

9 10

Pleiotropy in gene mapping

• Mapping a single genotype to multiple phenotypes has the 
potential to uncover novel links between traits or diseases

• It can also offer insights into the mechanistic underpinnings of 
known comorbidities

• It can increase power to detect novel associations with one or 
more phenotypes

11

11

A practitioners’ guide for studying pleiotropy 
in genetic epi studies

12

12
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Guidelines for generating robust 
statistical evidence of pleiotropy

Discover CP 
associations

Dissect CP 
associations

Classify them as examples 
of biological, mediated, or 

spurious pleiotropy

13

13

Cross-phenotype (CP) associations

v

Statistical associations between a single genetic locus – a single 
gene or a single variant within a gene – and multiple phenotypes

Note that the dashed lines denote uncertainty 
about whether the SNP has a direct effect on the 

phenotypes.

A

Y

Y
SNP

P2

P1

14

14

Analytic options for discovery of 
CP associations

15

Key distinction:
• Univariate methods examine the association between a given SNP and each 

trait separately
• Multivariate methods examine the association between a given SNP and 

each trait by modeling the traits jointly

MultivariateUnivariate

15

Analytic options for discovery of 
CP associations

16

Choice between univariate and multivariate approaches depends on:
• Types of data available on our phenotypes of interest 

• Summary statistics vs. individual-level data?
• Are the phenotypes measured on the same subjects?

• Distribution of the phenotypes (e.g., quantitative or disease trait)

MultivariateUnivariate

16

Univariate methods are by far the most 
commonly used to detect CP associations

• Univariate methods include (but are not limited to) the 
methods you’ve discussed in class so far:
• allelic Chi-Square test

• genotypic Chi-Square test

• regression-based methods 

• The overall approach is to:
• obtain univariate association p-values for each phenotype 

• declare CP associations at genetic loci that are statistically 
significantly associated with each phenotype

17

Step 1. Fit two univariate regression models within PLINK

Step 2. For a given SNP, examine p-values for 𝜷𝟏 from each model.

• P-value for 𝜷𝟏 in hypertension model = 1.03 x 10-12

• P-value for 𝜷𝟏 in heart disease model = 6.02 x 10-9

Step 3. Declare CP associations at a given SNP, if the p-values for 𝜷𝟏 in 
each model surpass the study significance threshold.

• Assuming the standard GWAS significance threshold (alpha=5 x10-8), there 
is a statistically significant association with both hypertension and heart 
disease at this particular SNP.  Therefore, we have sufficient statistical 
evidence to declare a CP association at this SNP. 

Hypothetical example: Discovery of CP 
associations for hypertension and heart 

disease by using logistic regression

𝐸 ℎ𝑦𝑝𝑒𝑟𝑡𝑒𝑛𝑠𝑖𝑜𝑛 = 𝛽" + 𝜷𝟏 ∗ 𝑆𝑁𝑃
𝐸 ℎ𝑒𝑎𝑟𝑡 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 = 𝛽" + 𝜷𝟏 ∗ 𝑆𝑁𝑃

Word of caution: The univariate tests of association should be 
marginal tests (conducted irrespectively of the second phenotype) 
NOT conditional tests (conducted on a subset defined based on 
absence/presence of the second phenotype). In this example, what 
that means is that the regression for hypertension should be fit on all 
subjects irrespectively of their heart disease status; and the 
regression for heart disease should be fit on all subjects
irrespectively of their hypertension status. More on this later!

18
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Hypothetical example: Discovery of CP 
associations for hypertension and heart 

disease by using logistic regression
Step 1. Fit two univariate regression models within PLINK

Step 2. For a given SNP, examine p-values for 𝜷𝟏 from each model.

• P-value for 𝜷𝟏 in hypertension model = 1.03 x 10-12

• P-value for 𝜷𝟏 in heart disease model = 6.02 x 10-9

Step 3. Declare CP associations at a given SNP, if the p-values for 𝜷𝟏 in 
each model surpass the study significance threshold.

• Assuming the standard GWAS significance threshold (alpha=5 x10-8), there 
is a statistically significant association with both hypertension and heart 
disease at this particular SNP.  Therefore, we have sufficient statistical 
evidence to declare a CP association at this SNP. 

𝐸 ℎ𝑦𝑝𝑒𝑟𝑡𝑒𝑛𝑠𝑖𝑜𝑛 = 𝛽" + 𝜷𝟏 ∗ 𝑆𝑁𝑃
𝐸 ℎ𝑒𝑎𝑟𝑡 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 = 𝛽" + 𝜷𝟏 ∗ 𝑆𝑁𝑃

19

Using multivariate methods to increase the 
power to detect cross-phenotype associations

20

20

21 22

1 Department of Chronic Disease Epidemiology; 2 Department of Biostatistics, 
Yale School of Public Health, Yale University, 60 College St, New Haven, 

Connecticut, USA

Yasmmyn D. Salinas1, Andrew T. DeWan1, and Zuoheng Wang2

A comparison of univariate and multivariate
GWAS methods for analysis of multiple 

dichotomous phenotypes

Genet. Epidemiol. 41 (7), 689-689

23

Simulation scenarios

# traits associated hi2 rY1,Y2 Pj

1 h12=0.1%,h22=0% [-0.9,0.9] P1 = P2 = 10%
P1 = P2 = 20%
P1 = 10%, P2 = 20%
P1 = 20%, P2 = 10%

2 h12 = h22= 0.1% [-0.9,0.9] P1 = P2 = 10%
P1 = P2 = 20%
P1 = 10%, P2 = 20%
P1 = 20%, P2 = 10%

2 h12 = 0.1%,h22 = 0.05% [-0.9,0.9] P1 = P2 = 10%
P1 = P2 = 20%
P1 = 10%, P2 = 20%
P1 = 20%, P2 = 10%

24
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PLEIOTROPY PRESENT
equal effect sizes

25

Problem: CP associations need not be 
indicative of pleiotropy

26

26

CP associations

Biological 
pleiotropy

Spurious 
pleiotropy

Mediated
pleiotropy

27

27

Biological pleiotropy

v

Independent associations between a genetic locus (A) 
and multiple phenotypic outcomes (Y)

The SNP has a direct effect on each phenotype. 
(Note that direct or causal effects are depicted 

with solid lines).

A

Y

Y
SNP

P2

P1

28

28

Mediated pleiotropy

v

Association between a genetic locus (A) and an intermediate 
phenotype (M) that causes a second phenotypic outcome (Y)

A non-genetic causal link between M and Y 
induces an association between A and Y, 

even in the absence of a direct effect of A on Y.

A

Y

M
SNP

P2

P1

29

29

Spurious pleiotropy

v

Artifactual associations with multiple phenotypes due to issues related 
to study design, confounding, or associations with markers in strong 

linkage disequilibrium* with multiple causal variants in different genes

*Linkage disequilibrium is the non-random co-segregation of alleles. 

A

Y

Y
SNP

P2

P1

C A

Y

Y
SNP

P2

P1

Cor

30

30
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Spurious pleiotropy

v

Artifactual associations with multiple phenotypes due to issues related 
to study design, confounding, or associations with markers in strong 

linkage disequilibrium* with multiple causal variants in different genes

*Linkage disequilibrium is the non-random co-segregation of alleles. 

A

Y

Y
SNP

P2

P1

C A

Y

Y
SNP

P2

P1

Cor

Confounders of the 
relationship between the 

phenotypes induce spurious 
cross-phenotype associations

31

31

Spurious pleiotropy

v

Artifactual associations with multiple phenotypes due to issues related 
to study design, confounding, or associations with markers in strong 

linkage disequilibrium* with multiple causal variants in different genes

*Linkage disequilibrium is the non-random co-segregation of alleles. 

A

Y

Y
SNP

P2

P1

C A

Y

Y
SNP

P2

P1

Cor

The SNP has a direct effect 
on only one of the 

phenotypes.

32

32

Spurious pleiotropy

v

Artifactual associations with multiple phenotypes due to issues related 
to study design, confounding, or associations with markers in strong 

linkage disequilibrium* with multiple causal variants in different genes

*Linkage disequilibrium is the non-random co-segregation of alleles. 

A

Y

Y
SNP

P2

P1

C A

Y

Y
SNP

P2

P1

Cor

Variables associated with the phenotypes and the 
SNP induce spurious cross-phenotype associations

33

33

Spurious pleiotropy

v

Artifactual associations with multiple phenotypes due to issues related 
to study design, confounding, or associations with markers in strong 

linkage disequilibrium* with multiple causal variants in different genes

*Linkage disequilibrium is the non-random co-segregation of alleles. 

A

Y

Y
SNP

P2

P1

C A

Y

Y
SNP

P2

P1

Cor

The SNP does not have a direct effect 
on either phenotype.

34

34

P < 5 x 10-8

P < 5 x 10-8

Univariate: 
Phenotype 1

Univariate: 
Phenotype 2

P < 5 x 10-8

Mediation 

Pleiotropy exercise (Parts 1 and 2)

35

P < 5 x 10-6

P < 5 x 10-6

Univariate: 
Phenotype 1

Univariate: 
Phenotype 2

Multivariate
P < 5 x 10-8

Mediation 

Pleiotropy exercise (Parts 1 and 2)

36

93



Guidelines for generating robust 
statistical evidence of pleiotropy

Discover CP 
associations

Dissect CP 
associations

Classify them as examples 
of biological, mediated, or 

spurious pleiotropy

37

37

Mediation analysis provides a tool 
for dissecting CP associations

38

• Mediation analysis decomposes the 
total effect of the SNP (A) on a  
phenotypic outcome (Y ) into:

• Direct effect: effect of A on Y 
that occurs independently of an 
intermediate phenotype (M)

• Indirect effect: effect of A on Y  
that occurs through the 
intermediate phenotype M

38

• Decomposes the total effect of SNP A on 
phenotypic outcome Y into:

• Direct effects: effect of A on Y that occurs 
independently of an intermediate variable M

• Indirect effects: effect of A on Y  that occurs 
through intermediate variable M

Mediation analysis: Data requirements

39

• All phenotypes must be measured on 
the same subjects

• Temporality must be ascertained 
• The occurrence of the 

intermediate variable M must 
precede that of the phenotypic 
outcome variable Y

39
• Decomposes the total effect of SNP A on 

phenotypic outcome Y into:

• Direct effects: effect of A on Y that occurs 
independently of an intermediate variable M

• Indirect effects: effect of A on Y  that occurs 
through intermediate variable M

Mediation analysis: Assumptions

40

• There must be no unmeasured:

• confounders of the total effect
• confounders of the relationship 

between SNP A and the 
mediator M

• confounders of the relationship 
between mediator M and 
phenotypic outcome Y

40

Mediation analysis: Assumptions

41

• There must be no unmeasured:

• confounders of the total effect
• confounders of the relationship 

between SNP A and the 
mediator M

• confounders of the relationship 
between mediator M and 
phenotypic outcome Y

Typically met in genetic epi studies!

41

Mediation analysis: Assumptions

42

• There must be no unmeasured:

• confounders of the total effect
• confounders of the relationship 

between SNP A and the 
mediator M

• confounders of the relationship 
between mediator M and 
phenotypic outcome Y

Requires adjustment for known confounders to prevent bias 
(Note: this effectively restricts the use of mediation analyses to datasets 
in which data on such variables have been collected)

42
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Mediation analysis: 
Regression-based approach

43

• Requires fitting two regression models, 
one for mediator M and one for 
phenotypic outcome Y:

Assesses the effect of A on M, 
while controlling for measured 
confounders (C)

• 𝐸 𝑀 𝑎, 𝑐] = 𝛽! +𝜷𝟏𝑎 + 𝛽#$𝑐

• 𝐸 𝑌 𝑎,𝑚, 𝑐 ] = 𝜃! +𝜽𝟏𝑎 + 𝜽𝟐𝑚+𝜃&$𝑐

43

Mediation analysis: 
Regression-based approach

44

• Requires fitting two regression models, 
one for mediator M and one for 
phenotypic outcome Y:

Assesses the effect of A on Y, 
while controlling for both M and C

• 𝐸 𝑀 𝑎, 𝑐] = 𝛽! +𝜷𝟏𝑎 + 𝛽#$𝑐

• 𝐸 𝑌 𝑎,𝑚, 𝑐 ] = 𝜃! +𝜽𝟏𝑎 + 𝜽𝟐𝑚+𝜃&$𝑐

44

Mediation analysis: 
Regression-based approach

45

• Requires fitting two regression models, 
one for mediator M and one for 
phenotypic outcome Y:

• The parameter estimates from these 
models (namely 𝜷𝟏, 𝜽𝟏, and 𝜽𝟐) are 
used to estimate the direct and indirect 
effects

• 𝐸 𝑀 𝑎, 𝑐] = 𝛽! +𝜷𝟏𝑎 + 𝛽#$𝑐

• 𝐸 𝑌 𝑎,𝑚, 𝑐 ] = 𝜃! +𝜽𝟏𝑎 + 𝜽𝟐𝑚+𝜃&$𝑐

45

Guidelines for generating robust 
statistical evidence of pleiotropy

Discover CP 
associations

Dissect CP 
associations

Classify them as examples 
of biological, mediated, or 

spurious pleiotropy

46

46

Mediation analysis: Interpretation

47

• Mediated pleiotropy
• Complete mediation: SNP A is associated with 

mediator M and the total effect of A on phenotypic 
outcome Y is equal to its indirect effect (i.e., the 
direct effect is equal to 0).

• Incomplete mediation: SNP A is associated with 
mediator M and A has both direct and indirect 
effects on phenotypic outcome Y (i.e., the total 
effect is equal to the sum of the direct and indirect 
effects)

• Biological pleiotropy 

• SNP A is associated with mediator M, and the total 
effect of SNP A on phenotypic outcome Y is equal 
to its direct effect (i.e., the indirect effect is equal to 
0)

47

Mediation analysis: Interpretation

48

• Mediated pleiotropy
• Complete mediation: SNP A is associated with 

mediator M and the total effect of A on phenotypic 
outcome Y is equal to its indirect effect (i.e., the 
direct effect is equal to 0).

• Biological pleiotropy 

• SNP A is associated with mediator M, and the total 
effect of SNP A on phenotypic outcome Y is equal 
to its direct effect (i.e., the indirect effect is equal to 
0)

• Incomplete mediation: SNP A is associated with 
mediator M and A has both direct and indirect 
effects on phenotypic outcome Y (i.e., the total 
effect is equal to the sum of the direct and indirect 
effects)

48
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Mediation analysis: 
Interpretation

49

• Spurious pleiotropy
• SNP A is not associated with 

mediator M after controlling for 
measured confounders

49

mediation R package
> med.fit<-glm(W1~rs1_2, data=combined, family=binomial("logit"))
> out.fit<-glm(W2~W1+rs1_2, data=combined, family=binomial("logit"))
> med.out<-mediate(med.fit,out.fit, treat="rs1_2", mediator="W1", boot=TRUE, boot.ci.type="bca", sims=1000)
> summary(med.out)

Causal Mediation Analysis

Nonparametric Bootstrap Confidence Intervals with the BCa Method

Estimate 95% CI Lower 95% CI Upper p-value
ACME (control)            0.02152      0.01823         0.03  <2e-16 ***
ACME (treated)            0.02199      0.01868         0.03  <2e-16 ***
ADE (control)             0.00723      0.00415         0.01  <2e-16 ***
ADE (treated)             0.00771      0.00443         0.01  <2e-16 ***
Total Effect              0.02922      0.02461         0.03  <2e-16 ***
Prop. Mediated (control) 0.73634      0.65429         0.84  <2e-16 ***
Prop. Mediated (treated) 0.75247      0.67272         0.85  <2e-16 ***
ACME (average)            0.02175      0.01847         0.03  <2e-16 ***
ADE (average)             0.00747      0.00426         0.01  <2e-16 ***
Prop. Mediated (average) 0.74441      0.66254         0.84  <2e-16 ***

50

Empirical searches for pleiotropic loci 
for asthma and obesity

51

51

Asthma-obesity comorbidity

AsthmaObesity/BMI

Ford ES. The epidemiology of obesity and asthma. J Allergy Clin Immunol. 2005;115(5):897-909; quiz 10.
Stukus DR. Obesity and asthma: The chicken or the egg? J Allergy Clin Immunol. 2014.
Kim SH, Sutherland ER, Gelfand EW. Is there a link between obesity and asthma? Allergy Asthma Immunol Res. 2014;6(3):189-95.
Egan KB, Ettinger AS, DeWan AT, Holford TR, Holmen TL, Bracken MB. Longitudinal associations between asthma and general and abdominal weight status among Norwegian adolescents and young adults: 
the HUNT Study. Pediatric obesity. 2014.

Shared environmental 
risk factors

Effect Modifiers

52

Study design

• Two phases:

• genome-wide linkage analysis of BMI
• follow-up family-based candidate-gene association study 

of BMI and asthma 

• Strategy for candidate-gene study:
• Authors focused on a single gene (PRKCA) within the BMI 

linkage peak because:

• animal models suggest role of PRKCA in obesity; and 
• published association studies of other genes within the 

linkage peak had found no association with BMI.

53

53

Study population

• Costa Rica study

• N = 415 asthmatic children + parents
• Childhood Asthma Management Program

• N = 493 non-Hispanic White asthmatic children + parents

54

Note that ALL children in both study populations are asthmatic

54
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Phenotype definitions

• Body mass index (BMI)

• calculated from objective measures of height and weight
• Asthma 

• physician-diagnosed asthma + one of the following: 

• 2 respiratory symptoms or asthma attacks in prior year
• increased airway responsiveness or bronchodilator 

response

55

55

Statistical methods

• Univariate family-based association tests (FBATs) were used 
to test PRKCA SNPs for association with BMI and asthma 
separately

• Note:  The FBAT statistic takes into account the 
phenotype of the offspring only

• Significance threshold used by study authors: α = 9.5 x 10-5

56

56

Results for BMI

57

Two BMI-associated variants

57

Results for asthma

58

One asthma-associated variant

58

Conclusions

59

• Authors’ conclusion: PRKCA displays pleiotropy for 
asthma and BMI (pleiotropy at gene level)
• Two variants (rs228883 and rs1005651) displayed 

statistically significant associations with body mass index
• A different variant (rs11079657) displayed a statistically 

significant association with asthma. 

59

Conclusions

60

• Our conclusion: PRKCA is associated with asthma and 
with BMI among asthmatics (no true CP association!)
• There is insufficient evidence to declare a CP association at 

PRKCA because the test of association with BMI was not a 
marginal test

• FBAT test for BMI only took into account the phenotype of the 
offspring – which were ALL asthmatic

• Thus, it remains to be seen whether the association with 
BMI is also present among non-asthmatics subjects

• Without that information, we would not be able to assess 
whether asthma is a mediator or a moderator of the 
relationship between PRKCA and BMI. 

60
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A GWAS study of pleiotropy
61

61

Study design

• Two parts:

• Genome-wide search for cross-phenotype associations 
with asthma and body mass index

• Follow-up mediation analysis to dissect genome-wide 
significant CP associations

62

62

Study population

• N = 305,945 White, British subjects from the UK Biobank (a 
population-based prospective cohort study of > 500,000 
subjects, aged 40-69 years at baseline)

63

63

Phenotype definitions

• BMI at baseline (kg/m2): 

• calculated based on height and weight measurements 
collected by trained UK Biobank staff at the recruitment 
sites 

• Asthma diagnosed prior to baseline (yes/no): 
• ascertained via the question “Has a doctor ever told you 

that you had asthma?”
• Note: In mediation analyses, two subgroups were created 

based on age-at-diagnosis

64

64

Statistical Methods

65

Assessment of potential confounders of the asthma-BMI relationship

Pa
rt 

1
Pa

rt 
2

QC in PLINK

Search for overlapping signals between asthma and BMI

Assessment of asthma-BMI relationship in the UK Biobank GWA sample

Follow-up mediation analysis in ‘mediation’ R Package

Univariate association analyses using
linear mixed effects models in BOLT-LMM

Estimation of genetic correlation using BOLT-REML

65

Overlap in GWA signals

66

Association with BMI among the 1,457 SNPs with genome-
wide significant p-values for asthma

Figure 1. Overlap in GWA signals between asthma and BMI.  Results for asthma are for the 
analysis of all asthmatic subjects (35,373 asthmatics vs. 270,572 non-asthmatics).  Results for 
BMI are for the quantitative BMI analysis (n=305,945).  Both analyses are sex- and age-
adjusted. The threshold for genome-wide significance was alpha=5x10-8.  

66
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Overlap in GWA signals

Association with asthma among the 1,699 SNPs with 
genome-wide significant p-values for BMI

67

Figure 1. Overlap in GWA signals between asthma and BMI.  Results for asthma are for the 
analysis of all asthmatic subjects (35,373 asthmatics vs. 270,572 non-asthmatics).  Results for 
BMI are for the quantitative BMI analysis (n=305,945).  Both analyses are sex- and age-
adjusted. The threshold for genome-wide significance was alpha=5x10-8.  

67

Regional plot around rs705708 for BMI 
(blue) and asthma (red)

68

68

Cross-phenotype associations in 12q13.2
69

69

Decomposing the effect of rs705708 on BMI 
via mediation analysis 

70

70

Note: Effect estimates shown are adjusted for common determinants of asthma and 
BMI: age, sex, breast-feeding status, exposure to maternal smoking, and smoking 
status at asthma diagnosis (adult analyses only). Unless otherwise noted by an 
asterisk(*), all paths are significant at the 0.05 level. 

71

71

Conclusions

• rs705708 has a positive direct effect on asthma
• Stronger in magnitude for childhood asthma

• rs705708 has a negative direct effect on BMI 
• Consistent in magnitude and direction in analyses 

including childhood vs. adult asthmatics

• This suggests that locus 12q13.2, tagged by rs705708, has 
pleiotropic effects on asthma and BMI.

72

72
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Conclusions

• 12q13.2 is multigenic and our CP associations span genes 
CDK2, RAB5, SUOX, IZK4, RPS26, ERBB3, and ESYT1. 

• rs705708 is the top regional BMI signal and resides in ERBB3.
• The top regional asthma signal, rs2456973, resides in IZKF4.
• While rs705708 and rs2456973 could be in LD with the same 

causative variant in either ERBB3 or IKZF4 or another gene in 
12q13.2, it is also possible that each variant could tag a distinct, 
trait-specific causative variant in different genes.

• Therefore, locus 12q13.2 displays pleiotropic effects on 
asthma and BMI, but this may not be an example of pleiotropy 
at the gene level (biological pleiotropy). 

73

73

P < 5 x 10-6

P < 5 x 10-6

Univariate: 
Phenotype 1

Univariate: 
Phenotype 2

Multivariate
P < 5 x 10-8

Mediation 

Pleiotropy exercise (Part 3)
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Andrew DeWan, PhD, MPH
Associate Professor of Epidemiology

Director, Yale Center for Perinatal, Pediatric and Environmental Epidemiology
Yale School of Public Health

Mendelian randomization: 
An Introduction

1

A dam s e t a l. (2006) O verw e igh t, O bes ity  and M orta lity  in  a  Large  P rospective  C ohort o f P ersons 50  to  71  Y ears  O ld . N  E ng l J  M ed 255:763-778

2

The “Obesity Paradox”

R om ero-C orra l A  e t a l. (2006) A ssoc ia tion  o f bodyw e igh t w ith  to ta l m orta lity  
and  w ith  card iovascu la r even ts  in  coronary  a rte ry  d isease : a  sys tem atic  
rev iew  o f cohort s tud ies . T he  Lance t 368 :666-678 .

C arne thon M  e t a l. (2012) A ssoc ia tion  o f W e igh t S ta tus  W ith  M orta lity  in  A du lts  W ith  
Inc iden t D iabe tes . JA M A  308:581-590 . 

3

BMI and Bloodstream Infection (BSI)/Sepsis 
Mortality

W ang S et a l. (2017) T he ro le  o f increased body m ass index in  ou tcom es o f seps is : a  sys tem atic  rev iew  and m eta -
ana lys is . B M C  A nesthes io l 17: 118.

4

Areas of Concern (BMI/BSI as an example)
• Selection Bias: If obesity is associated with BSI risk, non-obese 

patients may have other characteristics that cause their BSI that in 
turn are more strongly associated with mortality

• Reverse Causation: if measured BMI is affected by BSI

• Confounding: if factors such as chronic diseases and smoking habits 
that affect both BMI and BSI mortality are not adequately adjusted

5

Pau lse n  J e t a l. (2 0 1 7 ) A sso ciatio n  o f o b e sity  an d  life sty le  w ith  th e  risk  an d  m o rta lity  o f b lo o d stre am  in fe ctio n  in  a  ge n e ra l p o p u latio n : a  1 5 -
ye ar fo llo w -u p  o f 6 4  0 2 7  in d iv id u als in  th e  H U N T Stu d y. In t J  Ep id e m io l 4 6 :1 5 7 3 -1 5 8 1

6
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Mendelian randomization
• Mimic randomized trial using genetic data as instruments for 

exposures

• Leverages information on genetic variants that segregate randomly at 
conception

• If an association between the instrument and outcome is detected, a 
causal relationship for this association is strengthened 

7

D im o u N L an d  Tsilid is K K . (2 0 1 8 ) A  p rim e r in  M e n d e lian  R an d o m izatio n  M e th o d o lo g y w ith  a  Fo cu s o n  U tiliz in g  
Pu b lish e d  Su m m ary A sso ciatio n  D ata . M e th o d s M o l B io l. 2 0 1 8 ;1 7 9 3 : 2 1 1 -2 3 0

8

MR Assumptions
• The genetic instrument (G) is associated with the exposure (X)

• The genetic instrument is not associated with any confounder (U) of 
the exposure-outcome association

• The genetic instrument is conditionally independent of the outcome 
(Y) given the exposure and confounders

9
D avie s e t a l. (2 0 1 8 ) R e ad in g  M e n d e lian  ran d o m izatio n  stu d ie s: a  gu id e , g lo ssary, an d  ch e cklist fo r c lin ic ian s. B M J 3 6 2 :k6 0 1  

10

CRP and Heart Disease

C  R eactive  P ro te in  C oronary  H eart D isease  G enetics  C o llabora tion  (C C G C ) B M J 2011;342 :bm j.d548

11

BMI and CHD|Stroke|Type 2 Diabetes

D ale  C E  e t a l. (2 0 1 7 ) C au sa l A sso ciatio n s o f A d ip o sity  an d  B o d y 
Fat D istrib u tio n  w ith  C o ro n ary  H e art D ise ase , S tro ke  Su b typ e s 
an d  Typ e  2  D iab e te s: A  M e n d e lian  R an d o m izatio n  A n alysis. 
C ircu latio n , 1 3 5 :2 3 7 3 -2 3 8 8 .

12
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One-sample vs. two-sample designs

One-sample
• Genotype(s), risk factor and 

outcome all measured in the 
same set of study subjects

• Individual level data must be 
available

Two-sample
• Genotype(s) and risk factor 

measured in one set of study 
subjects and genotype(s) and 
outcome measured in a separate 
set of study subjects

• Can use summary statistics or 
individual level data

13

Assumption/Issue One-sample Two-sample

Instrument variable related to risk 
factor

Weak instrument biases towards 
the confounded regression result

Weak instrument biases towards 
the null

Confounders Can (and should) check this for 
measured confounders

Not often possible when using 
summary statistics

Pleiotropy Multiple methods to explore this 
issue (including MR-Egger)

Multiple methods to explore this 
issue (including MR-Egger) and may 
be more powerful with large 
consortium datasets since methods 
tend to be statistically inefficient

Subgroup analyses Possible if large sample sizes and 
data on relevant risk factors are 
available

Only possible if individual level data 
are available

Bias from adjustments made in 
GWAS

N/A as all adjustments made in the 
same set of subjects

Summary data may or may not 
have been adjusted

One-sample vs. two-sample designs

A d ap te d  fro m : Law lo r D A  (2 0 1 6 ) C o m m e n tary: Tw o -sam p le  M e n d e lian  ran d o m izatio n : o p p o rtu n itie s an d  ch a lle n g e s. In t J  Ep i 4 5 : 9 0 8 -9 1 5 . 

14

Selecting genetic variants for an instrument

• Single or multiple variants

• Current recommendation is to select variant(s) that are significantly 
associated with the exposure at the genome-wide level

• Want a strong genetic instrument to avoid weak instrument bias
• A single variant or variants with modest effects in small samples are likely to 

have low power and can suffer from bias

• If selecting multiple variants these should not be in LD and assumes 
negligible gene-gene interaction among variants

15

Instrument strength
• Measured using the F statistic in the regression of the IV on the 

exposure

𝐹 = !"#"$
#

* %!

$"%!

R2: proportion of the variance of the exposure explained by IV
N: sample size
K: number of genetic variants

General Rule: F < 10 is an indication of a weak instrument

16

Pleiotropy
• Assumption that the IV is not 

associated with Y independently 
from X
• Presence of pleiotropy can bias the 

causal estimate
• Sensitivity analyses such as MR-

Egger can be used to test whether or 
not the pleiotropy assumption has 
been violated

D avie s e t a l. (2 0 1 8 ) R e ad in g  M e n d e lian  ran d o m izatio n  stu d ie s: a  g u id e , g lo ssary , an d  ch e cklist fo r c lin ic ian s. B M J 3 6 2 :k6 0 1  

17

Testing MR: Wald Ratio
• Simple ratio of the effects of the 

instrument variable on the 
outcome over the instrument 
variable on the exposure 
• Can be implemented in both one 

and two sample designs
• One sample can use either a single 

variant or a GRS
• Two sample design that uses 

multiple variants requires a 
method for combining Wald Ratios

!β𝐼𝑉 =
!β𝑍𝑌
!β𝑍𝑋

18
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Testing MR: 2 stage least squares (2SLS)
• Single continuous instrument 

(GRS)
• Only for one sample method
• Assumes a linear relationship 

between exposure and outcome

• Regress X on G
• Calculate genetically predicted 

values of X
• Regress Y on genetically 

predicted values of X
• Fix the standard errors (e.g. 

sandwich estimator)

19

Testing MR: Inverse variant weighted
• One or two sample designs
• Tends to give more reliable 

results in the presence of 
heterogeneity and when using 
large number of instruments

• Fixed (assumes no heterogeneity 
across SNP) or random effects 
meta-analysis

!β𝐼𝑉𝑊 =
Σ𝑗%γ#$σ%#&$!β𝑗
𝛴𝑗%γ#$σ%#&$

!β𝑗 = 
'("
)*"

For each variant calculate the Wald ratio:

Combine into an overall estimate using a 
formula from meta-analysis literature:

20

Testing MR: Weighted Median
• Calculate the Wald ratio for each instrument
• Select the median value according to the weighted method

• Valid estimate when more than half of the genetic variants satisfy the IV 
assumptions

• No single IV contributes more than 50% of the weight

B o w d e n  e t a l. (2 0 1 6 ) C o n siste n t e stim atio n  in  M e n d e lian  ran d o m izatio n  w ith  so m e  in va lid  in stru m e n ts u sin g  a  w e ig h te d  m e d ian  e stim ato r. G e n e t E p i, 4 0 : 3 0 4 -3 1 4 .

21

Testing MR: MR-Egger
• Provide a valid causal estimate in the presence of some violations of the 

MR assumptions (mainly pleiotropy)
• MR consisting of a single study with multiple IVs is analogous to a meta-

analysis
• Bias resulting from pleiotropy is analogous to small study bias in meta-

analysis
• Small studies with less precise estimates tend to report larger estimates than big 

studies with more precise estimates
• Regress the standard normal 

deviate (odds ratio divided 
by its se) on the estimate’s 
precision (inverse of the se)

• Without bias, intercept = 0, 
and in the presence of bias 
the intercept is a measure of 
asymmetry

Eg g e r e t a l. (1 9 9 7 ) B ias in  m e ta-an alysis d e te cte d  b y a  sim p le , g rap h ica l te st. B M J 3 1 5 :6 2 9  - 6 3 4

22

B o w d e n  e t a l. (2 0 1 5 ) M e n d e lian  ran d o m izatio n  w ith  in va lid  in stru m e n ts: e ffe ct e stim atio n  an d  b ias d e te ctio n  th ro u g h  E g g e r re g re ssio n . In t J  E p i, 4 4 : 5 1 2 -5 2 5

23

Databases and software

D avie s e t a l. (2 0 1 8 ) R e ad in g  M e n d e lian  ran d o m izatio n  stu d ie s: a  gu id e , g lo ssary, an d  ch e cklist fo r c lin ic ian s. B M J 3 6 2 :k6 0 1  
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Assess the causal association between BMI and risk of and mortality
from BSI by overcoming the limitations of previous observational
studies by conducting an MR study in a general population of
approximately 56,000 participants in Norway with 23 years of follow-up

25

Study Population

• The Trondelag Health Study (HUNT) is a series 
of cross-sectional surveys carried out in Nord-
Trondelag County, Norway
• 130,000 inhabitants who are representative of 

the general Norwegian population in terms of 
morbidity, mortality, sources of income and age 
distribution
• Based on HUNT2 survey conducted in 1995-

1997 with 65,236 participants, 55,908 of whom 
had complete data for the analysis

26

27

Outcome
• Linked to all prospectively recorded blood cultures at the two 

community hospitals in the catchment area (Levanger and Namsos
Hospitals) as well as St. Olav’s Hospital in Trondheim (tertiary referral 
center)
• Data on blood cultures were available from January 1, 1995 through 

the end of 2017
• Date of death and emigration out of Nord-Trondelag County were 

obtained from the Norwegian population registry
• BSI was defined as a positive blood culture of pathogenic bacteria
• BSI mortality was defined as death within 30 days of BSI diagnosis

28

Genetic Instrument
• Based on a BMI meta-analysis of ~700,000 individuals (Y e n g o L  e t a l. [2 0 1 8 ] M e ta-an a lysis  o f 

g e n o m e -w id e  asso c iatio n  stu d ie s fo r h e ig h t an d  b o d y m ass in d e x  in  ~ 7 0 0  0 0 0  in d iv id u a ls o f E u ro p e an  an ce stry . H u m . M o l. G e n e t., 2 7 , 3 6 4 1 – 3 6 4 9 .)

• 939 of 941 SNPs identified as associated with BMI (p<5x10-8, two 
SNPs did not pass imputation quality control)
• Genetic risk score (GRS) was calculated for BMI using the --score 

command in PLINK (version 1.9) and weighted based on the effect 
estimates from the meta-analysis

• GRS (939 variants) explained 4.2% of the variation in BMI in the 
population (F-statistic = 2,461)

29

Analysis Methods
• Fractional polynomial model (suggestion of a nonlinear relationship 

between BMI and BSI)
• 2-stage least squares (with sandwich estimator) for analyses assuming 

a linear relationship between exposure and outcome
• Sensitivity analyses

• MR Egger (random effects)
• INW
• Weighted median
• 2-sample (using Yengo et al. for SNP-exposure associations)

30
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33 34

S5 Table. Mendelian randomization sensitivity analyses of linear association between body mass index and 
bloodstream infection mortality in the general population

H R /O R L ow er U pper P -va lue In te rcep t L ow er U pper P -va lue

One-sam ple

M R -E gger, random  effec ts 1 .18 1 .04 1 .33 0 .011 1 .00 0 .99 1 .00 0 .476

IV W , random  effec ts 1 .13 1 .05 1 .23 0 .002 - - - -

M edian  estim ato r, w eigh ted 1 .13 0 .99 1 .30 0 .081 - - - -

Two-sam ple

M R -E gger, random  effec ts 1 .98 0 .95 4 .18 0 .070 1 .00 0 .99 1 .01 0 .877

IV W , random  effec ts 1 .89 1 .33 2 .67 < 0 .001

M edian  estim ato r, w eigh ted 2 .09 1 .10 3 .97 0 .025
HR, hazard ratio; IVW, inverse-variance weighted; OR, odds ratio. Assuming a linear relationship between body mass index and bloodstream infection mortality in the
general population using the same 939 single nucleotide polymorphisms (SNP) as used to create the genetic risk score. Two-sample analyses use SNP-exposure associations
from Yengo et al [ref 2 in Supplementary text], and SNP-outcome associations from HUNT. The I2 of the SNP-exposure associations were 54% in the one-sample MR-Egger
regression, and 92% in the two-sample MR-Egger regression. Effect estimates reported as HR for one unit increase of body mass index in one-sample analyses and as OR for
one standard deviation increase of body mass index in two-sample analyses.

35 36
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37 38

39
D avie s e t a l. (2 0 1 8 ) R e ad in g  M e n d e lian  ran d o m izatio n  stu d ie s: a  gu id e , g lo ssary, an d  ch e cklist fo r c lin ic ian s. B M J 3 6 2 :k6 0 1  

40

Limitations
• Exposure randomization may not be truly random
• Unmeasured or residual confounding (population stratification, 

parental genotype associated with outcome)
• Weak instrument bias resulting from measurement error for the 

exposure of interest
• Adaptation to the exposure
• Inconsistent results and selective publication

M u kam al K J e t a l. (2 0 2 0 ) G e n e tic  In stru m e n t variab le  an a lysis: t im e  to  ca ll M e n d e lian  ran d o m izatio n  w h at it  is . T h e  
e xam p le  o f a lco h o l an d  card io vascu lar d ise ase . E u r J  o f E p id e m io l 3 5 :9 3 -9 7 .

41

http://app.mrbase.org/

H e m an i G  e t a l. (2 0 1 8 ) Th e  M R -B ase  p latfo rm  su p p o rts syste m atic  cau sa l in fe re n ce  acro ss 
th e  h u m an  p h e n o m e . e L ife 7 :e 3 4 4 0 8 .

42

107



BMI and Lung Cancer

B h askaran e t a l. (2 0 1 4 ) B o d y-m ass in d e x  an d  risk  o f 2 2  sp e c ific  can ce rs: a  p o p u latio n -b ase d  
co h o rt stu d y o f 5 .2 4  m illio n  U K  ad u lts. Lan ce t 3 8 4 :7 5 5 -7 6 5

D u an e t a l. (2 0 1 5 ) B o d y m ass in d e x  an d  risk  o f lu n g  can ce r: Syste m atic  re v ie w  an d  d o se -re sp o n se  m e ta-
an a lysis. Sc i R e p  5 :1 6 9 3 8
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Power Analysis for Single and Rare 
Variant Aggregate Association 

Analyses

1

• To avoid wasting time and money 
– Does not make sense to perform an inadequately powered study for which it 

is unlikely to to correctly reject the null hypothesis due to inadequate sample 
size

• Collaborations can aid in increasing sample sizes
– Caveats

» Disease definition may not be the same between studies
» Study subjects may be drawn for different populations

» Processing of genetic material maybe not be consistent

• Almost always necessary for grant proposals
– Can be denied funding if unable to demonstrate planned study has adequate 

power
• Realistic disease models are necessary when performing power calculations

• Correctly adjust alpha for multiple testing which will be performed
– e.g., use genome-wide significant level of 5 x 10-8 for GWAS studies

Why Estimate Sample Sizes  and/or Power? 

2

• The correct α must be use for sample size estimation/power 
analysis

• Type I (α) the probability of rejecting the null hypothesis of no 
association when it is true

• Due to multiple testing a more stringent value than α=0.05 is 
used in order to control the Family Wise Error Rate

Power and Sample Size Estimation for Case-
Control Data

3

• GWAS of common variants where each variant is test separately
– α=5 X10-8  (Bonferroni Correction for testing 1,000,000 variant sites)
– Shown to be a good approximation for the effective number of tests 

• Valid even when more than 1,000,000 variant sites tested

– Effective number of tests is dependent of the linkage disequilibrium (LD) 
structure

• Single variant tests using whole genome sequence data
– Many more rare variants than common variants

• Lower levels of LD between rare variants than between common variants

– The number of effective tests for rare variants is higher than for analysis 
limited to common variants 

– α is yet to be determined for association analysis of whole genome 
sequence data

Power and Sample Size Estimation for Case-
Control Data

4

• Using genotypes from the Wellcome Trust Case-Control 
Consortium

• Dudbridge and Gusnato, Genet Epidemiol 2008
• Estimated a genome-wide significance threshold for the UK 

European population
• By sub-sampling genotypes at increasing densities and using 

permutation to estimate the nominal p-value for a 5% family-
wise error

• Then extrapolating to infinite density
• The genome wide significance threshold estimate ~7.2X10-8

• Estimate is based on LD structure for Europeans
– Not sufficiently stringent for populations of African Ancestry

An Example of Determining Genome-wide 
Significance Levels for Common Variants

5

• For gene-based rare variant aggregate methods a Bonferroni 
correction for the number of genes/regions tested is used 

– e.g., 20,000 genes significance level  α=2.5 x 10-6

• Can use a less stringent criteria
– Not all genes have two or more variants

» Divide 0.05 by number of genes tested

• If units other than genes are used 
– A more stringent criteria may be necessary

• For rare variants – very low levels of LD between variants in 
separate genes

– Therefore, a Bonferroni correction is not overly stringent
• The number of tests ≅ effective number tests

– This would not be the case for variants in LD 

Power and Sample Size Estimation for Aggregate 
Rare Variant Tests

6
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• For replication studies can base the significance level (α)
• On the number of genes/variants being brought from the 

discovery (stage I) study 
• To replication (stage II)
• For example, if it is hypothesized that 20 genes and 80 

independent variants will be brought to stage II (replication)
– A Bonferroni correct can be made for performing 100 tests 

• An α = 5.0 x 10-3 can be used for a family wise error rate of 0.05

Power and Sample Size Estimation for Replication 
Studies

7

• Can be obtained analytically
• Information necessary

– Prevalence
– Risk allele frequency
– Effect size (odds ratio-for case control data)
– Genetic model for the susceptibility variant

• Recessive (γ1=1)

• Dominant (γ2=γ1)

• Additive  (γ2=2γ1-1) 

• Multiplicative (γ2=γ12)

Estimating Power/Sample Sizes For Single 
Variant Tests

8

• Usually, information on disease prevalence is known from 
epidemiological data 

• A range of risk allele allele frequencies and effect sizes are used
• A variety of genetic models can also used

• Dominant

• Additive 

• Multiplicative

Estimating Power/Sample Sizes For Individual 
Variants

9

• Power and Sample size
– Calculated under different models

• Where γ is the relative risk
– Multiplicative

» γ2=γ12

– Additive
» γ2=2γ1-1

– Dominant
» γ2=γ1

– Recessive
» γ1=1

Armitage Trend Test

10

• Most software for power calculations/sample size estimation use 
the relative risk (ɣ) and not the odds ratio

• The relative risk only approximates the odds ratio when disease is 
rare (Prevalence ~< 0.1%)

– The relative risk is not appropriate for common traits when a case-control 
design is used

Gamma is the Relative Risk not the Odd Ratio

11

Correspondence Between the Odds Ratio and Relative Risk

Disease Prevalence 1/2* RR=1.5 2/2** RR=1.5
0.01 1.51 1.51

0.10 1.59 1.59

0.20 1.71 1.71

Disease Prevalence 1/2 RR=1.5 2/2 RR=2.25
0.01 1.51 2.28

0.10 1.59 2.61

0.20 1.71 3.25

Marker minor allele and disease allele frequency 0.01 
D’ and r2=1  
*1/2 genotype – heterozygous (one copy of the alternative allele)
**2/2 genotype  - homozygous for the alternative allele

Dominant Model

Multiplicative  Model

12
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• Information need 
– Population prevalence
– Genetic Model
– Risk allele frequency

• Tools
– http://ihg.gsf.de/cgi-bin/hw/power2.pl
– Reference Slager and Schaid 2001

Armitage Trend Test - Power Calculations

13

Armitage Test for Trend

14

Genetic Association Study (GAS) Power Calculator

• http://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/i
ndex.html

• A one-stage study power calculator
– Which was derived from CaTs

• Which is to perform two-stage genome wide association studies

– Skol et al. 2006

• Cochran Armitage Trend Test
• Displays graphs of the results

15

GAS Power Calculator

16

• http://zzz.bwh.harvard.edu/gpc/
• S Purcell & P Sham
• Uses the methods described in Sham PC et al. (2000) Am J Hum 

Genet 66:1616-1630
– VC QTL linkage for sibships
– VC QTL association for sibships
– VC QTL linkage for sibships conditional on the trait
– TDT for discrete traits
– Case-Control for discrete traits
– TDT for quantitative traits
– Case-Control quantitative traits

• Although input is the relative risk 
– Displays odds ratios

Genetic Power Calculator

17 18
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19

• http://compgen.rutgers.edu/pawe/
• Implements the linear trend test
• Four different error models can be used

– See online documentation for complete explanation

• Can either perform: 
– Power calculations for a fixed sample size
– Sample size calculations for a fixed power

• The genotype frequencies can be generated either using a:
– Genetic model free method or
– Genetic model-based method

Power Association With Errors (PAWE)

20

• Provides sample size and power calculations for 
• Genetic and environmental main effects
• Interactions

– Gene x gene
– Gene x environment

• Sample & power calculations can be carried for:
– Case-control

• Unmatched
• Matched

– Case-sibling
– Case-parent (trios)

• Quantitative
• Qualitative

– Independent sample of individuals
• Quantitative traits

– Assumption sampled from a random population

• Can only be run under windows
– https://pphs.usc.edu/download-quanto/ 

Quanto

21

• Power will be reduced if causal variant is not in perfect LD (r2=1) 
with the tag SNP 

• Can adjust sample size when r2 <1 to increase power to the 
same level as when r2=1 

• Can estimate sample size when r2≠1
– N/r2=N’ 
– Valid only for multiplicative model
– (Pritchard and Przeworski, 2001)

• Power calculation almost always assume that r2=1
• For whole genome sequence data this should be the case since 

usually the causal variant would be included in the data 

Linkage Disequilibrium (LD) 

22

• Many unknown parameters must be modeled
– Allelic architecture within a genetic region

• Varied across genes and populations

– Effects of variants within a region
• Fixed or varied effect sizes of causal variants

• Bidirectional effect of variants

• Proportion of non-causal variants

• Power estimated empirically
• Simplified assumptions can be made to obtain analytical 

estimates
– All variants have the same effect size
– No non-causal variants within a region that is analyzed in aggregate

Power Analysis for Rare Variant Aggregate 
Association Tests

23

Simplistic Analytical Power Calculation for Rare-
variant Aggregate Association Analysis

• Assumption
– All rare variants are causal and have the same effect size

• Although usual not be correct
– Provides a gestalt of the power for a given samples or sample size 

for a given power

• Use aggregate of allele frequencies
– For example, assume a cumulative allele frequency of 0.025
– Use an exome-wide significant level e.g., 2.5x10-6 

• Provide disease prevalence and penetrance model
• Perform calculations in the same manner as was described 

for single variants

24
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Empirical Power Calculations

• A variety of methods can be used to generate variant 
data to empirically estimate power

• Variant data is generated
– Based upon a penetrance model samples of cases and 

controls are generated
– Or a quantitative trait is generated based upon the genetic 

variance

• Multiple replicates are generated and analyzed
– To determine the power

25

Empirical Power Calculations

• Examples
– 5,000 replicates are generated each with 20,000 cases and 

20,000 controls 
• The power is the proportion of replicates with p-value less than the 

specified threshold, e.g., 5x10-8

– For rare-variant aggregate tests all autosomal genes are 
generated and those genes with more than two rare variants 
(e.g., predicted loss of function) are analyzed

• The power is the proportion of genes that were tested with p-value 
which is below a specified threshold, e.g., 2.5x10-6

26

Simulation Methods

Other

Coa
les

cen
t

Note: Not all methods give a realistic distribution of variants & in particular for rare variants

27

Generating Exome Sequence Data Sets
Forward-time Simulation

Data Haplotype
Counts

Demographics

Boyko 105,814*
Kyrukov 1,800,000*

Gazave 1,308,000*

Same Model, Di�erent Profile
Rank & Range in power under fixed phenotype model setting

Odds Ratio “ = 2.0
B S V C M I R W K

[0.42,0.57]
K S V I K R C M W

[0.15,0.51]
G S R V C M I K W

[0.29,0.60]
ESP S V R C M I K W

[0.49,0.68]

ExAC S V R C M I K W
[0.54,0.73]

Odds Ratio “ = 2.0
A1BG V C K M W I S R

[0.42,0.57]
ADD2 S R V C K W M I

[0.17,0.83]
BMP2 S V R C M I W K

[0.13,0.60]
CAMTA2 S R V C W I K M

[0.12,0.86]
DUSP1 K V C I W M R S

[0.12,0.68]

Same Model, Di�erent Profile
Rank & Range in power under fixed phenotype model setting

Odds Ratio “ = 2.0
B S V C M I R W K

[0.42,0.57]
K S V I K R C M W

[0.15,0.51]
G S R V C M I K W

[0.29,0.60]
ESP S V R C M I K W

[0.49,0.68]

ExAC S V R C M I K W
[0.54,0.73]

Odds Ratio “ = 2.0
A1BG V C K M W I S R

[0.42,0.57]
ADD2 S R V C K W M I

[0.17,0.83]
BMP2 S V R C M I W K

[0.13,0.60]
CAMTA2 S R V C W I K M

[0.12,0.86]
DUSP1 K V C I W M R S

[0.12,0.68]

Same Model, Di�erent Profile
Rank & Range in power under fixed phenotype model setting

Odds Ratio “ = 2.0
B S V C M I R W K

[0.42,0.57]
K S V I K R C M W

[0.15,0.51]
G S R V C M I K W

[0.29,0.60]
ESP S V R C M I K W

[0.49,0.68]

ExAC S V R C M I K W
[0.54,0.73]

Odds Ratio “ = 2.0
A1BG V C K M W I S R

[0.42,0.57]
ADD2 S R V C K W M I

[0.17,0.83]
BMP2 S V R C M I W K

[0.13,0.60]
CAMTA2 S R V C W I K M

[0.12,0.86]
DUSP1 K V C I W M R S

[0.12,0.68]

*Selection coefficients used to define “variant type”
-”Missense” (1.0 x 10-5 – 1.8 x 10-2)

-“Nonsense, splice site and frameshift”  (>1.8 x 10-2)

28

SKAT Power Calculator

• R Library 
• Provides a haplotype matrix

– 10,000 haplotypes over 200kb region
– Simulated using a calibrated coalescent model (cosi)
– Mimicking linkage disequilibrium structure of European ancestry
– User can also provide haplotype data

• Power and sample size calculations for binary and quantitative  
traits 

• User specify proportion of variants that increase or lower risk

29

SEQPower
http://www.bioinformatics.org/spower/

Wang et al. 2014 Bioinformatics

30
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Generating Variants: Using a European 
Demographic Model and Exome Sequence Data

• Variant data generated on 18,397 genes
• Variant data simulated using a European 

population demographic model
– Gazave et al. 2013

• Variants generated using exome 
sequence data
– 4332 Exomes obtained from European 

American

Which method performs better and why?

31

Does Generating Variant Data Using the European 
Population Demographic Model Perform Well? 

Simulated Data
ESP Data

Distribution of number of variants per gene

• Simulated variant counts based 
on the entire simulated population

• Simulated variant counts based on 
haplotype pool down-sampled to ESP 
size

32

Simulating Data Using Sequence Data (ESP)

Number of Variant Sites Proportion of Variant Sites that are 
Singletons, Doubletons and Tripletons

33

Simulating Data: Using Population 
Demographic Models (PDM)

Number of Variant Sites Proportion of Variant Sites that are 
Singletons, Doubletons and Tripletons

34

Simulation Studies to Evaluate Power for Rare Variant 
Association Studies

• It is unknown which genes are important in disease etiology
– Correct allelic architecture is unknown

• Can get a better understanding of power to detect 
associations by generating variants for the entire exome

• Use a variety of disease models 
– Odds ratios
– Proportion of pathogenic variants

• Analyze of all genes
– e.g., those with 2 or more variant sites

• Determine power as the proportion of genes that meet 
exome-wide significance (e.g., alpha=2.5x10-6)

35

Power Analysis

• For tests of individual variants
– Power depended on sample size, disease prevalence, minor 

allele frequency, genetic model and variant effect size

• For rare variants (aggregate association tests)
– Also dependent on the allelic architecture

• Cumulative variant frequency within analyzed region
• Proportion of causal variants

– How much contamination from non-causal variants

• Effect sizes the same the same or different across gene regions
– Effects of variants in the same or different directions

» Protective and detrimental for binary traits

» Increase and decrease quantitative trait values

36
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Power Analysis Rare Variants
(Aggregate Association Tests)

• Power will not only vary between traits greatly
• The power to detect an association will also vary 

drastically between genes for the same complex trait
– For some causal genes even with hundreds of thousands of 

samples power will be low
– While for other causal genes a few thousand samples may be 

sufficient

37

How Large of a Sample Size is Necessary to 
Detect Rare Variant Associations?

• Data generated on 18,397 genes
• Variant data simulated using a 

European population demographic 
model
– Gazave et al. 2013

• Every missense, nonsense and splice with a MAF< 1% assigned an 
odds ratio of 1.5

• Sample sizes to detect X number of genes determined for 
– α =2.5 x 10-6 

– power=0.8

38

Sample Sizes Necessary to Detect an Association 
(Case-Control Data)

39
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Advanced Gene Mapping Course, November 2022

Jurg Ott, Ph.D., Professor Emeritus

Rockefeller University, New York
https://lab.rockefeller.edu/ott/
ott@rockefeller.edu
PH +1 646 321 1013

Genotype Pattern Mining For 
Digenic Traits

Ott "Genotype Patterns" 2

Topics

Science develops independently in different fields:
Human gene mapping
Frequent Pattern Mining

Case-control association analysis
Main effects in genetic association studies
Interaction effects in case-control data

Mining consumer databases
The Apriori algorithm
Newer algorithms: eclat, fpgrowth
Analysis of AMD dataset

Ott "Genotype Patterns" 3

Main association effects

Consider two DNA variants with minor alleles A and T. Even when on the same 
chromosome, the frequency of A-T chromosomes (haplotypes) is the product of 
allele frequencies, P(A-T) = P(A) P(T
together: P(A-T A) P(T
linkage disequilibrium.

Disease variant vs marker variant: 
Different genotype frequencies in cases 

Recessive traits: Variants close to disease 
tend to be homozygous (homozygosity 
mapping; Lander & Botstein, Science
1987;236:1567-70).
Dominant traits: Variants close to disease 
tend to be heterozygous (Imai-Okazaki et 
al, Hum Mutat 2019;40:996-1004):             
P(het) > 1 f, P(het, popul.) = 2f(1 f), f = MAF

MB

ALSPAC 
data, chr 22, 
all pairs of 
42,800 SNPs 
with MAF >
0.20

0.2 0.3 0.4 0.7 1.2 2.0 3.3 5.4 8.9

r2

AA AG GG
affected 0.18 0.70 0.12
unaffected 0.04 0.32 0.64

OR ~5 ~5 ~0.1

Ott "Genotype Patterns" 4
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Multiple Hits ... Digenic Diseases
Ming & Muenke (2002) Am J Hum Genet 71, 1017 (review)
Schaffer A (2013) J Med Genet 50, 641-52 (review)

Ott "Genotype Patterns" 5

How to analyze interaction effects?

Hyperlipidemia data: 5 relevant genes, ~200 variants in each gene, look for 
interactions in each pair of variants. Work with LR chi-square!

2
Heterogeneity

2
Cases

2
Controls

2
both

2
Interaction

2
Total

2
Var1

2
Var2

More sophisticated analysis by logistic regression (Cordell, Nat Rev Genet
2009;10:392-404).

Var 1 -> Source chi-sq df
Var 2 -> AA AC CC AA AC CC AA AC CC Var 1 main 0.4196 2

cases ... ... ... ... ... ... ... ... ... Var 2 main 48.1979 2
controls ... ... ... ... ... ... ... ... ... Interaction 5.5994 4

Total table 54.2169 8

GG GT TT

Ott "Genotype Patterns" 6

Different Levels of Genetic Interactions
Okazaki & Ott (2022) Trends in Genetics 38 (10):1013-1018

1. Traditionally, disease association has been carried out on the level of 
alleles or genotypes. The total number of pairs can be prohibitively large. 
While this level of analysis generally requires the most effort, it also entails 
the highest level of precision in the sense that disease-causing elements can 
be directly traced down to nucleotides.
2. Working with pairs of variants provides some economy of computational 

genotype pairs in a pair of variants are analyzed jointly.
3. Finally, focusing on pairs of genes represents the most economical 
approach but is also the most imprecise among the three strategies. Also, 
focusing on genes disregards susceptibility elements outside of genes. 
Distant-acting transcriptional enhancers have been known for over 10 years 
to affect susceptibility to human disease and noncoding RNAs have been 
shown to be associated with many diseases, for example, cardiac 
hypertrophy.

Ott "Genotype Patterns" 7

Finding disease-associated pairs of 
genotypes

1. Multifactor Dimensionality Reduction (MDR)
Ritchie MD, Hahn LW, Moore JH. Power of multifactor dimensionality reduction 
for detecting gene-gene interactions ... Genet Epidemiol 2003;24:150 157

2. Exhaustive evaluation of all pairs of genotypes at all pairs of 
variants

3. Applying off-the-shelf pattern search algorithms                       
Chee C-H, Jaafar J, Aziz IA, Hasan MH, Yeoh W. Algorithms for frequent itemset 
mining: a literature review. Artificial Intelligence Review. 2019;52(4):2603-21

4. Construction of Bayesian network
Guo Y, Zhong Z, et al. Epi-GTBN: An approach of epistasis mining based on 
genetic Tabu algorithm and Bayesian network. BMC Bioinform 2019;20:444

5. Sophisticated computational approaches
Titarenko SS, Titarenko VN, Aivaliotis G, Palczewski J. Fast implementation of 
pattern mining algorithms ... . Journal of Big Data. 2019; 13(6):37

Ott "Genotype Patterns" 8
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1. MDR

Ritchie MD, Hahn LW, Moore 
JH. Power of multifactor 
dimensionality reduction for 
detecting gene-gene 
interactions ... Genet 
Epidemiol 2003;24:150 157
Classify each of the 9 cells as 
high risk or low risk.
Evaluate prediction error 
(case vs. control) by cross-
validation.
Find model that maximizes 
cross-validation consistency 
and minimizes prediction 
error.

Ott "Genotype Patterns" 9

2. Exhaustive search for interacting SNPs

Discovering Genetic Factors for psoriasis through 
exhaustively searching for significant second order SNP-
SNP interactions
Kwan-Yeung Lee, Kwong-Sak Leung, Nelson L. S. Tang  & Man-Hon Wong. 
Sci Rep 2018;8:15186

Abstract: To deal with the enormous search space, our search algorithm is 
accelerated with eight biological plausible interaction patterns and a pre-
computed look-up table. After our search, we have discovered several      
SNPs having a stronger association to psoriasis when they are in 
combination with another SNP...

Ott "Genotype Patterns" 10

All pairs of SNPs
Ueki & Cordell (2012) PLoS Genet 8(4): e1002625

2 (1 df). Implemented in plink with option              
--fast-epistatisis joint-effects

Applied to schizophrenia data: 2,164 males, 853,934 SNPs 

Trend genotype test (plink), permutation testing with 10,000 
replicates: 5 SNPs with p < 0.05 by permutation and Bonferroni.

Interaction tests for all pairs of SNPs, disregarding the 5 SNPs 
significant in trend test. 

Ott "Genotype Patterns" 11

Much stronger results 
even though pBon

obtained as 853,929 p.

General result?

3. Frequent Pattern Mining

Thirty years ago, supermarkets started collecting huge amounts of consumer data 
at their cashiers. Consumer habits if someone buys bread, how likely will they 
also buy milk and wine?
Apriori algorithm (Agrawal et al, ACM SIGMOD Conference on Management of 
Data 1993; 207- itemsets

association rules, 
that is, conditional probabilities P(Y|X), with Y and X being items or itemsets.
Research published in conference proceedings, rarely in traditional journals.
In the absence of strong main effects, we need to directly search for genotype 
patterns (at two or more variants) with different frequencies in cases and 
controls, without consulting main effects.
Zhang Q, Long Q, Ott J. AprioriGWAS, a new pattern mining strategy for 
detecting genetic variants associated with disease through interaction effects. 
PLoS Comput Biol. 2014 Jun;10(6):e1003627
Other implementations of search algorithms, e.g. fpgrowth
(https://borgelt.net/software.html). Huge memory demands: Using Linux 
desktop with 512 GB of memory.

Ott "Genotype Patterns" 12
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4. Bayesian networks

Guo Y et al. Epi-GTBN: An approach of epistasis mining based on ... 
Bayesian network. BMC Bioinform. 2019;20:444
Like many other approaches, Epi-GTBN employs a Bayesian network, 
that is, a probabilistic model to represent actions and interactions 
among variants and phenotypes.
Authors analyzed a well-known dataset on age-related macular 
degeneration (AMD), which has been investigated by various other 
researchers. For analysis by Epi-GTBN, to reduce the computational 
burden, only the 1,039 SNPs with smallest p-values (p < 0.01) out of 
the original 103,611 SNPs were retained.
Results were comparable to those obtained elsewhere.
Focusing on variants with strong main effects is fallacious! Frequencies 
of genotype patterns depend on main and interaction effects: Strong 
main effects are likely to lead to strong (significant) genotype patterns.

Ott "Genotype Patterns" 13

5. Newer Algorithms
1) http://www.philippe-fournier-viger.com/spmf/
2) Titarenko SS et al. Fast implementation of pattern mining algorithms ... . Journal of
Big Data. 2019; 13(6):37

1) Superb documentation, freely downloadable. Large memory 
requirements although not as large as for fpgrowth (Borgelt).
2) Apriori principle vs. evaluating all genotype pairs.
Schizophrenia data: 853,934 SNPs vs 344,831,940,768 pairs (diff. chrom)
For a given pattern (pair) of genotypes, X, its relation with phenotype 
Y is specified by a 2 x 2 table.
Support,        s = a + c
Confidence,  c = a/(a + c)

Current computer approaches: Work with bitwise operations       
(1 word = 4 bytes = 32 bits) and with multiple threads in a single 
machine.

Ott "Genotype Patterns" 14

AMD data: Genotype pattern analysis
Klein et al (2005) Science 308 (5720:385-389

Search for patterns (genotype pairs) 
with minimum support of 40. 
Perform 1000 random permutations 
for p-value estimation (corrected for 
multiple testing).
Find m = 18,044,794 patterns.

Ott "Genotype Patterns" 15

Two patterns are significant, p = 0.015, 
compared with the best p = 0.60 in single-
variant analysis by trend test.
Expect many more significant genotype 
patterns than single-variant results.
Different ways of establishing significance: 
Bonferroni correction; FDR depends on 
large number m
Compare confidence of 90% with 43% of 
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Functional Biology

GENOTYPE PHENOTYPE

Genetics

Why are we doing genetics?

1

Genotype-Phenotype Map

Sailer & Harms, Genetics 2017

2

Complex phenotype

Simple phenotype

Simple and complex phenotypes

3

The Battle between Mendelians and Biometricians

4

Mendel phenotypes segregate in pedigrees

Dominant Recessive

5

Statistical properties of quantitative traits

6
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The tail is likewise curved up underneath, and lies with 
its broad surface towards the body, turning either towards 
the right or the left, and thickening part of the hinder 
extremities. In f!itree examples the extremities are fully 
developed, and even show the characteristic discs on the 
tops of the toes. In the fourth example all four extremi-
ties present short stumps, a:nd as yet show no traces of 
toes, wberes.s, as is well known, in the Batrachia anura 
generally the hinder extremities and the ends of the feet 
first appear. Neither of branch ire nor of branchial slits 
is there any trace. On the other hand, in the last-men-
tioned example, the tail is remarkahly larger, and has its 
broad surface closely adherent to the inner wall of the 
vesicle, and very full of vessels, so that there can be no 
doubt of its function as a breathing organ. As develop-
ment progresses, the yelk-bag on the belly and the tail 
become gradually smaller, so that at last, when the li'ttle 
animal, being about 5 mill, long, bursts through the enve-
lope, the tail is only I ·8 mill. in length, and after a few 
hours only 0·3 mill. long, and in the course of the same 
day becomes entirely absorbed. Examples of the same 
hatch of ova, which were placed in spirit eight days after 
their birih, have a length of from 7'0 to TS mill., whence 
we may conclude that their growth is not quicker than in 
other species of Batracbians. · 
· The development of 1his frog, Dr. Peters observes (and 
probably of all the nearly allied species), wi1hout metamor-
phosi·, without branchi;:e, with contemporaneous evolution 
of the ant,crior and post,0 rior extremities, as in the case of 
the higher vertebrates, anct within a vesicle, like the amnion 
of these latter, if not strictly equivalent to it, is truly re-
markable. But this kind of development is not quite 
unparalleled in the Batrachians, for it has long been known 
that the young of Pij;a amerzcana come forth lrom the 
eggs laid in the cdls on their mother's back tailles, and 
perfectly developed. ln them, likewise, no one has yet 
detected branchi;:e, and we also know from the observa-
tions of Camper,1 that the embryos at an earlier period are 
provided with a tail-like appendage, which in this case 
also, may be perhaps regarded as an organ of breathing, 
po~sibly corresponding to the yelk-placenta of the hag-
fish. As. regards this point, aho, Laurenti says of the 
Pipa : "PulH ex loculamentis dorsi prodeuntes, metamor-
phosi nulla?" (Sin. Rept., p. 25.) · 
. Hwould l/e of_the highest interest, Dr, Peters adds, to 

follovv exactly this remarkable development on the spot. 
The development of the embryo of these Batrachians in a 
way very like_ tha! of the scaled Reptilia makes one suspect 
that an exammat1on of the temporary embryonic structures 
of Hylodes and Pipa would result in showing remarka½!e 
differences from those of other Batrachians. The aeneral 
conclusions which might be drawn from this disco:ery are 
so obvio11s, says Dr. Peters, in conclmion, that it would be 
superfluous to put them forward. 

A subsequent communication of Dr. Peters to the 
Academy informs us that it had escaped his notice that 
M. Bavay, of Guadaloupe, had already published some 
observations on the development of Hylodes martini-
censis.~ According to his observations, on each side of 
t~e heart t~ere is a branchia cons)sting cf one simple 
gill-arch, which on the seventh day 1s no longer discern-
ible. On the ninth day there is no longer a trace of a 
tail, and on the tenth day the little animal emerges from 
the egg. M. Bavay alrn observed the contemporaneous 
developme·nt of the four extremities, and hints at the 
function of the tail as an organ of breathing. 

The observations of Dr. Gundlach, therefore says Dr. 
Peters, differ in so'.'1e resp~cts from those of M. Bovay. 
It would be specially desirable, however, to ascertain 
whether fre arched vessel on each side of the heart is 
r7a)ly to be regarded as a gill-arch, or only as the in-
cipient ':)end of the aorta. 

:i.omm.:, So:-. Re_g. Go!ting, CI. phys. ix p. 135 (t788). 
un, ,.__c, Nat. :::.er. 5, X\'ll, 1 art. No, 16 (t873.) 

TYPICAL LAWS OF HEREJJJTY 1 

\VE are far too apt to regard common events as 
matters of course, and to accept many things as 

obvious truths which are not obvious truths at all, but 
present problems of much interest. The problem to 
which I am about to direct attention is one of these. 

Why is it when we compare two groups of persons 
selected at random from the same race, but belonging to 
different generations of it, we find them to be closely 
alike? Such statistical differences as there may be, are 
always to be ascribed to differences in the general con-
ditions of their lives ; with these I am not concerned at 
present, but so far as regards the processes of heredity 
alone, the resemblance of consecutive generations is a 
fact common to all forms of life. 

In each generation there will be tall and short indi-
viduals, heavy and light, strong and weak, dark and pale, 
yet the proportions of the innumerable grades in which 
these several characteristics occur tends to be constant. 
The records of geological history afford striking evidences 
of this. Fossil remains of plants and animals may be dug 
out of strata at such different levels that thousands of 
generations must have intervened between the periods in 
which they lived, yet in large samples of such fossils we 
seek in vain for peculiarities which will distinguish one 
generation taken as a whole from another, the different 
sizes, marks and variations of every kind, occurring with 
equal frequency in both. The processes of heredity are 
found to be so wonderfully balanced and their equi-
librium to be so stable, that they concur in maintaining 
a perfect statistical resemblance so long as the external 
conditions remain unaltered. 

If there be any who are inclined to say there is no 
wonder in the matter, because each individual tends to 
leave his like behind him, and therefore each generation 
must resen1ble the one preceding, I can assure them that 
they utterly misunderstand the case. Individuals do not 
equally tend to leave their like behind them, as will be 
seen best from an extreme illustration. 
. Let us then consider the family history of widely dif-
ferent groups ; say of roo men, the most gigantic of their 
race and time, and the same number of medium men. 
Giants marry much more rarely than medium men, and 
when they do marry they have but few children. It is a 
matter of history that the more remarkable giants have 
left no issue at all. Consequently the offspring of the roo 
giants would be much fewer in number than those of the 
medium men. Again these few would, on the average, 
be of lower stature than their fathers for two reasons. 
First, their breed is almost sure to be diluted by 
marriage. Secondly, the progeny of all exceptional 
individuals tends to" revert" towards mediocrity. Con-
,equently the children of the giant group would not 
only be very few but they would also be compa-
ratively short. Even of these the taller ones would be 
the least likely to live, It is by no means the tallest men 
who best survive hardships, their circulation is apt to 
be languid and their constitution consumptive. 

It is obvious from this that the roo giants will _not 
leave behind them their quota in the next generation. 
The 100 medium men, on the other hand, being more 
fertile, breeding more truly to their like, being bette~ fitted 
to survive hardships, &c., will leave more than their pro-
portionate share of progeny. This being so, it might be 
expected that there would be fewer giants and . more 
medium-sized men in the second generation than 11: the 
first. Yet, as a matter of fact, the giants and me?1um-
sized men will, in the second generation, be found m t~e 
same proportions as before. The question, then, 15 

this :-How is it that although each individual does not 
as a rule leave his like behind him, yet successive ge_nera-
tions resemble each other with great exactitude 1n all 
their general features ? 

r Le1:ture delivered at the Royal Institution, Friday evening, February 
9, by Francis Ga1ton, F R. S. 
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them and the little heap that it forms on the bottom 
line. ' This part of the apparatus is lI~e a harrow with .its 
spikes facing us ; be.low these are vertical ~ompartments; 
the whole is faced with a glass plate. I will pour pellets 
from any point above the spikes, they will fall against !he 
spikes, tumble about. among th~m, and aft~r pursumg 
devious paths, each will finally smk to rest m the com-
partment that lies beneath the place whence it emerges 
1rom its troubles. 

The courses of the pellets are extremely irregular, it is 
rarely that any two pursue the same path from beginning 
to end, yet notwithstanding this you wiU observe the 
regularity of the outline of the heap formed by the accu• 
mulation of pellets. 

F1G. 2. 

This outline is the geometrical representation of the 
ourve of deviation. If the rows of spikes had been few, 
the deviation would have been slight, almost all the 
pellets would have lodged in a single compartment and 
would then have resembled a column ; if they had been 
very numerous, they would have been scattered so widely 
that the part of the curve for a long distance to the right 
and left of the point whence they were dropped would 
~ave been of uniform width, like an horizontal bar. With 
mtermediate numbers of rows of teeth, the curved contour 
of the heap would assume different shapes all having a 
svong family resemblance. I have cut sorde of these out 
0 cardboard ; they are represented in the diagrams (Figs. 

2 a~d .3), Theoretically speaking, every possible curve of 
deviation may be formed by an apparatus of this sort 
by var)ing the length of the harrow and the number of 
pellets poured in. Or if I draw a curve on an elastic 
sheet of india-rubber, by stretching it laterally I produce 
the effects of increased dispersion ; by stretching it ver-
tically I prodl!lce that of increased numbers. The latter 
variation is shown by the successive curves in each of the 
diagrams, but it does not concern us to-night, as we are 
dealing with proportions, which are not affected by the 
size of the sample. To specify the variety of .curve so far 
as dispersion is concerned, we must measure the amount 
of lateral stretch of the india-rubber sheet. The curve 
has no definite ends, so we have to select and define two 
points in its base, between which the stretch may be 
measured. One of these points is always taken directly 
below the place where the pellets were poured in. This 
is the point of no deviation, and represents the mean 
position of all the pellets, or the average of a race. It is 
marked as o0

• The other point is conveniently taken at 
the foot of the vertical line that divides either half of the 
symmetrical figure into two equal areas. I take a half 
curve in cardboard that I have again divided along this 
line, the weight·of the two portions is equal. This distance 
is the value of 1° of deviation, appropriate to each curve. 

We extend the scale on either side of o0 to as many 
degrees as we like, and we reckon deviation as positive, 
or to be added to the average, on one side of the centre 
say to the right,. and negative on the other, as shown in 
the diagrams. Owing to the construction, one quarter or 
25 per cent. of the pellets will lie between o0 and 1°, and 
the law shows that 16 per cent. will lie between + 1° and + 2°, 6 per cent. between + 2° and + 3", and so on. It 
is unnecessary to go more minutely into the figures, for 
it will be easily understood that a formula rs capable of 
giving results to any minuteness and to any fraction of a 
degree. . . 

Let us, for example, deal with the case of the Amen· 
can soldiers. I find, on referring to Gould's Book, that 
1° of deviation was m their case r676 inches. The 
curve I hold in my hand has been drawn to that 
scale. I also find that their average height was 67'24 
inches. I have here a standard marked with feet and 
inches. I apply the curve to the standard, and imn:e-
diately we have a geometrical representation of the statis-
tics of height of all those soldiers. The lengths of th.e 
ordinates show the proportion of men at and about th.e1r 
heights, and the area between any pairs of ordinate~ g:ve 
the proportionate number of men _between those hmits. 

Complex traits are heritable but not in Mendelian fashion

7

Observations

• Progeny of smaller plants are, on average, smaller

• Progeny of larger plants are, on average, larger

• ALL HAVE THE SAME VARIANCE!

8

Complex traits are heritable but not in Mendelian fashion

9

Introduce properties of the plot

• Children of tall parents are taller than average, and children of short 
parents are shorter than average. 

• Children of tall parents are not as tall as their parents and children are 
not as short as their parents (regression to mediocrity).

10

E(Y|X)

11

Properties of the Galton plot

• E(Y|X) – conditional expectation (regression)

• Regression is linear: E(Y|X) = b1X 

• E(X|Y) = b2Y (both regressions are linear)

12
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Var(Y|X)

13

Properties of the Galton plot

• Var(Y|X) is independent of X !

14

This distribution is bi-variate normal !

µ is mean

S is covariance matrix

15

Marginal distributions are normal

Conditional distributions are normal

16

The pedigree defines the covariance matrix !

Infinitesimal model: multivariate normal 
distribution in pedigrees

17 18
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Locus 1 Locus 3Locus 2 Locus 4

Locus 5 Locus 6 Locus 7

Inheritance at each locus 
is Mendelian. Loci are 
independent

Phenotype is additive over locus 
effects -> normal distribution

Quantitative Trait Loci (QTLs)

19

Locus 1 Locus 3Locus 2 Locus 4

Locus 5 Locus 6 Locus 7

Liability distribution

Liability threshold

Binary (dichotomous) traits

20

Allelic effects – change in phenotypic mean 
per one allele a

x

x
x
x

x
x

Y
x

x

x
x
x
x

x

x
x
x

x

x

AA Aa aa

E(Y|Aa)
E(Y|aa)

21

The model more formally

X – genotype represented as dosage of allele a

AA Aa aa

X 0 1 2

Xij – genotype of individual i at locus j

Yi –phenotype of individual i (we will assume E(Y)=0)

bj –allelic effect at locus j

22

The model more formally

Yi = β jXij +ε
j
∑ e ~

Genetic factors Non-genetic factors

23

The model more formally

y = Xβ +ε

24
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This model explains

• Normal distribution in the population (why?)

• Bi-variate normal distribution on the Galton plot (why?)

• Regression to mediocrity (why?)

25

Questions about allelic architecture

• How much of the phenotypic variation is due to genes?

• How many loci are involved?

• Are alleles involved in the phenotype common or rare in the population?

• What about dominance?

• Do alleles interact?

• Do alleles have different effects in different environment?

• And BTW, what is biology behind the story?

26

We start from the effect of selection on 
quantitative traits

• Historically, observations on selection gave first clue about polygenicity of 
quantitative traits

• We will look at the same questions from a different perspective a little later

27

Selection experiment
Ph
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Time (generations)

Ph
en

ot
yp

e
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Time (generations)

A couple of QTLs A few QTLs

A lot of QTLs

28

Evidence in favor of the highly polygenic model

29
Weber, Genetics 1996; Barton & Keightley, Nature Reviews Genetics 2002 

Evidence in favor of the highly polygenic model

30
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Johansson et al., PLOS Genetics 2010

Evidence in favor of the highly polygenic model

31

Breeder’s equation

S

32

Breeder’s equation

• Response to selection is proportional to selection differential

• Coefficient of proportionality is called “heritability”. 

• Long-term linear response to selection means that heritability stays 
constant for a long time.

33

Similarly, heritability is the slope on the 
Galton’s plot

h2

ℎ! =
)𝐶𝑜𝑣(𝑥, 𝑦
)𝑉𝑎𝑟(𝑥

34

Everything is about variance

35

Law of total variance

𝑉𝑎𝑟 𝑌 = 𝐸 𝑉𝑎𝑟 𝑌 𝑋 + 𝑉𝑎𝑟[𝐸 𝑌 𝑋

Normal distribution has only two parameters. 

If we are interested in the population variation, we are only interested in variance.

How can we explain reasons for variation in phenotypes?

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑓𝑎𝑐𝑡𝑜𝑟 𝑋:
)𝑉𝑎𝑟(𝑌|𝑋
)𝑉𝑎𝑟(𝑌

36
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Variance decomposition

x

x
x
x

x

Y
x

x

x
x
x
x

x
x
x

x

x

Variance around 
the mean 

Variance of 
means 

37

Variance due to sex

Overall variance

38

Variance due to parental height

39

V = VG+ VE

Genetic contribution Everything else

Population variation is fully described by variance

40

VG = VA+ VD+ VI+ VM 

Main (additive) effects

Dominant effects

Genetic interactions

New mutations

Components of genetic variance

41
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x

AA Aa aa

Regression

42
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AA Aa aa

Regression

43

Additive model

AA Aa aa

E(Y) 0 b 2b

44

Additive variance VA is genetic variance explained by the additive model

Additive variance

𝑌! =9𝛽"𝑋!" + 𝜀

𝑉𝑎𝑟(𝑌) = 𝑉𝑎𝑟 9𝛽"𝑋!" + 𝑉𝑎𝑟 𝜀

𝑉𝑎𝑟 𝑌 =9𝑉𝑎𝑟 𝛽"𝑋!" + 𝜀#

𝑉𝑎𝑟 𝑌 =9𝛽"#𝑉𝑎𝑟 𝑋!" + 𝜀#

𝑉𝑎𝑟 𝑌 =92𝛽"#𝑝"𝑞" + 𝜀#

45

Additive variance

𝑉𝑎𝑟 𝑌 =92𝛽"#𝑝"𝑞" + 𝜀#

Additive genetic variance (variance due to independent effects of alleles)

“Environmental” variance

𝑉$ =92𝛽"#𝑝"𝑞"

46

Broad sense

H 2 =
VG
V

Narrow sense

h2 = VA
V

Heritability

47

Now, we can bring together epidemiological (or 
experimental) observations and molecular data 

h2

ℎ! =
∑2𝛽"!𝑝"𝑞"

𝑉

48
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VG = VA+ VD+ VI+ VM 

Main (additive) effects

Dominant effects

Genetic interactions

New mutations

Just to recap

49

Dominance and dominance variance
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Dominant allele Recessive allele
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Dominance and dominance variance
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Additive allele Over-dominant allele

51

Dominance variance 

• Dominance variance – variance unexplained by the additive model but 
explained by introducing dominance effects

• VD is zero for the additive model

• VD is usually large for the over-dominant model

• VD is surprisingly smaller than VA for the dominant (or recessive) model

Note that human medical genetics frequently uses a different definition of dominance 
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Epistatic variance VI is genetic variance that is not captured by the 
additive model but explained by interactions between alleles

Additive by additive pairwise epistasis

𝑌! =9
"

𝛽"𝑋!" +9
%&

𝛽%&𝑋!%𝑋!& + 𝜀

Variance component due to epistasis (genetic 
interactions)

54

145



Epistasis

• Dependency of allelic effects on genetic background

• You can think of it as of interaction of allelic effects (usually denoted GxG)

• For example, consider two loci with alleles A / a and B/ b

• Epistasis means that the effect of allele a is not the same for individuals with 
genotypes BB, Bb and bb

• In other words, effects of alleles a and b are not independent
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Sign epistasis
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Epistatic variance

• For two loci, VI is usually small even in the presence of epistatic 
interactions (physiological epistasis). 

• Frequencies of all four haplotypes have to be substantial for VI to play a 
role

• VI can be large in case of sign epistasis. Sign epistasis is not biologically 
infeasible

• For multiple alleles, number of interacting terms is very large, so 
theoretically total VI can be large even if individual pairwise terms are small

58

Cov(MP,O) = 1
2
VA +

1
4
VI

Estimating heritability

Children inherit half of parental alleles 
but only quarter of interactions!

59

More generally, for relatives A and B of degree r

𝐶𝑜𝑣 𝑌$ , 𝑌' =
1
𝑟 𝑉$ +

1
𝑟# 𝑉(

Assuming no dominance

The long-term selection response suggests 
that the role of VI is limited

A recent study of social networks says that humans are not the exception 
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Epistasis can be additive by dominant 
and dominant by dominant

Epistasis can be due to higher order 
interactions

Mutational variance VM – additional 
variance due to de novo mutations

Other variance components

61

For GWAS significant loci

𝐶𝑜𝑣 𝑀𝑃,𝑂
𝑉 𝑀𝑃

≫
∑2𝛽"#𝑝"𝑞"

𝑉

62

1. Common variants of weak effect

2. Rare variants of larger effect

3. Epistatic interactions

Cov(MP,O) = 1
2
VA +

1
4
VI

Likely reasons for missing heritability
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Date of completion
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15,000

2008 2012

IMSGC GWAS
345,000 SNPs

2 hits

Meta-Analysis
2.6 million SNPs

6 new  hits

… and that’s not all!

IMSGC NEJM 2007

De Jager et al. Nat Genet 2009

Rubio et al. Nat Genet 2009

IMSGC Nature 2011

Patsopoulos et al. Ann Neurol 2011

2009

1 new  hit

ANZ GWAS
550,000 SNPs

Meta v2.5
2.6 million SNPs

3 new  hits

WTCCC2
650,000 SNPs

25 new  hits

2010 2011

Immunochip
200,000 SNPs

(targeted)

47 new  hits

Meta-Analysis v3.0
16K MS cases / 26K controls

Replication
18K MS cases / 18K controls

100 new hits
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Evidence in favor of the highly polygenic model
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A N A LY S I S

SNPs discovered by genome-wide association studies (GWASs) 
account for only a small fraction of the genetic variation of 
complex traits in human populations. Where is the remaining 
heritability? We estimated the proportion of variance for 
human height explained by 294,831 SNPs genotyped on 
3,925 unrelated individuals using a linear model analysis, and 
validated the estimation method with simulations based on 
the observed genotype data. We show that 45% of variance 
can be explained by considering all SNPs simultaneously. Thus, 
most of the heritability is not missing but has not previously 
been detected because the individual effects are too small 
to pass stringent significance tests. We provide evidence 
that the remaining heritability is due to incomplete linkage 
disequilibrium between causal variants and genotyped SNPs, 
exacerbated by causal variants having lower minor allele 
frequency than the SNPs explored to date.

GWASs in human populations have discovered hundreds of SNPs 
 significantly associated with complex traits1,2, yet for any one 
trait they typically account for only a small fraction of the genetic 
 variation. Where is the missing heritability, the so-called dark matter 
of the genome3,4? Suggested explanations include the existence of 
gene-by-gene or gene-by-environment interactions5, the common 
disease–rare variant hypothesis6 and the possibility that inherited 
epigenetic factors cause resemblance between relatives7,8. However, 
the variance explained by the validated SNPs is usually much less than 
the narrow-sense heritability, the proportion of phenotypic variance 
due to additive genetic variance. Non-additive genetic effects do not 
contribute to the narrow-sense heritability, so explanations based on 
non-additive effects are not relevant to the problem of missing herit-
ability (Supplementary Note). There are two logical explanations 
for the failure of validated SNP associations to explain the estimated  
heritability: either the causal variants each explain such a small amount 

of variation that their effects do not reach stringent significance 
thresholds and/or the causal variants are not in complete linkage 
disequilibrium (LD) with the SNPs that have been genotyped. Lack 
of complete LD might, for instance, occur if causal variants have lower 
minor allele frequency (MAF) than genotyped SNPs. Here we test 
these two hypotheses and estimate the contribution of each to the 
heritability of height in humans as a model complex trait.

Height in humans is a classical quantitative trait, easy to measure 
and studied for well over a century as a model for investigating the 
genetic basis of complex traits9,10. The heritability of height has been 
estimated to be ~0.8 (refs. 9,11–13). Rare mutations that cause extreme 
short or tall stature have been found14,15, but these do not explain 
much of the variation in the general population. Recent GWASs on 
tens of thousands of individuals have detected ~50 variants that are 
associated with height in the population, but these in total account 
for only ~5% of phenotypic variance16–19.

Data from a GWAS that are collected to detect statistical associations 
between SNPs and complex traits are usually analyzed by testing each 
SNP individually for an association with the trait. To account for the 
large number of significance tests carried out, a very stringent P value 
is used. This reduces the occurrence of false positives, but it may cause 
many real associations to be missed, especially if individual SNPs have a 
small effect on the trait. An alternative approach designed to overcome 
this problem is to fit all the SNPs simultaneously20. The effects of the 
SNPs are treated statistically as random, and the variance explained by 
all the SNPs together is estimated. This approach, which we use here, 
does not attempt to test the significance of individual SNPs but provides 
an unbiased estimate of the variance explained by the SNPs in total.

RESULTS
Estimating genetic variance explained by genome-wide SNPs
From a number of GWASs, we selected 4,259 individuals who were 
not knowingly related to one another and confirmed this with SNP 
data. We then estimated their pairwise genetic relationships using 
all autosomal markers (MAF q 0.01) and retained 3,925 individuals 
(3,248 adults and 677 16-year-olds) whose pairwise relationship was 
estimated at less than 0.025 (maximum relatedness approximately 
corresponding to cousins two to three times removed; Supplementary 
Fig. 1). We fitted a linear model to the height data and used restricted 
maximum likelihood (REML)21 to estimate the variance explained 
by the SNPs. (In the Online Methods, we show how this can be 

Common SNPs explain a large proportion of the heritability 
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AA Aa aa

Genotypes 0 1 2

Normalized 
genotypes

Normalized 
genotypes

0−E(X)
Var(X)

1−E(X)
Var(X)

2−E(X)
Var(X)

−2q
2pq

p− q
2pq

2p
2pq

In these notations,  𝑉! = + 𝛽"

68

Yi = β jXij +ε
j
∑

X ij – Normalized genotype of individual i at SNP j

In the matrix form:

y = Xβ +ε

GRM =
1
N
XXT

Now, assume that allelic effects are random

𝛽~𝑁 0, 𝜎# 𝑉$ = 𝑀 K 𝜎#

69

Cov(ui,uk ) =
1
N
σ 2 XijXik

j
∑

Yi = µi +ui +ε

u ~ MVN 0,σ 2GRM( )

We assume that all SNPs have effects on the trait 
drawn from a normal distribution 

If we assume that genetic effects are random

70

The pedigree defines the covariance matrix !

Another way to think about it: extending the 
infinitesimal model

71

•Assume that the distribution of the trait is multivariate 
normal.

•Covariance matrix is given by the observed covariance 
of genotypes (rather than pedigree, IBS instead or IBD)

•This covariance matrix is scaled by additive genetic 
variance

For the whole population

72

148



This model explains a large fraction 
(although not all) of heritability

73

• The model literally assumes that all of the genome is important for the trait
• What can be the biological effect of so many loci?

• Natural selection is expected to rapidly eliminate variants and reduce allele 
frequency of remaining variants

• Variants must be either very rare or of very small effect sizes

Challenges of the polygenic model

74

Effective 
population 
size:
N=10,000

0.01                                 Minor allele frequency                          0.5

Heritability by allele frequency

75

Rare coding alleles have larger effect sizes

76

Effect size distributions

77

However,	 neither	 GREML	 nor	 Bayesian	 MLM	 approaches	 explicitly	 model	 the	 relationship	73	
between	effect	size	and	MAF,	an	important	characteristic	of	the	genetic	architecture	for	complex	74	
traits.	This	relationship	can	be	used	to	detect	signatures	of	natural	selection7,25	and	inform	the	75	
design	of	future	genetic	mapping	studies.		76	
	77	
In	this	study,	we	developed	an	MLM-based	Bayesian	method	that	can	simultaneously	estimate	78	
SNP-based	 heritability,	 polygenicity	 and	 the	 joint	 distribution	 of	 effect	 size	 and	 MAF	 in	79	
conventionally	unrelated	 individuals	using	GWAS	data.	We	applied	 the	method	 to	28	complex	80	
traits	in	the	UK	Biobank	(UKB)	data26,	and	27,869	gene	expression	traits	in	the	Consortium	for	81	
the	Architecture	of	Gene	Expression	(CAGE)	dataset27,	and	identified	a	number	of	complex	traits	82	
and	 gene	 expression	 traits	 for	which	 there	 is	 significant	 evidence	 of	 natural	 selection	 on	 the	83	
associated	SNPs.		84	
	85	
Results	86	
Method	overview	87	
Under	the	Bayesian	MLM	framework,	we	propose	to	model	the	relationship	between	effect	size	88	
and	MAF	using	the	following	mixture	distribution	as	prior	for	each	SNP	effect		89	
	90	

!"	~	% 0, 2)"(1 − )")
./01 2 + 	4 1 − 2 	91	

	92	

where	!" 	is	 the	 allelic	 substitution	 effect	 of	 a	 SNP	 j,	)" 	is	 the	MAF	of	 the	 SNP,	/01	is	 a	 constant	93	

factor	(i.e.	variance	of	SNP	effects	under	a	neutral	model),	4	is	a	point	mass	at	zero,	and	2	is	the	94	
proportion	of	SNPs	with	nonzero	effects	(polygenicity).	The	variance	of	the	effect	size	of	SNP	j	is	95	

/"1 = 2)"(1 − )")
./01,	which	is	a	function	of	MAF	of	the	SNP.	Thus,	the	parameter	6	measures	96	

the	 relationship	 between	 effect	 size	 and	MAF.	 If	6 = 0,	 the	 effect	 size	 is	 independent	 of	MAF	97	
(neutral	model).	If	there	is	selection,	the	effect	size	can	be	positively	(S	>	0)	or	negatively	(S	<	0)	98	
related	to	MAF.	All	these	parameters	are	treated	as	unknown	with	appropriate	priors	(Online	99	
Methods).	 Our	 model	 (referred	 to	 as	 BayesS)	 allows	 simultaneous	 estimation	 of	 multiple	100	
characteristics	of	 the	 genetic	 architecture:	 SNP-based	heritability	 (ℎ.891 ),	 polygenicity	 (2)	 and	101	
the	relationship	between	SNP	effect	and	MAF	(S).	We	use	a	gradient-based	sampling	algorithm,	102	
Hamiltonian	Monte	Carlo28,	to	sample	S	from	the	posterior	distribution,	and	use	Gibbs	sampling	103	
for	other	parameters	in	the	model	by	assuming	conjugate	priors.	Furthermore,	we	use	a	parallel	104	
computing	strategy	following	Fernando	et	al.29	to	allow	the	analysis	to	be	scalable	to	very	large	105	
samples	sizes	(% > 100,000).	Details	of	sampling	scheme	and	parallel	computing	strategies	are	106	
given	in	the	Supplementary	Note.	107	
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Figure	2:	Posterior	distributions	of	the	genetic	architecture	parameters	for	height	versus	BMI	using	781	

data	 from	 UKB.	 S	 measures	 the	 relationship	 between	 SNP	 effect	 size	 and	 MAF.	 Polygenicity	 is	782	

defined	as	the	proportion	of	SNPs	with	nonzero	effects.	783	

	784	
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Figure	 3:	 Posterior	 modes	 with	 credible	 intervals	 for	 the	 genetic	 architecture	 parameters	 using	786	

BayesS.	Results	are	for	the	28	UKB	complex	traits	that	had	passed	convergence	tests	on	the	MCMC	787	

chain.	The	bold	 line	 represents	95%	credible	 interval	 (highest	posterior	density,	HPD)	and	 the	 thin	788	

line	represents	90%	credible	 interval.	Sample	size	N	 for	each	trait	 is	shown	by	the	colour	gradient.	789	

Polygenicity	is	defined	as	the	proportion	of	genome-wide	SNPs	with	nonzero	effects	on	the	trait.	790	

	791	

	 	792	
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Figure	4:	Cumulative	genetic	variance	explained	by	SNPs	with	MAF	smaller	than	a	threshold	on	the	x-793	

axis.	 The	 lines	 are	 the	 posterior	 means	 for	 the	 23	 UKB	 complex	 traits	 from	 UKB	 for	 which	 the	794	

estimates	of	S	were	 significantly	 different	 from	 zero.	 Shadow	 shows	 the	posterior	 standard	 error.	795	

The	inner	graph	shows	the	relationship	between	the	area	under	the	curve	(AUC)	of	the	cumulative	796	

genetic	variance	and	negative	6	(bar	shows	s.e.)	across	traits.		797	

	798	

	 	799	
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GxG interactions

82

Epistatic variance V I is genetic variance that is not captured by the 
additive model but explained by interactions between alleles

𝑌! =9
"

𝛽"𝑋!" +9
%&

𝛽%&𝑋!%𝑋!& + 𝜀

Variance component due to epistasis 
(genetic interactions)

83

Epistasis

• Dependency of allelic effects on genetic background

• You can think of it as of interaction of allelic effects (usually denoted GxG)

• For example, consider two loci with alleles A / a and B/ b

• Epistasis means that the effect of allele a is not the same for individuals with 
genotypes BB, Bb and bb

• In other words, effects of alleles a and b are not independent

84
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Epistatic variance

• For two loci, VI is usually small even in the presence of epistatic 
interactions (physiological epistasis). 

• Frequencies of all four haplotypes have to be substantial for VI to play a 
role

• VI can be large in case of sign epistasis. Sign epistasis is not biologically 
infeasible

• For multiple alleles, number of interacting terms is very large, so 
theoretically total VI can be large even if individual pairwise terms are small

87

Cov(MP,O) = 1
2
VA +

1
4
VI

Estimating heritability

Children inherit half of parental alleles 
but only quarter of interactions!

88

• In human genetics, epistatic interactions between common variants have 
not been observed.

• In a model with two (or several) loci, contribution of epistatic variance is 
relatively small.

• Long term response to selection in model organisms seems to contradict 
the importance of epistasis.

Why is epistatic variance commonly disregarded?

89

Evidence against epistasis

90
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• A non-linear model involving many loci would generate a large epistatic
variance.

• Interactions would be statistically undetectable.

• The model would not generate significant deviations from the observations.

• As an example, we may consider a model with multiple pathways involved.

Why might epistatic variance be of importance?

91

A1 B1 C1

A2 B2 C2

Multiple pathway model

92

• The map seems to be highly dimensional

• It is surprisingly linear, as far as we know at the time

Genotype-phenotype map

93

What is biology behind this?

94
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Forces responsible for genetic change

Mutation µ

Selection s

NeDrift

Population structure FST

1

Mutations

2

Mutation rate in humans and flies

~70 per nt changes genome

2.5x10-8 (Nachman & Crowell) 1.8x10-8 (Kondrashov)

Other events: indels (10-9)

repeat extensions/contractions (10-5)

NGS estimates ~1.2X10-8 per nt changes genome

3

Number of de novo mutations per 
individual

Jonsson et al., Nature 2017

4

Mutation rate is variable along the genome

Regional variation of mutation rate

Context dependence of mutation rate

Replication fidelity DNA damage DNA repair CpG deamination

5

Genetic drift

6
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Drift is a random change of allele 
frequencies

7

Drift depends on population size

8

• In an idealized model, the intensity of 
genetic drift depends on population size 
(mean squared change in allele frequency is 
proportional to 1/Ne)

• In more realistic situations, effective 
population size (Ne) is a parameter 
characterizing intensity of drift

Effective population size

9

Demographic history

10

Tennessen et al. Science 2012 

11

Selection

12
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NeutralDeleterious Advantageous

New 
mutation

Functional

Nonfunctional

Selection indicates functional mutations, whether or 
not the tested trait is under selection

Selective effect of mutation

Most functional mutations are deleterious

13

• Selection coefficient (s) is the expected 
relative loss of fitness due to the 
sequence variant

• Variants with selection coefficients less 
than ~1/Ne are insensitive to selection. 
This is the drift barrier

Selection coefficient

14

• Nucleotide diversity (density of nucleotide 
differences between two randomly chosen 
chromosomes) is about 0.001

• Most common SNPs are very old (~300-400K 
years old)

• Protein coding regions are showing clear signs 
of selection (reduced diversity and excess of 
rare alleles)

Basic facts about human genetic variation

15

Methods of mathematical 
population genetics

16

Dynamic of allelic substitution

time
0

1

Mathematically, allele frequency change in a population 
follows a one-dimensional random walk

17

Diffusion approximation

Random walk that does not jump long distances can be 
approximated by a diffusion process

€ 

∂φ x, p,t( )
∂t

= −
∂Mφ x, p,t( )

∂x
+
1
2
∂2Vφ x, p,t( )

∂x 2

18
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Coalescent theory
Instead of modeling a population, we can model our sample

Time goes backwards !

t

19

Natural selection in protein 
coding regions

20

Signatures of purifying selection

Reduced variation

Excess of rare alleles

21

Site Frequency Spectrum

22

Diversity and allele frequency
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populations. For instance, among synonymous (non-protein- altering) 
 variants, a class of variation expected to have undergone minimal 
 selection, 43% of validated de novo events identified in external data 
sets of 1,756 parent-offspring trios8,9 are also observed independently 
in our data set (Fig. 2a), indicating a separate origin for the same variant 
within the demographic history of the two samples. This proportion 
is much higher for transition variants at CpG sites, well established 
to be the most highly mutable sites in the human genome10: 87% of 
previously reported de novo CpG transitions at synonymous sites are 
observed in ExAC, indicating that our sample sizes are beginning 
to approach saturation of this class of variation. This saturation is 
 detectable by a change in the discovery rate at subsets of the ExAC 
data set, beginning at around 20,000 individuals (Fig. 2b), indicating 
that ExAC is the first human exome-wide data set, to our knowledge, 
large enough for this effect to be directly observed.

Mutational recurrence has a marked effect on the frequency 
 spectrum in the ExAC data, resulting in a depletion of singletons 
at sites with high mutation rates (Fig. 2c). We observe a correlation 
between singleton rates (the proportion of variants seen only once in 
ExAC) and site mutability inferred from sequence context11 (r =  − 0.98;  
P <  10−50; Extended Data Fig. 1d): sites with low predicted  mutability 
have a  singleton rate of 60%, compared to 20% for sites with the 
highest predicted rate (CpG transitions; Fig. 2c). Conversely, for 

 synonymous variants, CpG variants are approximately twice as likely 
to rise to  intermediate frequencies: 16% of CpG variants are found 
in at least 20 copies in ExAC, compared to 8% of transversions and 
non-CpG  transitions, suggesting that synonymous CpG transitions 
have on average two independent mutational origins in the ExAC 
 sample. Recurrence at highly mutable sites can further be observed by 
examining the population sharing of doubleton synonymous variants 
 (variants occurring in only two individuals in ExAC). Low-mutability 
 mutations (especially transversions), are more likely to be observed in 
a single population (representing a single mutational origin), whereas 
CpG transitions are more likely to be found in two separate popu-
lations (independent mutational events); as such, site mutability and 
 probability of observation in two populations is significantly correlated 
(r =  0.884; Fig. 2d).

We also explored the prevalence and functional impact of multinu-
cleotide polymorphisms (MNPs), in cases where multiple  substitutions 
were observed within the same codon in at least one individual. We 
found 5,945 MNPs (mean =  23 per sample) in ExAC (Extended Data 
Fig. 2a), in which analysis of the underlying SNPs without correct 
 haplotype phasing would result in altered interpretation. These include 
647 instances in which the effect of a protein-truncating variant (PTV) 
is eliminated by an adjacent single nucleotide polymorphism (SNP) 
(referred to as a rescued PTV), and 131 instances in which underly-
ing synonymous or missense variants result in PTV MNPs (referred 
to as a gained PTV). Our analysis also revealed 8 MNPs in disease- 
associated genes, resulting in either a rescued or gained PTV, and  
10 MNPs that have previously been reported as disease-causing muta-
tions (Supplementary Tables 10 and 11). These variants would be 
missed by virtually all currently available variant calling and annotation  
pipelines.

Inferring variant deleteriousness and gene constraint
Deleterious variants are expected to have lower allele  frequencies 
than neutral ones, due to negative selection. This theoretical 
 property has been demonstrated previously in human population 
 sequencing data12,13 and here (Fig. 1d, e). This allows inference of 
the degree of selection against specific functional classes of variation. 
However,  mutational recurrence as described earlier indicates that 
allele  frequencies observed in ExAC-scale samples are also skewed 
by mutation rate, with more mutable sites less likely to be single-
tons (Fig. 2c and Extended Data Fig. 1d). Mutation rate is in turn 
non- uniformly  distributed across functional classes. For example, 
 variants that result in the loss of a stop codon can never occur at CpG 
 dinucleotides (Extended Data Fig. 1e). We corrected for mutation rates 
(Supplementary Information section 3.2) by creating a mutability- 
adjusted proportion singleton (MAPS) metric. This metric reflects  
(as expected), strong selection against predicted PTVs, as well as 
 missense variants predicted by conservation-based methods to be 
deleterious (Fig. 2e).

The deep ascertainment of rare variation in ExAC also allows us 
to infer the extent of selection against variant categories on a per-
gene basis by examining the proportion of variation that is missing 
 compared to expectations under random mutation. Conceptually 
 similar approaches have been applied to smaller exome data sets11,14, 
but have been underpowered, particularly when analysing the  depletion 
of PTVs. We compared the observed number of rare (minor allele 
frequency (MAF) < 0.1%) variants per gene to an expected  number 
derived from a selection neutral, sequence-context based  mutational 
model11. The model performs well in predicting the number of 
 synonymous variants, which should be under minimal selection, per 
gene (r =  0.98; Extended Data Fig. 3b).

We quantified deviation from expectation with a Z score11, which 
for synonymous variants is centred at zero, but is significantly shifted 
towards higher values (greater constraint) for both missense and PTV 
(Wilcoxon P <  10−50 for both; Fig. 3a). The genes on the X chromo-
some are significantly more constrained than those on the autosomes 
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Figure 2 | Mutational recurrence at large sample sizes. a, Proportion 
of validated de novo variants from two external data sets that are 
independently found in ExAC, separated by functional class and 
mutational context. Error bars represent standard error of the mean. 
Colours are consistent in a–d. b, Number of unique variants observed, by 
mutational context, as a function of number of individuals (downsampled 
from ExAC). CpG transitions, the most likely mutational event, begin 
reaching saturation at ∼ 20,000 individuals. c, The site frequency spectrum 
is shown for each mutational context. d, For doubletons (variants with 
an allele count (AC) of 2), mutation rate is positively correlated with 
the likelihood of being found in two individuals of different continental 
populations. e, The mutability-adjusted proportion of singletons (MAPS) 
is shown across functional classes. Error bars represent standard error of 
the mean of the proportion of singletons.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

23 24

156



Maruyama effect (1974): at any frequency advantageous , 
or deleterious alleles are younger than neutral alleles
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Figure 1. Simulation and theoretical results for allelic age and sojourn times. a. Example
trajectories for a neutral and deleterious allele with current population frequencies 3% (indicated by an
arrow). The shaded areas indicate sojourn times at frequencies above 5%. b. Mean ages for neutral and
deleterious alleles at a given population frequency (lines show theoretical predictions, dots show
simulation results with standard error bars). The graph shows that deleterious alleles at a given
frequency are younger than neutral alleles, and that the e↵ect is greater for more strongly selected
alleles. c. Mean sojourn times for neutral and deleterious alleles. Vertical line denotes the current
population frequency of the variant (3%). Mean sojourn times have been computed in bins of 1%. Line
connects theoretical predictions for each frequency bin. Dots show simulation results. The graph
illustrates that deleterious alleles spend much less time than neutral alleles at higher population
frequencies in the past even if they have the same current frequency.
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Focusing on rare deleterious PTVs

PTV – protein truncating variant 
(a.k.a. nonsense)

Combine all PTVs per gene – we assume that 
they have identical effects

Consider each gene as a bi-allelic locus –
PTV / no PTV

31

Selection inference using combined 
frequency of PTVs

Change in allele 
frequency =

Mutation Selection Drift= ++

Assuming string selection and a very large population, 
combined frequency of rare deleterious PTVs is expected to be 
Poisson distributed with l=U/hs
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What happens if we incorporate drift?

1) The approach fails if selection is weak

2) The approach fails if mutational target is small

3) These considerations are important for regional 
constraint scores 

4) Overall, the approach is non-informative in case of 
recessivity

34

AD and AR Mendelian genes

 
Figure 2: Separation of disease genes and clinical cases by mode of inheritance. [a] The distribution of genes 
associated with exclusively autosomal dominant (AD, N=867) disorders versus autosomal recessive (AR, N=1,482) 
disorders as annotated by the Clinical Genomics Database (CGD). Logarithmic bins are ordered from greatest to 
smallest !"#$ values. [b] Overall, AD genes have significantly higher !"#$ values than AR genes [Mann-Whitney p-
value 3.14x10-64]. [c] Similarly, in solved Mendelian clinical exome sequencing cases (Baylor)22, !"#$ values can help 
discriminate between AR and AD disease genes, as annotated by clinical geneticists. [d] A !"#$ value of 0.04 can be 
used as a simple classification threshold for AD genes with a PPV of 96%. [e] This finding is replicated in a separately 
ascertained sample from UCLA. Box plots range from 25th-75th percentile values and whiskers include 1.5 times the 
interquartile range. 
 
In a set of 504 clinical exome cases that resulted in a Mendelian diagnosis22, we find a similar 
enrichment of cases by MOI and selection value (Figure 2[c]). We find that 90.4% of novel, 
dominant variants are associated with heterozygous fitness loss greater than 0.04 (Figure 2[d]). 
Among disease variants, a cutoff of !"#$ > 0.04 provides a 96% positive predictive value for 
discriminating between AD and AR modes of inheritance.  
 

AD
Disease
Genes

AR
Disease
Genes

0.0001

0.0002

0.0005

0.001

0.002

0.005

0.01

0.02

0.05

0.1

0.2

0.5

1

s_
he

t

[b] s_het distributions

AD Disease Genes AR Disease Genes

>= 0.3 0.1 0.03 0.01 0.003 0.001 0.0003 >= 0.3 0.1 0.03 0.01 0.003 0.001 0.0003
0%

2%

4%

6%

8%

10%

12%

Fr
ac

tio
n 

of
 g

en
es

 in
 e

ac
h 

s_
he

t b
in

 (1
0^

-x
)

[a] Mode of Inheritance [Clinical Genomic Database]

s_het bin

>= 0.3 0.1 0.03 0.01 0.003 0.001
0

20

40

60

80

100

N
um

be
r o

f o
bs

er
ve

d 
ge

ne
s

0%

20%

40%

60%

80%

100%

Fr
ac

tio
n 

of
 g

en
es

 b
y 

M
od

e 
of

 In
he

rit
an

ce

102

38
2730

34

9

7 6

[c] Mode of Inheritance in Molecular Diagnoses [Baylor]

s_het bins

s_het <
0.04

s_het >
0.04

19.57%

96.04%

80.43%

[d] Baylor

s_het bins

s_het <
0.04

s_het >
0.04

21.18%

96.70%

78.82%

[e] UCLA

Mode of Inheritance
AD

AR

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/075523doi: bioRxiv preprint first posted online Sep. 16, 2016; 

35

Age of onset, penetrance and severity

To test the generalizable utility of !"#$ values in prioritizing candidate genes in Mendelian 
sequencing studies, we compared the overall prevalence of genes with !"#$ > 0.04 to the 
corresponding fraction in an independently ascertained dataset of new dominant Mendelian 
diagnoses (Figure 2[e])23. This analysis suggests that restricting to genes with !"#$ > 0.04 would 
provide a three-fold reduction of candidate variants, given the overall distribution of !"#$ values. 
Thus, initial effort in clinical cases can be focused on just a few genes for functional validation, 
familial segregation studies, and patient matching. We summarize the classification accuracy for 
all possible thresholds (AUC 0.9312) and probabilities for the mode of inheritance in each gene, 
generated using the full set of clinical sequencing cases (Supplementary Figure 2 and 
Supplementary Table 2). 
 
Beyond mode of inheritance, we find that !"#$ can help predict phenotypic severity, age of onset, 
penetrance, and the fraction of de novo variants in a set of high-confidence haploinsufficient 
disease genes (Figure 3). In broader sets of known disease genes, !"#$ estimates significantly 
correlate with the number of references in OMIM MorbidMap and the number of HGMD disease 
“DM” variants (Supplementary Figure 3).  

Figure 3: Enrichments of !"#$ in known haploinsufficient disease genes of high confidence (ClinGen Project). In 
(N=127) autosomal genes, we annotate the !"#$ scores of genes associated with each disease category and 
classification. Higher !"#$ values are associated with increased phenotypic severity (Mann-Whitney p-value 4.87x10-

3), earlier age of onset (p=1.46 x10-2), high or unspecified penetrance (p=1.79 x10-2), and a larger fraction of de novo 
variants (p=8x10-5). Box plots range from 25th-75th percentile values and whiskers include 1.5 times the interquartile 
range. 
 
Gene-specific fitness loss values allow us to plot the distribution of selective effects for different 
disorders. This provides information about the breadth and severity of selection associated with 
various disorder groups using both well-established genes (Figure 4[a]) and new findings from 
Mendelian exome cases (Figure 4[b]). Overall, genes involved in neurologic phenotypes and 
congenital heart disease appear to be under more intense selection when compared with other 
disorder groups, tolerated knockouts in a consanguineous cohort, or in all genes (Figure 
4[c,d])24. Interestingly, genes recessive for these disorders appear to have only partially 
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Concordance with mouse knockout dataviability, while those with the lowest !"#$ estimates are depleted for embryonic lethality [Mann-
Whitney p=2.95x10-28] (Figure 5[a,b]).  
 

  
Figure 5: High-throughput screens of gene essentiality in mice and cell assays. [a] Proportion of orthologous mouse 
knockout genes by phenotype, from a neutrally-ascertained set of genes generated by the International Mouse 
Phenotyping Consortium (IMCP). Logarithmic bins are ordered from greatest to smallest !"#$ values. [b] ICMP mice 
are separated into viable (N=1,057), sub-viable (N=211) and lethal knockouts (N=477), and lethal knockouts have 
significantly higher !"#$ values than viable [Mann-Whitney p-value 2.95x10-28]. [c] Cell-essential genes as reported by 
Wang et al. from genome-wide KBM-7 tumor cell CRISPR assay (N=1,740) have significantly higher !"#$ values [p-
value 5.13x10-16] and [d] as do genes that were characterized as essential in a gene trap assay (N= 1,081) [p-value = 
4.90x10-18]. In the CRISPR assay, all genes with adjusted p-values < 0.05 and negative assay scores are included, 
and genes with gene trap scores < 0.4 or lower are included. Box plots range from 25th-75th percentile values and 
whiskers include 1.5 times the interquartile range. 
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[c] Cell-Essential by KBM7 CRISPR Assay
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pLI
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probability of being loss-of-function intolerant (pLI) using the expectation-maximization 

(EM) algorithm. 

The underlying premise of this analysis is to assign genes to one of three natural 

categories with respect to sensitivity to loss-of-function variation: null (where protein-

truncating variation – heterozygous or homozygous - is completely tolerated by natural 

selection), recessive (where heterozygous PTVs are tolerated but homozygous PTVs 

are not), and haploinsufficient (where heterozygous PTVs are not tolerated). We assume 

tolerant (null) genes would have the expected amount of truncating variation and then 

took the empirical mean observed/expected rate of truncating variation for recessive 

disease genes (0.463) and severe haploinsufficient genes (0.089) to represent the 

average outcome of the homozygous and heterozygous intolerant scenarios 

respectively.  These values (1.0, 0.463, 0.089) are then used as a three-state model to 

which we fit the observed/expected truncating variant rate of each gene via the following 

analysis. 

Let !!  represent the proportion of all genes that fall into one of the three proposed 

categories: null, recessive, and haploinsufficient (!! ∈ ! !"##,!"#,!" ).  

Let λNull, λRec, and λHI denote the expected amount of loss-of-function depletion in each of 

the three categories. Based on the observed depletion of protein-truncating variation in 

the Blekhman autosomal recessive and ClinGen dosage sensitivity gene sets 

(Supplementary Information Table 12), we use: 

λNull = 1 

λRec = 0.463 

λHI = 0.089 

For each gene i, we model the observed data (PTV counts) as a function of the 

unobserved class labels (Zi) as follows: 

!! !|!!!~!!"#$%&'(")(!!"## ,!!"# ,!!") 

!"#! !|!!! = !!~!!"#$(!!!) 

WWW.NATURE.COM/ NATURE | 33

Here, PTVi represents the observed number of PTVs in gene i and N is sample size, 

such that !!! is the expected number of loss-of-function variants in a gene belonging to 

class c in the ExAC data. Our goal is to find the maximum-likelihood estimate (MLE) for 

π (the mixing weights of the three gene classes), and to use this estimate to obtain an 

Empirical Bayes maximum a posteriori (MAP) estimate for Zi – the probability of gene 

assignment to each category – for all genes i=1…M.  

We use an expectation-maximization (EM) algorithm to find the MLE for π and Zi, 

treating π as the parameters and the Zi as the latent variables. We initialize the EM 

algorithm by setting !! = (1 3 , 1 3 , 1 3). 

In the E-step, we evaluate the distribution of the latent variables (Zi) given the values of 

the parameters (π) from the previous iteration. The E-step is 

! !! = !!|!!! ,!"#! = !"#$ !"#! ! !!!!)!!
!"#$ !"#! ! !!!!)!!!

, 

where !"#$ denotes the Poisson likelihood. In the M-step, we update the parameters π 

with a new expectation taken under the distribution of the latent variables (Zi) computed 

in the M step. The update is 

!!!"# ∶= ! ! !! = !!|!!"#!,!!!"# /!"#$#%
!

 

We repeat these steps until the convergence criteria are met (!!" changes by less than 

0.001 from one iteration to the next). 

When the EM has converged, the final mixing weights (π) are used to determine each 

gene’s probability (! !! = !! !! ,!"#!)) of belonging to each of the categories (null, 

recessive, haploinsufficient). 

WWW.NATURE.COM/ NATURE | 34
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Heritability enrichment
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However, despite extremely large CVE and LFVE, this class of vari-
ants had a smaller LFVE/CVE ratio than that of non-synonymous 
variants inside genes predicted to be under weak selection (Fig. 5), 
a surprising result that appears to suggest a smaller ∣ ∣sdn  (Fig. 6b) 
despite the extremely large value of π del. We performed additional 
forward simulations to show that a larger ∣ ∣sdn  does not produce 
larger LFVE/CVE ratios for annotations with extremely large values 
of π del, for which the ratio between the proportion of low-frequency 

variants that are deleterious and the proportion of common variants 
that are deleterious is reduced to 1 (Supplementary Fig. 12).

Although our focus is primarily on low-frequency variants 
(0.5%≤  MAF < 5%), we also used our forward simulation frame-
work to draw inferences about rare variant (MAF < 0.5%) architec-
tures of non-coding functional annotations, based on LFVE and 
CVE estimates from UK Biobank (Fig. 4a). Specifically, we com-
pared the mean squared per-allele effect size of rare causal vari-
ants in annotations mimicking functional non-coding variants and 
non-synonymous variants, respectively. We inferred disproportion-
ate causal effects of rare variants in annotations under very strong 
selection (sdn =  − 0.003, similar to non-synonymous variants13), with 
mean squared causal effect sizes 11× , 26× , and 60×  larger than 
annotations with sdn =  − 0.0006, sdn =  − 0.0003, and sdn =  − 0.0002, 
respectively (Fig. 6d and Supplementary Table 12; similar results 
for different choices of π , Supplementary Fig. 13). These results 
indicate that an annotation with large CVE needs to have even 
larger LFVE (for example, LFVE/CVE ratio ≥ 2× , corresponding to 
sdn ≤  − 0.0006; Fig. 6b) in order to harbor rare causal variants with 
substantial mean squared effect sizes (for example, only an order 
of magnitude smaller than rare causal non-synonymous variants;  
Fig. 6d). Unfortunately, most of the non-brain CTS annotations that 
we analyzed do not achieve this ratio (Fig. 4a), motivating further 
work on more precise non-coding annotations (see Discussion).

Discussion
In this study, we partitioned the heritability of both low-frequency 
and common variants in 40 UK Biobank traits across numerous 
functional annotations, employing an extension of stratified LD 
score regression5,23 to low-frequency and common variants, which 
produces robust (unbiased or slightly conservative) results. Meta-
analyzing functional enrichments across 27 independent traits, we 
highlighted the critical impact of low-frequency non-synonymous 
variants (17.3% of hlf

2, LFVE =  38.2× ) compared to common non-
synonymous variants (2.1% of hc

2, CVE =  7.7× ). Other annotations 
previously linked to negative selection, including non-synonymous 
variants with high PolyPhen-2 scores29, non-synonymous variants 
in genes under strong selection31, and LD-related annotations23, 
were also significantly more enriched for hlf

2 compared to hc
2. Finally, 

at the trait level, we observed that CTS annotations6,8 also domi-
nate the low-frequency architecture and that significant CVE tend 
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Surprisingly, the estimates of historic 
selection seem relevant now

Gardner et al. Nature 2022 
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Evidence from modern populations

The overall mutation burden correlates with risk of mental illness

The overall mutation burden correlates with measures of 
mortality and morbidity

43

Stabilizing selection is the most common 
type of selection on a quantitative trait

Stabilizing selection

Selection may be related or unrelated to the trait

44

Forces to maintain variation:

Selection

Mutation

Technically, non-neutral genetic variation 
should not exist!

45

Possible theoretical models

Koch & Sunyaev Front. Genet. 2021 

46

Shades of pleiotropy

Koch & Sunyaev Front. Genet. 2021 

47

A highly pleiotropic model

Simons et al., PLOS Biology 2018 

48

160



Genetic risk prediction

Genotype of an individual Life-time risk of genetic disorders

(Common SNPs) (Common complex genetic disorders)

1

Effect sizes of individual variants are very 
small

• Genotype at a single locus carries very little  
information about phenotype.

• It does not mean that one cannot predict phenotype 
from genotype.

• Accuracy (r2) of an ideal genetic predictor equals 
heritability.

2

Measuring risk of myocardial infarction

3

~3500 subjects < 35 years old

15-20 years

P ie rs et a l. BM C  C ard iovascu lar D iso rders 2008 
8 :38

LDL levels and risk of disease

4

P le tcher e t a l. A nn  In tern  M ed 2010  
153 (3 )

Figure 2. Prevalence of coronary calcium by lipid exposure before age 35 years, by race and sex.
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Figure 2. Prevalence of coronary calcium by lipid exposure before age 35 years, by race and sex.
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Selecting populations for treatment

7

• An estimate of the long-term risk at birth

• Genetic risk can be combined with biomarkers and clinical 
features 

• Genetics explains about 50% of risk. One cannot predict 
risk any better than that but 50% is a non-trivial 
proportion of risk

Why estimate genetic risk?

8

BLUP – Best Linear Unbiased 
Predictor
• Infinitesimal model

• Genetic effects are random
• Predict the expected genetic 

effect

9

Accuracy of polygenic prediction in 
cattle50,000
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Figure 3 | Calculation of number of animals in a reference population and 
accuracy of breeding values. a | Number of animals needed in a reference 
population. To achieve an accuracy of 0.7 for estimated genomic breeding values 
(GEBVs) calculated from SNPs requires an increasing number of animals in the 
reference population as the heritability declines or the N

e 
of the population increases. 

b | Accuracy of GEBVs of un-phenotyped individuals with increasing number of 
phenotype records in the reference population used to estimated SNP effects, for 
different heritabilities (h2). N

e
 was 100.

food conversion rate in broilers when genomic predic-
tions of phenotype were used compared with pedigree  
predictions of phenotype.

Some of the statistical methods for genomic selection 
have been reviewed elsewhere54,55. The various meth-
ods make assumptions about the distribution of SNP  
effects on the trait, such as the proportion of the SNPs 
that have any effect on the trait. The best results have 
been obtained by methods that assume that many 
thousands of SNPs have an effect on traits such as milk 
yield48, which is consistent with the results of GWA stud-
ies26 (M.E.G. and B.J.H., unpublished observations). If 

many SNPs have an effect, these effects on average must 
be small. To estimate small effects accurately requires a 
large sample size and, not surprisingly, the accuracy of 
genomic selection increases as sample size increases, at 
least up to a reference population size of 3,500 (REF. 48).

We have developed an analytical method for predict-
ing the accuracy of genomic selection54,56 assuming that 
all SNPs have an effect and these effects are normally 
distributed. The size of the reference population that is 
needed to achieve a given accuracy is shown in FIG. 3.  
Unless the Ne is small, a large sample of animals is 
needed in the reference population if accurate predic-
tion of breeding value is desired. This theory predicts the  
upper limit of the number of animals required. If  
the SNP effects are not normally distributed, with some 
large effects and many SNPs with no effect, the number 
of animals needed is reduced54.

Challenges for genomic selection. The major challenge is 
assembling the large reference population that is required 
to accurately estimate SNP effects. In some cases this 
has been achieved; for example, a project run by the US 
Department of Agriculture has assembled a reference 
population of approximately 6,700 dairy bulls, leading to 
an accuracy of genomic breeding values for young dairy 
bulls of greater than 0.8 (REF. 57). These accuracies are  
sufficiently high that some US breeding companies  
are marketing semen from young bulls on the basis of 
their DNA and pedigree information alone. Smaller ref-
erence populations of dairy bulls have been assembled in 
Australia, New Zealand and the Netherlands, resulting 
in impressive but lower accuracies of genomic breeding 
values50. Another major challenge, particularly in the 
beef cattle and sheep industries, is the involvement of 
multiple breeds. Given the limited extent of LD across 
breeds, large multi-breed reference populations must be 
assembled and genotyped for many (>300,000) SNPs 
before genomic selection can be applied.

There are still several unknowns in the implemen-
tation of genomic selection. For instance, how often 
will the marker effects have to be re-estimated and new 
markers discovered? The cost of genotyping may delay 
implementation in species such as sheep and chickens, in 
which individual animals are less valuable than in cattle. 
However, even in these species, selection in the top lay-
ers of the stud pyramid should prove profitable because 
the benefits can be recouped from a large population 
descended from the genotyped and selected animals.

The future
The benefits from the study of complex traits in domes-
tic species are an increase in scientific knowledge and 
practical improvements in breeding programmes. 
Large populations with recorded phenotypes exist and, 
in some cases, there are males with accurate estimates 
of breeding value for traits that are based on a prog-
eny test, allowing designed mating programmes to be 
implemented. The breeds within a species show a large 
amount of genetic variation owing to deliberate selec-
tion and genetic drift in populations of small Ne. Long-
range LD within a breed, but not between breeds, allows 

REVIEWS
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Poor transferability between breeds!
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Applications in humans
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LETTERS

Common polygenic variation contributes to risk of
schizophrenia and bipolar disorder
The International Schizophrenia Consortium*

Schizophrenia is a severe mental disorder with a lifetime risk of
about 1%, characterized by hallucinations, delusions and cognitive
deficits, with heritability estimated at up to 80%1,2. We performed a
genome-wide association study of 3,322 European individuals with
schizophrenia and 3,587 controls. Here we show, using two analytic
approaches, the extent to which common genetic variation underlies
the risk of schizophrenia. First, we implicate the major histocompati-
bility complex. Second, we provide molecular genetic evidence for a
substantial polygenic component to the risk of schizophrenia invol-
ving thousands of common alleles of very small effect. We show that
this component also contributes to the risk of bipolar disorder, but
not to several non-psychiatric diseases.

We genotyped the International Schizophrenia Consortium (ISC)
case-control sample for up to ,1 million single nucleotide poly-
morphisms (SNPs), augmented by imputed common HapMap
SNPs. In the genome-wide association study (GWAS; genomic con-
trol lGC 5 1.09; Supplementary Table 1 and Supplementary Figs
1–3), the most associated genotyped SNP (P 5 3.4 3 1027) was
located in the first intron of myosin XVIIIB (MYO18B) on chro-
mosome 22. The second strongest association comprised more than
450 SNPs on chromosome 6p spanning the major histocompatibility
complex (MHC; Fig. 1). There is some evidence for between-site
heterogeneity in both allele frequencies and odds ratios (Table 1).
We observed associations consistent with previous reports in the
22q11.2 deletion region and ZNF804A (ref. 3) (Supplementary

Table 2, Supplementary Fig. 2 and section 5 and 6 in Supplemen-
tary Information).

The best imputed SNP, which reached genome-wide significance
(rs3130297, P 5 4.79 3 1028, T allele odds ratio 5 0.747, minor allele
frequency (MAF) 5 0.114, 32.3 megabases (Mb)), was also in the
MHC, 7 kilobases (kb) from NOTCH4, a gene with previously
reported associations with schizophrenia4. We imputed classical
human leukocyte antigen (HLA) alleles; six were significant at
P , 1023, found on the ancestral European haplotype5 (Table 1, Sup-
plementary Table 3 and section 3 in Supplementary Information).
However, it was not possible to ascribe the association to a specific
HLA allele, haplotype or region (Supplementary Table 3 and
Supplementary Fig. 4).

We exchanged GWAS summary results with the Molecular
Genetics of Schizophrenia (MGS) and SGENE consortia for geno-
typed SNPs with P , 1023. There were 8,008 cases and 19,077 controls
of European descent in the combined sample (see refs 6, 7 and section
7 in Supplementary Information). Our top genotyped MHC SNP
(rs3130375) had P 5 0.086 and P 5 0.14 in MGS and SGENE, respec-
tively. Considering the combined results for genotyped and imputed
SNPs across the MHC region more broadly, rs13194053 had a
genome-wide significant combined P 5 9.5 3 1029 (ISC, MGS and
SGENE: P 5 3 3 1024, 1 3 1022 and 1 3 1024, respectively; C allele

25.7 32.3
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Figure 1 | Association results across the MHC region. Results are shown as
–log10(P value) for genotyped SNPs. The most associated SNP is shown as a
blue diamond. The colour of the remaining markers reflects r2 with
rs3130375, light pink, r2 . 0.1, red, r2 . 0.8. The recombination rate from
the CEU HapMap (second y axis) is plotted in light blue.

Table 1 | MHC association for the most significant genotyped SNP
rs3130375

a MHC association for rs3130375 by sample

Frequency (rs3130375, A allele)

Sample Ancestry Cases Controls P value

University of Aberdeen Scottish 0.132 0.168 0.0060
University of Edinburgh Scottish 0.137 0.135 0.8930
University College London* British 0.132 0.143 0.4836
Trinity College Dublin Irish 0.110 0.170 0.0012
Cardiff University Bulgarian 0.077 0.084 0.5602
Portuguese Island Collection Portuguese 0.048 0.061 0.3510
Karolinska Institutet (5.0) Swedish 0.043 0.119 0.0004
Karolinska Institutet (6.0) Swedish 0.089 0.142 0.0040

b MHC association for classical HLA alleles with P , 1 3 1023

HLA allele Frequency{ Odds ratio P value

HLA-A*0101 0.103 0.785 4 3 1025

HLA-C*0701 0.113 0.778 5 3 1025

HLA-B*0801 0.068 0.757 3 3 1025

HLA-DRB*0301 0.121 0.768 3 3 1026

HLA-DQB*0201 0.210 0.857 4 3 1024

HLA-DQA*0501 0.205 0.798 6 3 1027

Total sample Cochran–Mantel–Haenszel P 5 4 3 1027; Breslow–Day heterogeneity test
P 5 0.012 (d.f. 5 6).
* SNP failed genotyping quality control in UCL. Allele frequency for UCL based on imputed
genotypes.
{ Frequency is estimated population frequency.

*Lists of authors and their affiliations appear at the end of the paper.

Vol 460 | 6 August 2009 | doi:10.1038/nature08185

748
 Macmillan Publishers Limited. All rights reserved©2009

• LD-prune

• Exclude SNPs of very small effect

11

Extensions of BLUP – multiple variance scales 
and binary phenotypes

MultiBLUP: Speed and Balding. Genome Research 2014

Bayesian analysis: MacLeod et al. Genetics 2014

BSLMM: Zhou et al. PLOS Genetics 2013

GeRSI: Golan and Rossett. AJHG 2014

12
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• Summary statistics are easily available

• Most methods require a separate small individual level dataset to 
tune parameters

13

Methods that work with summary statistics

13

LDPred – a Bayesian method using summary 
statistics

mean centered and standardized to have variance 1. Wemodel the

phenotype as a linear combination of M genetic effects and an in-

dependent environmental effect ε, i.e., Y ¼
PM

i¼1Xibi þ ε, whereXi

denotes the ith genetic variant, bi is its true effect, and ε is the envi-
ronmental and noise contribution. In this setting, the (marginal)

least-squares estimate of an individual marker effect is
bbi ¼ X0

iY=N. For clarity, we implicitly assume that we have the

standardized effect estimates available to us as summary statistics.

In practice, we usually have other summary statistics, including

the p value and direction of the effect estimates, from which we

infer the standardized effect estimates. First, we exclude all

markers with ambiguous effect directions, i.e., A/T and G/C

SNPs. Second, from the p values we obtain Z scores and multiply

them by the sign of the effects (obtained from the effect estimates

or effect direction). Finally, we approximate the least-squares esti-

mate for the effect by bbi ¼ siðzi=
ffiffiffiffi
N

p
Þ, where si is the sign, and zi is

the Z score obtained from the p value. If the trait is a case-control

trait, this transformation from the p value to the effect size can be

thought of as being an effect estimate for an underlying quantita-

tive liability or risk trait.35

Unadjusted PRS
The unadjusted PRS is simply the sum of all the estimated marker

effects for each allele, i.e., the standard unadjusted polygenic score

for the ith individual is Si ¼
PM

j¼1Xji
bbj, where Xji denotes the geno-

type for the ith individual and the jth genetic variant.

PþT
In practice, the prediction accuracy is improved if the markers are

LD pruned and p value pruned a priori. Informed LD pruning

(also known as LD clumping), which preferentially prunes the

less significant marker, often yields much more accurate predic-

tions than pruning randommarkers. Applying a p value threshold,

i.e., using onlymarkers that achieve a given significance threshold,

also improves prediction accuracies formany traits and diseases. In

this paper, PþT refers to the strategy of first applying informed LD

pruning with r2 threshold 0.2 and subsequently applying p value

thresholding, where the p value threshold is optimized over a

grid with respect to prediction accuracy in the validation data.

Bpred: Bayesian Approach in the Special Case
of No LD
Under a model, the optimal linear prediction given some statistic

is the posterior mean prediction. This prediction is optimal in the

sense that it minimizes the prediction error variance.36 Under the

linear model described above, the posterior mean phenotype

given GWAS summary statistics and LD is

E
"
Y j ~b; bD

#
¼
XM

i¼1

X0
iE
"
bi j ~b; bD

#
:

Here, ~b denotes a vector of marginally estimated least-squares es-

timates obtained from the GWAS summary statistics, and bD refers

to the observed genome-wide LD matrix in the training data, i.e.,

the samples for which the effect estimates are calculated. Hence,

the quantity of interest is the posterior mean marker effect given

LD information from the GWAS sample and the GWAS summary

statistics. In practice, we might not have this information avail-

able to us and are forced to estimate the LD from a reference panel.

In most of our analyses, we estimated the local LD structure in the

training data from the independent validation data. Although this

choice of LD reference panel can lead to small bias when one esti-

mates individual prediction accuracy, this choice is valid when-

ever the aim is to calculate accurate PRSs for a cohort without

knowing the case-control status a priori. In other words, it is an

unbiased estimate for the PRS accuracy when the validation data

are used as an LD reference, which we recommend in practice.

The variance of the trait can be partitioned into a heritable part

and the noise, i.e., VarðYÞ ¼ h2
gQþ ð1% h2

g ÞI, where h2
g denotes the

heritability explained by the genotyped variants, and Q ¼ XX0=M

is the SNP-based genetic relationship matrix. We can obtain a trait

with the desired covariance structure if we sample the betas

independently with mean 0 and variance h2
g=M. Note that if the ef-

fects are independently sampled, then this also holds true for corre-

latedgenotypes, i.e.,when there isLD.However, LDwill increase the

variance of heritability explained by the genotypes as estimated

from the data (as a result of fewer effective independent markers).

If all samples are independent and all markers are unlinked and

have effects drawn from a Gaussian distribution, i.e.,

bi&iidNð0; ðh2
g=MÞÞ, then this is an infinitesimal model,37 where

all markers are causal. Under this model, the posterior mean can

be derived analytically, as shown by Dudbridge15:

E
$
bi j ~b

%
¼ E

$
bi j ~bi

%
¼
 

h2
g

h2
g þ M

N

!
~bi:

Interestingly, with unlinked markers, the infinitesimal shrink

factor times the heritability, i.e.,

 
h2
g

h2
g þ M

N

!
h2
g ;

is the expected squared correlation between the unadjusted PRS

(with unlinked markers) and the phenotype, regardless of the

underlying genetic architecture.38,39

An arguably more reasonable prior for the effect sizes is a non-

infinitesimal model, where only a fraction of the markers are

causal. For this, consider the following Gaussian mixture prior:

bi&iid

8
>><

>>:

N

 
0;

h2
g

Mp

!
with probability p

0 with probability ð1% pÞ;

where p is the probability that a marker is drawn from a Gaussian

distribution, i.e., the fraction of causal markers. Under this model,

the posterior mean can be derived as (see Appendix A)

E
$
bi j ~bi

%
¼

 
h2
g

h2
g þ

Mp

N

!
pi~bi;

where pi is the posterior probability that the i
thmarker is causal and

can be calculated analytically (see Equation A1 in Appendix A).

In our simulations, we refer to this Bayesian shrink without LD as

Bpred.

LDpred: Bayesian Approach in the Presence of LD
If we allow for loci to be linked, then we can derive posterior mean

effects analytically under a Gaussian infinitesimal prior (described

above). We call the resulting method LDpred-inf, and it represents

a computationally efficient special case of LDpred. If we assume

that distantmarkers are unlinked, the posteriormean for the effect

sizes within a small region l under an infinitesimal model is well

approximated by

578 The American Journal of Human Genetics 97, 576–592, October 1, 2015

Vilhjalmsson et al. 2015

Also, check BayesR
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Extreme tails in the distributions of genetic risk scores are 
highly predictive LETTERSNATURE GENETICS

traditional analytic strategy for monogenic mutations, we defined 
‘carriers’ as individuals with GPSCAD above a given threshold and 
‘non-carriers’ as all others.

We found that 8% of the population had inherited a genetic  
predisposition that conferred ≥  threefold increased risk for CAD 
(Table 2). Strikingly, the polygenic score identified 20-fold more 
people at comparable or greater risk than were found by familial 
hypercholesterolemia mutations in previous studies6,7. Moreover, 
2.3% of the population (‘carriers’) had inherited ≥  fourfold 
increased risk for CAD and 0.5% (‘carriers’) had inherited ≥  five-
fold increased risk. GPSCAD performed substantially better than 
two previously published polygenic scores for CAD that included 
50 and 49,310 variants, respectively (Supplementary Table 7 and 
Supplementary Fig. 1)17,18.

GPSCAD has the advantage that it can be assessed from the time 
of birth, well before the discriminative capacity emerges for the risk 
factors (for example, hypertension or type 2 diabetes) used in clini-
cal practice to predict CAD. Moreover, even for our middle-aged 
study population, practising clinicians could not identify the 8% of 
individuals at ≥  threefold risk based on GPSCAD using conventional 
risk factors in the absence of genotype information (Supplementary 
Table 8). For example, conventional risk factors such as hypercholes-
terolemia were present in 20% of those with ≥  threefold risk based 
on GPSCAD versus 13% of those in the remainder of the distribution. 
Hypertension was present in 32 versus 28%, and a family history 
of heart disease was present in 44 versus 35%, respectively. Making 
high GPSCAD individuals aware of their inherited susceptibility may 
facilitate intensive prevention efforts. For example, we previously 
showed that a high polygenic risk for CAD may be offset by one of 
two interventions: adherence to a healthy lifestyle or cholesterol-
lowering therapy with statin medications19–21.

Our results for CAD generalized to the four other diseases: 
risk increased sharply in the right tail of the GPS distribution 
(Fig. 3). For each disease, the shape of the observed risk gradi-
ent was consistent with predicted risk based only on the GPS 
(Supplementary Figs. 2 and 3).

Atrial fibrillation is an underdiagnosed and often asymptomatic 
disorder in which an irregular heart rhythm predisposes to blood 
clots and is a leading cause of ischemic stroke22. The polygenic  
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Fig. 2 | Risk for CAD according to GPS. a, Distribution of GPSCAD in the UK Biobank testing dataset (n!= !288,978). The x!axis represents GPSCAD, with values 
scaled to a mean of 0 and a standard deviation of 1 to facilitate interpretation. Shading reflects the proportion of the population with three-, four-, and 
fivefold increased risk versus the remainder of the population. The odds ratio was assessed in a logistic regression model adjusted for age, sex, genotyping 
array, and the first four principal components of ancestry. b, GPSCAD percentile among CAD cases versus controls in the UK Biobank testing dataset.  
Within each boxplot, the horizontal lines reflect the median, the top and bottom of each box reflect the interquartile range, and the whiskers reflect 
the maximum and minimum values within each grouping. c, Prevalence of CAD according to 100 groups of the testing dataset binned according to the 
percentile of the GPSCAD.

Table 2 | Proportion of the population at three-, four- and 
fivefold increased risk for each of the five common diseases

High GPS definition Individuals in testing 
dataset (n)

% of individuals

Odds ratio ≥3.0
 CAD 23,119/288,978 8.0

 Atrial fibrillation 17,627/288,978 6.1
 Type 2 diabetes 10,099 288,978 3.5

 Inflammatory bowel 
disease

9,209 288,978 3.2

 Breast cancer 2,369/157,895 1.5
 Any of the five diseases 57,115/288,978 19.8
Odds ratio ≥4.0

 CAD 6,631/288,978 2.3
 Atrial fibrillation 4,335/288,978 1.5
 Type 2 diabetes 578/288,978 0.2
 Inflammatory bowel 
disease

2,297/288,978 0.8

 Breast cancer 474/157,895 0.3
 Any of the five diseases 14,029/288,978 4.9
Odds ratio ≥5.0

 CAD 1,443/288,978 0.5
 Atrial fibrillation 2,020 288,978 0.7
 Type 2 diabetes 144/288,978 0.05
 Inflammatory bowel 
disease

571/288,978 0.2

 Breast cancer 158/157,895 0.1

 Any of the five diseases 4,305/288,978 1.5

For each disease, progressively more extreme tails of the GPS distribution were compared with the 
remainder of the population in a logistic regression model with disease status as the outcome, and 
age, sex, the first four principal components of ancestry, and genotyping array as predictors. The 
breast cancer analysis was restricted to female participants.

NATURE GENETICS | VOL 50 | SEPTEMBER 2018 | 1219–1224 | www.nature.com/naturegenetics 1221

Khera et al. 2018

Coronary Artery Disease

Highest 1%

Highest 5%

Average risk
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With some caveats

Martin et al., AJHG 2017
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Linear models for genetic risk prediction
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"
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Genetic risk of
individual 𝑖

Effect size of SNP 𝑗

Genotype of SNP 𝑗 and individual 𝑖
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“Polygenic scores” can leverage summary statistics from a large 
GWAS study
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Predicted genetic risk
Estimated effect size
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Causal SNPs

Non-causal SNPs

“Polygenic scores” can leverage summary statistics from a large 
GWAS study
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Predicted genetic risk
Estimated effect size

Estimated effect sizes ( %𝛽! )

Sampling error

19

Causal SNPs

Non-causal SNPs

“Polygenic scores” can leverage summary statistics from a large 
GWAS study
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Estimated effect sizes ( %𝛽! )

P-value Thresholding
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P-value thresholding can be reformulated as “shrinking” 
estimated effect sizes
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The optimal polygenic score can be constructed with 
“conditional mean effects”

&𝑦! =#
"

𝐸 𝛽" | -𝛽" 𝑥!"

Estimated effect sizes ( %𝛽 )

W
ei

gh
te

d 
ef

fe
ct

 s
iz

es 𝐸
𝛽 #
|
%𝛽 !

Goddard et al. 2009

Conditional mean effect

22

• Correlation between apparent true genetic effects

𝛽$ 𝛽%

%𝛽$ %𝛽%Estimated effects:

True effects:

LD effect

SNP

LD block

Accounting for LD in summary data is a major challenge

23

Accounting for LD in summary data is a major challenge

• Correlation between apparent true genetic effects

• Correlation between sampling errors

𝛽$ 𝛽%

%𝛽$ %𝛽%Estimated effects:

True effects:

GWAS Controls GWAS Cases
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Our approach (“Non-Parametric Shrinkage” or NPS)

• No explicit specification of genetic architecture prior, thus “non-
parametric”

• Learn conditional mean effects directly from training data

• Fully account for correlation in summary statistics

25

• No explicit specification of genetic architecture prior, thus “non-
parametric”

• Learn conditional mean effects directly from training data

• Fully account for correlation in summary statistics

1. How to estimate 𝐸 𝛽" | -𝛽" without a Bayesian prior on 𝜷

2. How to deal with LD

Our approach (“Non-Parametric Shrinkage” or NPS)
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Partitioned risk scores
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Piecewise linear interpolation on shrinkage curve
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How to deal with LD?
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Decorrelating linear projection 𝒫

𝚺 is a local LD matrix and 𝚺 = 𝑸 𝜦𝑸5 by eigenvalue decomposition
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𝒫 = 𝜦67/9𝑸5

𝚺6𝟏 = 𝑸𝜦6𝟏 𝑸5 = (𝑸 𝜦6𝟏/𝟐)(𝜦6𝟏/𝟐𝑸5)
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Other shrinkage methods: PRS-CS

31

Lassosum – extension of LASSO

Other shrinkage methods: PRS-CS

32

Accuracy of the 5% tail

33

Summary

• NPS accounts for the correlation of sampling errors in GWAS summary statistics.

• NPS provides an extensible framework to estimate the shrinkage curve from 
training data.

• NPS is best-suited to take advantage of the high density of markers and 
imputation accuracy in latest GWAS datasets.

The preprint is available in BioRxiv:
Chun et al. AJHG 2020 “Non-parametric polygenic risk
prediction via partitioned GWAS summary statistics.”

Software is available at: https://github.com/sgchun/nps

34
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Identifying functionally 
significant variants

1

Functional data

Bioinformatics

Animal
models

Segregation data

Frequency 
in 
controls Interpretation

2

Watch for multiple transcripts!

Watch for conflicting annotations!

Map variants onto genomic annotation

3

One of most significant types of variants usually leading to the 
complete loss of function.

Nonsense variants are enriched in sequencing artifacts

Important considerations: i) location along the gene, ii) does the 
variant cause NMD? iii) is the variant in a commonly skipped exon? 

Tool: LOFTEE

Nonsense variants

4

1) Variants in canonic splice sites
2) Variants in exonic or intronic splicing enhancers
3) Gain of splicing variants

Variants involved in splicing

5

Experimental Methods: Minigene Assay and 
Massively Parallel Splicing Assay (MPSA)

6

167



Computational Predictions: SpliceAI, 
MMSplice and other methods

7

The picture can't 
be displayed.

Missense variants: computational predictions

8

VVSTADLCAPSSTKLDER

FVSTSELCAGSTTRLEER

FLSTSELCVPSTLKVNEK

human

dog

fish

A

A

V

Statistical issues:
-sequences are related by phylogeny
-generally, we have too few sequences

Does the mutation fit the pattern of past 
evolution?

9

• We assume a constant fitness landscape: what is good for 
fish is good for human!

• We can estimate whether the mutation fits the pattern of 
amino acid changes.

• We can also estimate rate of evolution at the amino acid site

Does the mutation fit the pattern of past 
evolution?

10

• Most of pathogenic mutations are important for stability (good news?).

• DDG is difficult to estimate.

• Unfolded protein response pathway has to be taken into account. 

• Heuristic structural parameters help but less than comparative genomics.

Protein structure view

11
www.genetics.bwh.harvard.edu/pph2            Adzhubei, et al. Nature Methods 2010

PolyPhen2

12
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• Multiple independent lines of evidence suggest abundance of weakly 
deleterious alleles in humans

• Weakly deleterious variants may occur in highly conserved positions

• Weakly deleterious alleles probably contribute to complex phenotypes but 
not to simple Mendelian phenotypes

Weakly deleterious mutations

13
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Every new mutation eventually will be either fixed or lost 

s – selection coefficient
Ne - effective population size

For humans estimated to be ~ 10 000

Selection coefficient, s
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Conservation can be due to very weak selection!
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Constant fitness landscape
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b B

A
β

Epistatic interactions

16

Compensatory mutations

17

Ridges on the fitness landscape

18
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Dobzhansky-Muller incompatibility

19

Looking at vertebrate species

20

A B

C D“Pathogenic” !
mutation is lost

Compensation!
is lost

human

macaque

mouse

rabbit

“Pathogenic” !
mutation is fixed

Compensation!
is fixed

human

macaque

mouse

rabbit

Pathogenic FixedTolerated

HumVar "Disease"
(22,207 variants) ClinVar "Pathogenic"

(10,596 variants)

Found in MultIZ 100-Way alignment
(24,307,128 variants)

16,544

313 530

2,100

3,250 6,503

24,304,185 Smallest estimate !
(7.0)%

Largest estimate !
(12)%

5.5-6.5% of presumably 
pathogenic human 
mutations are detected in 
mammals 

Many human pathogenic mutations are found in 
vertebrates

21

• Model of Bardet-Biedl 
Syndrome (obesity, renal 
failure, vision loss)

• Caused by defects in primary 
cilium

• Embryonic convergence / 
extension phenotype in 
zebrafish

• Easily scorable phenotype

Normal

Class I

Class II

Images: Phoebe 
Liu

Zebrafish model

22

No injection

Knockdown

Rescue with 
human gene

Human gene with 
disease mutant 

Double mutant 
(no suppression)

Double mutant 
(full suppression)

Images: Phoebe 
Liu

Testing double mutants
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Clinical features
Global developmental delay
microcephaly
feeding issues 
failure to thrive 

abnormal muscle tone 
low immunoglobulins 
frequent respiratory infections 

Clinical testing
normal female microarray
metabolic testing – negative
extensive genetic testing –
negative

BTG2 
De novo

NOS2
De novo

TTN
Compound het

LAMA1
Compound het

-
001

-
002

-
004

-
003

-
004

Erica DavisStephan Frangakis

A newly identified gene

24

170



We enrolled a 17-month-old female with an undiagnosed neuroa-
natomical condition hallmarked by microcephaly (Fig. 4a). We filtered
WES data for non-synonymous and splice variants with a minor allele
frequency of ,1%, and we conducted a proband-centric trio analysis
that yielded four candidates: de novo missense changes in BTG2 and
NOS2; and recessive missense variants in TTN and LAMA1. Testing of
an unaffected sibling excluded LAMA1; TTN, a known dominant car-
diomyopathy locus27, is an unlikely driver.

To investigate the pathogenicity of the BTG2 (p.V141M) and NOS2
(p.P795A) protein-encoding changes, we studied btg2 and nos2 in
zebrafish. Reciprocal use of Basic Local Alignment Search Tool
(BLAST) between Homo sapiens and Danio rerio identified a single
zebrafish btg2 orthologue and two zebrafish nos2 orthologues. We
injected splice-blocking MO (sb-MO) or translational-blocking MO
(tb-MO) (Extended Data Fig. 3) into zebrafish embryos (3 ng; n 5 80
embryos per injection) and scored for head size defects at 4 days post-
fertilization (dpf) by measuring the anterior–posterior distance
between the forebrain and the hindbrain (Fig. 4b). For nos2a/b MO-
injected embryos, we saw no differences at the highest dose injected
(8 ng for nos2a/b sb-MOs; Supplementary Table 10). By contrast, we
found a significant reduction of anterior structures in btg2 morphants
(P , 0.0001; Fig. 4b, c). Co-injection of wild-type human BTG2
mRNA with tb-MO resulted in significant rescue (P , 0.0001;
Fig. 4c). In contrast, injection of mRNA harbouring 141M was signifi-
cantly worse at rescue than wild type (P , 0.0001; Fig. 4c).

BTG2 is a regulator of cell cycle checkpoint in neuronal cells28 and is
strikingly intolerant to variation in humans (Exome Variant Server
(EVS)). To test the pathogenicity of 141M by a different assay, we
performed antibody staining at 2 dpf (a time before the manifestation
of microcephaly). We marked post-mitotic neurons in the forebrain
with antibodies against neuronal HuC/HuD antigens, and we scored
(blind, triplicate) on the basis of an established paradigm29. btg2
morphants displayed a significant decrease in HuC/HuD staining
(P , 0.0001; Extended Data Fig. 4). This defect was rescued with
wild-type BTG2 mRNA (P , 0.05); but could not be ameliorated by
141M-encoded mRNA co-injection (Extended Data Fig. 4).
Importantly, co-injection of btg2 tb-MO with two rare control EVS
alleles (p.A126S and p.R145Q) resulted in rescue, providing evidence
for assay specificity (Extended Data Fig. 4b). As a third test, we stained

whole embryos with a phospho-histone H3 (PH3) antibody that marks
proliferating cells. We counted the number of positive cells in a defined
anterior region of embryos. We saw a significant reduction in cell
proliferation in the heads of 2 dpf btg2 morphants (P , 0.0001); this
defect was likewise rescued by co-injection of wild-type mRNA, while
141M mutant rescue was indistinguishable from btg2 tb-MO alone
(P 5 0.38; Fig. 4b, d). Combined, all three assays indicated that
BTG2 p.V141M is pathogenic and that haploinsufficiency of this gene
probably contributes to the microcephaly of the proband.

Despite our functional and genetic data for p.V141M, this allele was
predicted computationally to be benign. A likely reason is that, with
the exception of primates, most BTG2 orthologues encode Met at the
orthologous position (Fig. 4f). These data suggested that V141 might
represent a CPD site in primates that branched from the ancestral
methionine. To test this possibility, we identified nine BTG2 sites that
co-evolved with 141M (Supplementary Table 11), which we mutagen-
ized into the human construct encoding 141M. We then injected
embryos with btg2 MO; MO plus wild-type human BTG2 mRNA;
MO plus 141M-encoding mRNA; or MO plus 141M in cis with one
of the nine candidate complementing alleles. Seven of the alleles had
no effect (Supplementary Table 11). However, R80K- or L128V-
encoded mRNA on the 141M backbone rescued the number of
PH3-positive cells to wild-type levels (Fig. 4e and Extended Data
Fig. 2c); both alleles were benign on their own (Supplementary
Table 11). Taken together, our data indicated that 141M is deleterious
in the human background, but the protection of this residue conferred
by either Lys 80 or by Val 128 can explain .90% (54/59) of species
encoding 141M (Fig. 4f).

To improve the scalability of detecting CPDs, we used our model of
CPD evolution to develop a computational predictor for distinguish-
ing variants that are unlikely to be CPDs from those that might be
CPDs, and to identify candidate compensations to aid experimental
design (http://genetics.bwh.harvard.edu/cpd/). Initial testing of this
tool intimated high negative predictive values but modest positive
predictive values, probably due to the dearth of known CPDs
(Supplementary Note).

Our results contrast with some previous studies that claim that
epistasis is ubiquitous7,10; or that it is practically nonexistent9; or that
it is commonly of higher order12,13. The most likely explanation for this
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Figure 4 | A de novo BTG2 p.V141M-encoding allele causes microcephaly.
a, Pedigree DM048. Chromatograms show a de novo c.421G.A nucleotide
change. WT, wild type. b, Suppression of btg2 leads to head size defects. Dorsal
view of uninjected control and btg2 MO-injected zebrafish embryos at 4 dpf.
White arrows show the distance measured from forebrain to hindbrain. Red
line shows the protrusion of the pectoral fins in uninjected controls.
c, Distribution of head size measurements at 4 dpf (Supplementary Table 10;

white arrows in b), a.u., arbitrary units. d, 2 dpf zebrafish embryos stained for
PH3. Human RNA containing the V141M mutation is unable to rescue the
reduced proliferation of btg2 morphants. e, Quantification of PH3-positive
cells: human RNA with mutations V141M and either R80K or L128V can
rescue knockdown of btg2. Error bars represent standard deviation. f, The
141M allele is fixed in 59/87 species besides primates, examples displayed here.
See Supplementary Table 11 for PH3 quantification.
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The mutation is a reversal to the mammalian 
ancestral state

25

• Machine learning techniques have the potential to solve the epistasis problem

• Measures of population level constraint have the potential to solve the 
problem of distinguishing between strongly and weakly deleterious mutations.

New methods directions

26

Language models

Bepler & Berger, Cell Systems, 2021
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PolyPhen2

SIFT

LRT

MutationTaster

FatHMM

SNPs3D

DeepSequence

Methods

Note, that state of the art is far from perfect

28

New developments

EVE – addresses the issue of epistatic interactions

VARITY – addresses the issue of slightly deleterious mutations

29

Condel

REVEL

VEST

CADD

M-CAP

Umbrella methods

30
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CCR

M-CAP

PrimateAI

Incorporating regional constraint

31

Applications

• Mendelian genetics – obvious

• Rare variant studies in search of drug targets

32

ControlDisease

This is a direct association!Rare variant collapsing study

33

ControlDisease

This is a direct association!

Neutral variantsFunctional variants

Rare variant collapsing study

34

Predicting functional consequences increases 
power

• Inclusion of neutral variants reduces power of the test

• Combining variants with vastly different effect sizes reduces power of the 
test

• Most groups limit the tests to nonsense, splicing and missense variants that 
are predicted functional

• Assigning quantitative weights is probably a better approach, but nobody 
uses it in practice

35

UK Biobank results (Wang et al.)

Variant grouping: nonsense,  splicing, missense predicted by REVEL and MTR

36
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UK Biobank results (Backman et al.)

Deleterious missense variants:

SIFT
PolyPhen2
LRT
Mutation Taster

37

Non-coding variants

38

• Regulation: variants in promoters, enhancers, 
silencers, insulators

Regulatory variants

39

Chromatin accessibility

40

Chromatin modifications

41

Epigenomics

42
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Lactase tolerance

Eye color

Non-disease alleles of large effect
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Deletion of Ultraconserved Elements
Yields Viable Mice
Nadav Ahituv1,2¤, Yiwen Zhu1, Axel Visel1, Amy Holt1, Veena Afzal1, Len A. Pennacchio1,2, Edward M. Rubin1,2*

1 Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America, 2 United States Department of Energy Joint Genome Institute,

Walnut Creek, California, United States of America

Ultraconserved elements have been suggested to retain extended perfect sequence identity between the human,
mouse, and rat genomes due to essential functional properties. To investigate the necessities of these elements in
vivo, we removed four noncoding ultraconserved elements (ranging in length from 222 to 731 base pairs) from the
mouse genome. To maximize the likelihood of observing a phenotype, we chose to delete elements that function as
enhancers in a mouse transgenic assay and that are near genes that exhibit marked phenotypes both when completely
inactivated in the mouse and when their expression is altered due to other genomic modifications. Remarkably, all four
resulting lines of mice lacking these ultraconserved elements were viable and fertile, and failed to reveal any critical
abnormalities when assayed for a variety of phenotypes including growth, longevity, pathology, and metabolism. In
addition, more targeted screens, informed by the abnormalities observed in mice in which genes in proximity to the
investigated elements had been altered, also failed to reveal notable abnormalities. These results, while not inclusive
of all the possible phenotypic impact of the deleted sequences, indicate that extreme sequence constraint does not
necessarily reflect crucial functions required for viability.

Citation: Ahituv N, Zhu Y, Visel A, Holt A, Afzal V, et al. (2007) Deletion of ultraconserved elements yields viable mice. PLoS Biol 5(9): e234. doi:10.1371/journal.pbio.0050234

Introduction

Evolutionary conservation has become a powerful means
for identifying functionally important genomic sequences
[1,2]. Ultraconserved elements have been defined as a group
of extremely conserved sequences that show 100% identity
over 200 bp or greater between the human, mouse, and rat
genomes [3]. This category of extreme evolutionary sequence
conservation is represented by 481 sequences in the human
genome, of which over half show no evidence of tran-
scription. Further analysis of the distribution of these
noncoding ultraconserved elements demonstrates that they
tend to cluster in regions that are enriched for transcription
factors and developmental genes [3], and a limited number of
functional studies suggest a role for some of these noncoding
elements in gene regulation [4–6].

Several hypotheses have been proposed to explain the
extreme sequence constraint of ultraconserved elements,
including strong negative selective pressure and/or reduced
mutation rates [3]. The negative selection hypothesis postu-
lates that crucial functions such as vital gene regulatory
information is embedded within these sequences, while the
reduced mutation rate hypothesis suggests that these sequen-
ces exist in a hyperrepaired or hypomutable state [3]. Recent
analysis of human variation in these noncoding ultracon-
served elements provides compelling evidence supporting
negative selection as contributing to their extreme evolu-
tionary conservation [7]. Furthermore, noncoding ultracon-
served elements have also been shown to be significantly
depleted in human segmental duplications and copy number
variants, suggesting that disruption of their normal copy
number may lead to reduced fitness [8]. In this study, we
removed four carefully chosen noncoding ultraconserved
elements in the mouse genome to directly explore a
functional role for these elements in vivo.

Results

Generation and General Characterization of
Ultraconserved Knockout Mice
To increase the probability of observing an associated

phenotype in the ultraconserved null mice, we employed a
variety of criteria in selecting the noncoding ultraconserved
elements for deletion. We chose elements that showed tissue-
specific in vivo enhancer activity in a mouse transgenic
reporter assay that tended to recapitulate aspects of the
expression pattern found in genes that were in their
proximity (Figure 1) [6]. Other factors that were taken into
account in prioritizing elements for deletion included their
proximity to genes whose inactivation or alteration in
expression result in specific phenotypes that we could screen
for in the ultraconserved element deletion mice (Table 1).
Elements meeting most of these criteria were chosen for
removal and included: uc248, uc329, uc467, and uc482 (Figure
1) [3], representing 222, 307, 731, and 295 bp, respectively, of
100% identity between human, mouse, and rat.
All four noncoding ultraconserved elements were deleted

from the mouse genome using standard mouse genetic
engineering techniques, and removal was confirmed by PCR
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Ultraconserved elements
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Enrichment of GWAS signals in regulatory elements
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Enrichment of GWAS signals in regulatory elements
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To investigate whether enrichment in h2
g from all SNPs at

known loci was consistent with the genome-wide esti-
mates, we partitioned the h2

g explained by SNPs within 1
Mb of published GWAS loci for each trait (NHGRI GWAS
catalog;11 see Web Resources) (Figure S13). Because some

traits had a small number of loci, the DHS component
was jointly analyzed with only a single other component
containing all non-DHS SNPs. We again observed a highly
significant DHS enrichment in imputed data and a sig-
nificant difference between the genotyped and imputed

Figure 3. Functional Partitioning of SNP Heritability across 11 Traits
(Top panels) Joint estimates of the percentage of h2

g from six functional components are shown in filled bars (meta-analyzed over 11
traits). The null expectation, equal to the percentage of SNPs in each category, is shown by dashed, unfilled bars, and p values report
the difference from this expectation. Fold enrichment relative to the null expectation is shown in parentheses below each category.
The left panel shows results from analyses of genotyped SNPs only, and the right panel shows analysis of genotyped and 1000 Genomes
imputed SNPs. Error bars show 1.963 SE after adjustment for shared controls.
(Bottom panels) Partitioned h2

g in simulations of a ‘‘realistic’’ trait where DHS and coding variants explained 79% and 8% of h2
g , respec-

tively (with no enrichment elsewhere). Filled bars show the mean inferred percentage of h2
g from genotyped (left) and imputed (right)

SNPs over 100 simulations. Patterned bars show the simulated true partition. Error bars show 1.963 SE (on average, SEs on imputed data
were 2.23 higher than SEs on genotype data as a result of the abundance of new variants).
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Partitioning heritability
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GWAS peak

Controlled model system

Biochemistry

Translating GWAS findings into mechanistic 
models
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GWAS peak

Endophenotype

Gene expression (eQTL)

Endophenotype

Molecular phenotype (molecular_QTL)

Human Genetics all the way
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Distinct variants
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Co-localization problem
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Coloc

eCAVIAR

JLIM

Methods

53

Genetic variants differ between Mendelian 
and complex traits

• Complex trait variants

• Small effect size
• Extremely large number of loci
• Mostly non-coding (regulatory)

• Mendelian & somatic cancer 
variants

• Large effect sizes
• Small number of loci
• Mostly coding
• Are in “putatively causative” 

genes

54
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The basic model

By now we know that most complex trait loci never harbor mutations of large effect

55

Hypothesis

• Most genes involved in Mendelian components of complex traits are 
also causative for cognate common forms.

• Variants involved in common forms alter regulatory sequence of 
these genes.

• This in turn induces changes in gene expression; regulatory variants 
are eQTLs.

56

Genes and phenotypes
(for complex traits, GWAS is restricted to non-coding variants)

Overall, 139 genes

89 (64%) fall under a GWAS peak 
of a cognate complex trait

Examples include: 

LDL Receptor under 
a GWAS peak for LDL Cholesterol

Estrogen receptor under
a GWAS peak for breast cancer 

These genes are highly likely to
mediate the effects of regulatory variants

57

Statistical methods to locate the causative 
gene under GWAS peak

• Closest gene to peak

• Colocalization methods
• JLIM
• Coloc
• eCAVIAR

• Transcriptome-wide association
• FUSION

• Chromatin marks
• Fine-mapping using SuSiE
• Locate fine-mapped variants under chromatin modification peaks

58

Distance of fine-mapped SNPs (by SuSiE) to the 
closest gene 
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Colocalization of GWAS and eQTLs

60

176



Transcriptome-wide association (TWAS) 

61

Results

Connally et al., medRxiv, 2021

62

Results

• Colocalization results are almost random

• TWAS results are almost random

• There is a significant enrichment of fine-mapped SNPs in regulatory elements marked by 
modified chromatin, but still in a minority of loci

• A simple strategy to link peaks to genes using the chromatin signal (ABD) does not link 
most of the genes successfully
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Possible reasons for the negative result

• Perhaps expression of putatively causative genes
• Matters only in a certain environmental context
• Matters only at a specific developmental stage
• Matters only as a stimulus response

64

I find it highly surprising that

• A context independent large change in expression of LDLR due to a 
nonsense mutation leads to a large phenotypic change

• A smaller change in expression does not affect LDL levels, while non-
coding effect on LDLR does

65

Modeling eQTL effects at 
single cell resolution

Nathan et al., Nature 2022
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