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Genome-wide association studies (GWAS)

Newcastle W

'University w

Genome-wide association studies (GWAS) _Part 1 @ Popular (and highly successful) approach over past ~ 15 years

@ Enabled by advances in high-throughput (microarray-based)
genotyping technologies

Heather J. Cordell

@ |dea is to measure the genotype at a set of single nucleotide
Population Health Sciences Institute polymorphisms (SNPs) across the genome, in a large set of unrelated

Faculty of Medical Sciences individuals
Newcastle University, UK

heather.cordell@ncl.ac.uk

e Cases and controls

@ Or population cohort measured for relevant quantitative phenotypes
(height, weight, blood pressure etc)

@ Or related individuals (family data) — but need to analyse differently
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Genome-wide association studies (GWAS) Association testing: case/control studies

Two individuals @ Collect sample of affected individuals (cases) and unaffected
individuals (controls)
@ Or a else a sample of random “population” controls
@ Most of whom will not have the disease of interest

Person 1  ACCTGTGTGCCCAATGGCGTCCCATACTATCGG
ACCTGTGCGCCCAATGGCGTCCCATACTATCGG

Person 2 ACCTGTGCGCCCAGTGGCGTCCCATACTATCGG

ACCTGTGCGCCCAGTGGCGTCCCATAGTATCGG @ Examine the association (correlation) between alleles present at a
genetic locus and presence/absence of disease
@ Test each SNP for association/correlation with disease or quantitative e By comparing the distribution of genotypes in affected individuals
phenotype with that seen in controls
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Case/control studies Case/control studies

@ Each person can have one of 3 possible genotypes at a diallelic @ Each person can have one of 3 possible genotypes at a diallelic
genetic locus genetic locus
Genotype  Cases Controls Genotype  Cases Controls
22 500 (=a) 200 (= b) 22 500 (=a) 200 (= b)
12 1100 (=c) 820 (=d) 12 1100 (=c) 820 (=d)
11 400 (=e) 980 (= f) 11 400 (=e) 980 (= f)
Total 2000 2000 Total 2000 2000

® Test for association (correlation) between genotype and presence/
absence of disease using standard 2 test for independence on 2 df
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Case/control studies Case/control studies

@ Each person can have one of 3 possible genotypes at a diallelic @ Each person can have one of 3 possible genotypes at a diallelic
genetic locus genetic locus
Genotype  Cases Controls Genotype  Cases Controls
22 500 (=a) 200 (= b) 22 500 (=a) 200 (= b)
12 1100 (=c) 820 (=d) 12 1100 (=c) 820 (=d)
11 400 (=e) 980 (= f) 11 400 (=e) 980 (= f)
Total 2000 2000 Total 2000 2000
@ Test for association (correlation) between genotype and presence/ @ Test for association (correlation) between genotype and presence/
absence of disease using standard 2 test for independence on 2 df absence of disease using standard 2 test for independence on 2 df
. E)? . . E)?
o Defined as >, ; 5 % where O; and E; are observed and expected e Defined as >, ; 5 % where O; and E; are observed and expected
counts (calculated from the row and column totals) respectively counts (calculated from the row and column totals) respectively
o Generates a p value indicating how significant the association/ e Generates a p value indicating how significant the association/
correlation appears to be correlation appears to be

@ Two odds ratios can be estimated

s OR(22:1j1) = £
e« OR(12:11) =&
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@ Odds of disease are defined as P(diseased)/P(not diseased) @ Odds of disease are defined as P(diseased)/P(not diseased)
e Odds ratio OR(2|2 : 1|1) repesents the factor by which your odds of e Odds ratio OR(2|2 : 1|1) repesents the factor by which your odds of
disease must be multiplied, if you have genotype 2|2 as opposed to 1|1 disease must be multiplied, if you have genotype 2|2 as opposed to 1|1
@ i.e. the ‘effect’ of genotype 2|2 @ j.e. the ‘effect’ of genotype 2|2

@ Similarly, we can define the OR for 1|2 vs 1|1

@ As the factor by which your odds of disease must be multiplied, if you
have genotype 1|2 as opposed to 1|1

@ i.e. the ‘effect’ of genotype 1|2
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@ Odds of disease are defined as P(diseased)/P(not diseased)

o Odds ratio OR (2|2 : 1|1) repesents the factor by which your odds of
disease must be multiplied, if you have genotype 2|2 as opposed to 1|1

@ If a disease is reasonably rare, the odds ratio approximates the

@ i.e. the ‘effect’ of genotype 2|2 genotype relative risk (GRR, RR)
@ Similarly, we can define the OR for 1|2 vs 1|1
e As the factor by which your odds of disease must be multiplied, if you Genotype  Penetrance  GRR Odds OR
have genotype 1|2 as opposed to 1|1 1/1 0.01 1.0 0.01/0.99 =0.0101 1.00
@ ie. the ‘effect’ of genotype 1|2 1/2 0.02 2.0 0.02/0.98 =0.0204 2.02
2/2 0.05 50 0.05/0.95=0.0526 5.21

@ ORs are closely related (often a2) genotype relative risks
e The factor by which your probability of disease must be multiplied, if
you have genotype 1|2 as opposed to 1|1 (say) @ If your genotype has no effect on your probability (and therefore your

. RR) of disease, then both the ORs and the GRRs=1.
@ If your genotype has no effect on your probability (and therefore on

your odds) of disease, then the ORs=1.

e So the association test can be thought of as a test of the null
hypothess that the ORs=1
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Dominant/recessive effects Counting alleles

Dominant:
Counts in
Genotype Cases  Controls Total Allele ~Cases Controls
2|2 and 1|2 | 500+1100 200+820 | 700+1920 2 2100 (=a) 1220 (=b) Allelic OR = ad/bc
11 400 980 1380 1 1900 (=c) 2780 (=d)
Total 2000 2000 4000 Total 4000 4000
Recessive:
@ 2 test statistic on 1 df = >0 — E;)?/E; where O; and E; are the
Genotype Cases  Controls Total observed and expected values in cell /.
2|2 500 200 700 @ Assumes HWE under null and multiplicative allelic effects under
1j2 and 1|1 | 11004400 8204980 | 192041380 alternative: considers chromosomes as independent units
Total 2000 2000 4000 . .
@ Better approach: use counts in previous genotype table to perform a
Cochran-Armitage trend test
@ Can also rearrange table to examine effects of alleles (1 df tests): e Even better approach: use linear or logistic regression
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Testing for association: quantitative traits Logistic regression

® Linear regression provides a natural test for quantitative traits

e Testing the null hypothesis that the slope = 0
@ Used in case/control studies

@ Qutcome is affected or unaffected
e Model probability (and thus odds) of disease p as function of variable x

8 4
< | g coding for genotype:
@ ]
° ; : —+ L =g+ 8
e b n = [Po+ p1x =c+ mx
g g —f— ° 1-p
g 8
LR 8 . B
E 3
2 | § @ Use observed genotypes in cases and controls to estimate the values of
< 8 regression coefficients Sy and [
FR @ And to test whether 81 =0
aa w oo ‘
Genatype
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Logistic regression Testing for association

@ All methods produce a test statistic and a p value at each SNP,
indicating how significant the association/correlation observed
appears to be

@ i.e. how likely it was to have occurred by chance
@ Main advantage is you can include more than one predictor in the @ The threshold to declare ‘genome-wide significance’ is usually around

regression equation e.g. p=5x10"%
@ To account for multiple testing of many SNPs across the genome

® Standard method used in standard epidemiological studies e.g. of risk
factors such as smoking in lung cancer

p

|
Ny

i Bo + Bix1 + Baxa + Baxs

where x1, X2, x3 code for
e genotypes at 3 loci
o measured environmental covariates (e.g. age, sex, smoking etc),
e genetic principal component scores (to adjust for population
substructure),
@ interactions between loci etc. etc.
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Testing for association Manhattan Plots

® All methods produce a test statistic and a p value at each SNP,

indicating how significant the association/correlation observed "
appears to be

e i.e. how likely it was to have occurred by chance .

e The threshold to declare ‘genome-wide significance’ is usually around “ s

p=5x10"% :

@ To account for multiple testing of many SNPs across the genome

“logtfs)
0
L

@ Alternative (Bayesian) methods produce a Bayes Factor

e Indicates how likely the data is under the alternative hypothesis
(of association between genotype and phenotype)

@ Compared to under the null hypothesis (of no association between Chromosome
genotype and phenotype)
o Requires you to make some prior assumptions regarding the likely @ At any location showing 'significant’ association, we expect to see
strength of associations (i.e. the value of the §'s) several SNPs in the same region showing association/correlation with
o Choosing a sensible threshold (e.g. logig BF> 4) requires you to make phenotype
some prior assumptions regarding what proportion of SNPs in the @ Due to the correlation or linkage disequilibrium (LD) between
genome are likely to be associated with the phenotype neighbouring SNPs
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Close-up of hit region Historical Perspective: Complement Factor H in AMD

Plotted SNPs 11 181 I 1A 0 00000 O AR A 1
5l 1s3771317 s ) ) )
@ First (?) GWAS was by Klein et al. (2005) Science 308:385-389
py
T 3 o Typed 116,204 SNPs in 96 cases (with age-related macular
T S degeneration, AMD) and 50 controls
g g e Very small sample size — they were very lucky to find anything!
‘ ) e Luck was due to the fact the polymorphism has a very large effect
g (recessive OR=7.4)
@ Kilein et al. followed up on two SNPs passing threshold
mKAR* <*MlSTN <-HIBCH M»F_‘S_Dj:* NA&Z* GML”S:: < STAT4 MYO1B— OBFC2A— (p < 4.8 X 1077)
—QSeERLY Coat~ INERI= i e Plus a third SNP that just failed to pass significance threshold, but lay
<—ORMDL1 < TMEM194B . . .
i - in same region as first SNP
st
T T T T
190.5 191 191.5 192
Position on chr2 (Mb)
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Complement Factor H in AMD GWAS

@ GWAS really got going in around 2007

@ Of the 3 SNPs followed up: e See Visscher et al. (2012) AJHG 90:7-24 “Five Years of GWAS
e One appeared to be due to genotyping errors: significance disappeared Discovery”
on filling in some missing genotypes e And Visscher et al. (2017) AJHG 101:5-22 “10 Years of GWAS
e First and third SNP lie in intron of Complement Factor H (CFH) gene Discovery: Biology, Function and Translation”

@ Lies in region previously implicated by family-based linkage studies

@ 2007,/2008 saw a slew of high-profile GWAS publications
e Breast cancer (Easton et al. 2007)
e Rheumatoid Arthritis (Plenge et al. 2007)
e Type 1 and Type 2 diabetes (Todd et al. 2007; Zeggini et al. 2008)

@ Resequencing of the region identified a polymorphism of plausible
functional effect

° ImmunofluoreSf:ence experiments mIthe. eyes of AMD pat.lents @ Arguably the most influential was the Wellcome Trust Case Control
supported the involvement of CFH in disease pathogenesis. Consortium (WTCCC) study of 7 different diseases

e http://www.wtccc.org.uk/
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WTCCC Manhattan plots for 7 diseases

—1oa, 47

@ Nature 447: 661-678 (2007) “ g ceRP cuFE Goff el SuBFE eaFe

@ Considered 2000 cases for each of the following diseases:

@ Bipolar disorder, coronary artery disease, Crohn's disease, hypertension,
rheumatoid arthritis, type 1 diabetes, type 2 diabetes

@ Compared each disease cohort to common control panel

9 El o
@ 3000 population-based controls _gs g ¢ F g z g E é;
o From 1958 birth cohort and National Blood Service g g ° g 5 g & Ey g
Bl & g E; 2 = =
% o EoulE F oo ol © o £, «
@ Highly successful " o e o 3 o e u
o = = e -
e WTCCC found 24 separate association signals o i . 3 o il o B o
. . .. . . . . v . v v [l v BE v B
@ Including highly convincing signals in 5 out of the 7 diseases studied st o pt st ot
B - . . oL oL 18 ST oL =18
o All were replicated in subsequent independent follow-up studies 2t 2t o 2 2
e 2t at at at
oz oz oz oz oz
£ &2 B = 1 3 B
x x M 3 x x
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Lessons from WTCCC (and others) Short break

@ Typically used rather standard statistical /epidemiological methods
(X2 tests, t tests, logistic regression etc.)

® Success largely due to:

o An appreciation of the importance of large sample size (> 2000 cases,
similar or greater number of controls)

Stringent quality control procedures for discarding low-quality SNPs
and/or samples

Stringent significance thresholds (p="5x10"8) to account for multiple
testing and/or low prior prob of true effect

Importance of replication in an independent data set
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Quality Control QC: call rates and heterozygosity

@ Stringent QC checks are required for GWAS data ol

@ Discard samples (people) deemed unreliable

e Low genotype call rates, excess heterozygosity etc.
@ X chromosomal markers useful for checking gender
@ Males should ‘appear’ homozygous at all X markers 3 °.

heteozygesty
o

o Genome-wide SNP data useful for checking relationships and ethnicity

@ Discard data from SNPs deemed unreliable s B -

e On basis of genotype call rates, Mendelian misinheritances,
Hardy-Weinberg disequilibrium

¢ Exclude SNPs with low minor allele frequency (MAF) ® 61 sample exclusions (low call-rate); 23 exclusions (heterozygosity)

@ SNP exclusions also made based on call-rates, MAF and
Hardy-Weinburg equilibrium (HWE)
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QC: ethnicity tests Multivariate Analysis

® Several related multivariate analysis techniques have been proposed

3 rron for detecting population structure in genome-wide association studies
e Principal components analysis (PCA)
w . e Principal coordinates analysis (PCoA)
R ) @ Multidimensional scaling (MDS)
° 2
; a

@ Multidimensional scaling (with 210 HapMap individuals) identifies 33
samples with non-Caucasian ancestry

@ Similar multivariate methods can be used to model more subtle
population differences between samples...
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Multivariate Analysis Multivariate Analysis

o Several related multivariate analysis techniques have been proposed @ Several related multivariate analysis techniques have been proposed

for detecting population structure in genome-wide association studies for detecting population structure in genome-wide association studies
o Principal components analysis (PCA) e Principal components analysis (PCA)
e Principal coordinates analysis (PCoA) e Principal coordinates analysis (PCoA)
e Multidimensional scaling (MDS) e Multidimensional scaling (MDS)

e If population differences can be detected (and adjusted for) in e If population differences can be detected (and adjusted for) in
association analysis, this offers a way to deal with the problem of association analysis, this offers a way to deal with the problem of
population stratification population stratification

e Population sampled actually consists of several ‘sub-populations’ that e Population sampled actually consists of several ‘sub-populations’ that
do not really intermix do not really intermix

e Can lead to spurious false positives (type 1 errors) in case/control e Can lead to spurious false positives (type 1 errors) in case/control
studies studies

@ These techniques can also be used in quality control (QC) procedures,
to check for (and discard) population outliers
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Principal components analysis (PCA) Principal Components Analysis

Gefies Mok geogiaphy wiliin Elrope @ Price et al. (2006) Nature Genetics 38:904-909; Patterson et al.
(2006) PLoS Genetics 2(12):e190

e Based on popn genetics ideas from Cavalli-Sforza (1978)

® Idea is to form a large matrix M of SNP counts (0,1,2) corresponding
to the genotype at a L loci (=rows) for n individuals (=columns)

811 812 - &in
821 822 - 8o2n
M = 831 832 - 83n

8L1 82 - 8in

J Novembre et al. (2008) Nature 456(7218):98-101, doi:10.1038/nature07331
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Principal Components Analysis Multivariate Analysis

e Estimate covariance matrix W = XX between all pairs of individuals,

@ Subtract row means and normalise by function of row allele frequency with entries ¢; d'efined'as the covariance (summing over SNPs)
) . between column i and j of X
V(1 — f) to give matrix X

o Represents average genome-wide identity by descent (IBD) (estimated
from identity by state, IBS)

X111 X12 - Xin
X21 X22 . X2n
X X . X
X = 31 32 3n
X1 X2 - Xin

@ This matrix will be used as starting point for PCA

e In principal we could start with a different matrix — in particular not all
PCA approaches would normalise by /(1 — f)
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Multivariate Analysis Multivariate Analysis

e Estimate covariance matrix W = X7 X between all pairs of individuals, @ Estimate covariance matrix W = X7 X between all pairs of individuals,
with entries 1;; defined as the covariance (summing over SNPs) with entries 1; defined as the covariance (summing over SNPs)
between column i and j of X between column i and j of X

e Represents average genome-wide identity by descent (IBD) (estimated e Represents average genome-wide identity by descent (IBD) (estimated
from identity by state, IBS) from identity by state, IBS)
o Compute the eigenvectors V; and eigenvalues \; of matrix W o Compute the eigenvectors V; and eigenvalues ); of matrix W
@ Co-ordinate j of the kth eigenvector represents the ancestry of @ Co-ordinate j of the kth eigenvector represents the ancestry of
individual j along ‘axis’ k individual j along ‘axis’ k

@ For technical details, see McVean (2009) PLoS Genetics 5;10:e1000686
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Multivariate Analysis Post GWAS QC: Q-Q Plots (good)

e Estimate covariance matrix W = XTX between all pairs of individuals, . . ) .
with entries 1;; defined as the covariance (summing over SNPs) @ Plot ordered test statistics (y axis) against their expected values under the
between column i and j of X null hypothesis (x axis)

o Represents average genome-wide identity by descent (IBD) (estimated
from identity by state, IBS)
o Compute the eigenvectors V; and eigenvalues ); of matrix W
@ Co-ordinate j of the kth eigenvector represents the ancestry of X
individual j along ‘axis’ k % x o

@ For technical details, see McVean (2009) PLoS Genetics 5;10:¢1000686

@ Many genetics packages e.g. (PLINK) will allow you to calculate the
top 10 (or more) PCs
e Different geographic populations can often be well separated by just
the first two or three PCs

@ Useful for outlier detection

e For more subtle differences, you may need to calculate more PCs ! d
@ And include them as covariates in the regression equation
@ Post-GWAS QC can determine whether you have included ‘enough’

aciaonsfortoicil
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Q-Q Plots (bad) Population stratification

@ A QQ plot showing constant inflation (straight line with slope > 1)
can indicate population stratification/population substructure

@ Simple solution: Genomic Control (Devlin and Roeder 1999)
e Use your observed test statistics to estimate the slope (=inflation
factor \)
e Divide each test statistic by A to get an adjusted (deflated) test
statistic

@ More complicated solution: use PCA/MDS or similar

; E . . i : : : ; i @ Even more complicated solution: use linear mixed models

g ) Ao )
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@ Assuming no inbreeding, the IBD state probabilities are:

Number of alleles shared IBD

@ With genome-wide data, can also infer relationships based on average Relationship 2 1 0
identity by descent (IBD) W = XTX or identity by state (IBS) MZ twins 1 0 0
Parent—Offspring 0 1 0

e Using ‘thinned’ subset of markers with high minor allele frequency

. . . g Full siblings 1/4  1/2 1/4

(MAF) and in approximate linkage equilibrium Half siblings 0 1/2 1/2

o Simple relationships (PO, FS, MZ/duplicates) can identified with only Grandchild—grandparent 0 1/2 1/2

a few hundred markers Uncle/aunt-nephew/niece 0 1/2 1/2

@ More complicated relationships require 10,000-50,000 SNPs First cousins 0 1/4 3/4
Second cousins 0 1/16 15/16

@ Various software packages, including PLINK, KING and TRUFFLE Double 1st cousins 1/16 6/16 9/16

® A useful visualisation tool is to plot SE(IBD) vs mean(IBD)
(as estimated across the genome)

e Or kinship coefficient (3P(IBD=2)+31P(IBD=1)) against P(IBD=0)
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Full/half sibs and parent-offspring CHD GWAS results (low QC)

~loglofp)
L

. | ( - e
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CHD GWAS results (better QC) CHD GWAS results (final QC)

loglolp)
o
o
~hogl0lp)
5
|
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Genome-wide meta-analysis Genome-wide meta-analysis

@ Puts together data (or results) from a number of different studies @ Puts together data (or results) from a number of different studies
@ Could analyse as one big study @ Could analyse as one big study
e But preferable to analyse using meta-analytic techniques @ But preferable to analyse using meta-analytic techniques
@ At each SNP construct an overall test based on the results @ At each SNP construct an overall test based on the results
(log ORs and standard errors) from the individual studies (log ORs and standard errors) from the individual studies

@ Meta-analysis is often made easier by using imputation
e Inferring (probabilistically) the genotypes at SNPs which have not
actually been genotyped
@ On the basis of their known correlations with nearby SNPs that have
been genotyped
@ Using a reference panel of people (e.g. 1000 Genomes) who have been
genotyped at all SNPs
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Genome-wide meta-analysis

@ Puts together data (or results) from a number of different studies
e Could analyse as one big study
e But preferable to analyse using meta-analytic techniques
@ At each SNP construct an overall test based on the results
(log ORs and standard errors) from the individual studies

® Meta-analysis is often made easier by using imputation
e Inferring (probabilistically) the genotypes at SNPs which have not
actually been genotyped
@ On the basis of their known correlations with nearby SNPs that have
been genotyped
@ Using a reference panel of people (e.g. 1000 Genomes) who have been
genotyped at all SNPs
@ Enables meta-analysis of studies that used different genotyping
platforms
e By imputing to generate data at a common set of SNPs
@ |deally while accounting for the imputation uncertainty in the
downstream statistical analysis
@ |n practice often don’t bother - use post-imputation QC to remove
poorly-imputed SNPS

Heather Cordell (Newcastle) GWAS (Part 1) 40 / 40
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Data Quality Control
NGS and Genotype Array Data

© 2022 Suzanne M. Leal, suzannemleal@gmail.com

DNA Collection

¢ Blood samples

— For unlimited supply of DNA
* Transformed cell lines
— Is expensive
* Whole genome amplification
— Allows for the creation of large amounts of DNA from initial small DNA sample
» Perform WGA on each sample three or more times and use pooled samples
— Can experience lower call rates and higher genotyping error rates
— Not recommend for whole genome sequencing or copy number variant (CNV) analysis
¢ Buccal Swabs
* Small amounts of DNA
* DNA not stable

¢ Saliva (Origene collection kit)

Measurement of DNA Concentrations

¢ Nanodrop

e Picogreen

Effect of Genotyping Error — Same Error Rates for
Cases and Controls

o For family-based association studies - Trios
— Can increase both type I and Il error

* Population based studies
— Increases type Il error only

If genotyping error is not correlated with
trait values type Il errors will be
increased

Effects of Genotyping Error — Different Error
Rates for Cases and Controls
* Cases and controls are sequenced/genotyped
— At different times
— Different institutions

— Or one group, e.g., case or control, is predominately
sequenced/genotyped in the same batch

e Can lead to different genotyping error rates in cases and controls
— In this situation both type | and Il error can be increased

¢ If sequencing/genotyping cases and controls
— Randomize cases and controls so they are spread evenly across batches

If genotyping error is correlated with trait values, it will
also increase type | and Il errors, e.g., individuals with
elevated systolic blood pressure are genotyped in one
batch and those with systolic blood pressure within the
normotensive range in another batch

Genotype SNPs (~20-96) before Exome or Whole
Genome Sequencing

e Genotype markers which can be used as DNA fingerprint
o Allows for Assessment of DNA quality
e Aids in determining the the genetic sex of study subjects

— To aid in identification of potential sample swaps
e Detects cryptic duplicates
e For family data

— Aids in determining close familial relationships

* Non-paternity

* Sample swaps

* Cryptic relationships

Detecting Genotyping Errors

e Duplicate samples genotyped using arrays to detect
inconsistencies

— Can use duplicate samples that are inconsistent to adjust clusters to
improve allele calls

* Will not detect systematic errors
e Usually generated only for genotype array data

— Due to expense, duplicate samples are usually not generated for exome or
whole genome sequencing studies
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Variant Calling Pipeline -Step 1 Preprocessing

FastQ or uBAM files

!

Map to Reference

!

Mark Duplicates

Burrows-Wheeler Aligner

Picard

Recalibrate Bases
Base quality score recalibration (BQSR}

GATK

Variant Calling Pipeline-Step 2 Variant Discovery

Recommend HaplotypeCaller

Call Variants
UnifiedGenotyper - outdated
gVCF
Merge Optional - Can be used
for large datasets
[o)V/ 0] IR
Joint Calling
VCF-

Flags variant
sites which are
likely to be false

Variant quality score recalibration (VQSR)

positives
8
A Short List of Additional Software to Detect
Variant Calling Pipeline - Step 3 Call Set Refinement Genetic Variation
‘ ¢ Exome data Copy Number Variation
CalculateG - Posteri gg'g:;z?;it:gp?n‘;i”os: — CoNIFER (Copy Number Inference From Exome Reads)
alculateGenotyperosteriors variant MAFs. For families * Krumm etal. 2012
uses info on each trio pair = XHMM
V6 O within a family * Fromer et al. 2014
¢ WGS data structural variation
VariantFiltration Flags genotypes with GQ<20 - MetaSVv
¢ Mohiyuddin et al. 2015
Y/ 0
Flags possible de novo events - LMY
VariantAnnotator (trio data) * Layeretal. 2014
VCF .................................
Functional annotation Not performed by GATK
9 10

Variant Calling

* BAM files are large and take considerable resources
— Storage is expensive
— One 30x whole genome is ~80-90 gigabytes
— A small study of 1,000 samples will consume 80 terabytes of
disk space
¢ The cost of cloud computing to call variants
— (Souilmi et al. 2015)
— $5 per exome
— $50 per genome
* For 1,000 samples

- $5,000 exome
— $50,000 genome

Working with gVCF Files

¢ Instead of obtaining VCF files

e Can obtain gVCF files to perform joint calling and
complete the GATK pipeline

— A whole genome gVCF

* ~1 Gigabyte
- 1/100% the size of a BAM file for one individual

11
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Influences on Sequence Quality

¢ DNA quality

— Age of sample

— Extraction method

— Source of sample

* e.g., blood, skin punch, buccal

¢ Sequencing machines (read length)
Median sequencing depth
Alignment
Variant calling method used

— Single nucleotide variants and insertion/deletions
— Structural variants

NGS Data Quality Control

Extremely important to perform before data analysis

— Poor data quality can increase type | and Il errors

— Due to inclusion of false positive variant sites or incorrect
genotype calls

¢ Protocols for data QC are still in their infancy
— No set protocols for QC

* QCis data specific

— Dependent on read depth

— Batch effects

— Availability of duplicate samples

— etc.

13
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NGS Data Quality — Removal of Genotype Calls
and Samples

e Sequence depth of coverage
— DP_variant
* High DP could be an indication of copy number variants

— Which can introduce false positive variant calls
» Due to down sampling in GATK maximum DP is 250

— DP_genotype
* Concerned if depth is too low or too high
- Low insufficient reads to call a variant site
* Remove genotypes with low read depth, e.g., DP<8

¢ Genotype quality (GQ) score

— Removal of sites with low genotype quality core, e.g., GQ< 20

NGS Data Quality — Removal of Genotype Calls
and Samples
e Sequence depth of coverage

— DP_variant

* High DP could be an indication of copy number variants
— Which can introduce false positive variant calls
» Due to down sampling in GATK maximum DP is 250

— DP_genotype
¢ Concerned if depth is too low or too high
- Low insufficient reads to call a variant site

* Remove genotypes with low read depth, e.g., DP<8
¢ Genotype quality (GQ) score
— Removal genotypes with a low genotype quality core, e.g., GQ< 20

15
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VCF Example

NA00003
1/1:
0/0:41:

Variants with more than 2 Alleles
¢ Genetic analysis tools are usually developed to analyze
variant sites that are diallelic

¢ Some sites may have >2 alleles
The alleles at these sites need to be split

— New loci are made each multi-allelic site each with only 2
alleles

* bcftools

Multiallelic sites can have higher error rates compared
to diallelic sites

17
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NGS Data Quality — Removal of Genotype Calls
and Samples

e Removal of sites with missing data
— e.g., missing > 10% of genotypes

® Removal of “novel” variant sites which only occur in
one batch and the alternative allele is observed
multiple times or the minor allele frequency (MAF) is
high in overall sample

e Removal of sites that deviate from Hardy-Weinberg
Equilibrium (HWE)
— Must be performed by population, e.g., African American

and European American

— Related individuals should be removed from the sample
before testing for deviations from HWE

NGS Data Quality Control

e GATK - Variant Quality Score Recalibration (VQSR)
— Used to determine variant sites of bad quality
 Variant site is a false positive call
e However even after this step
— Concordance of duplicates (when available) and

— and Ti/Tv ratios are often low

¢ Additional QC steps needs to be performed

19
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NGS Data Quality Control

* Values which are used for DP (genotype), GQ, and
missing data cut offs are based upon
— Concordance rates
o If there are duplicate samples are available
— Ti/Tv ratios
¢ By individual
¢ By batch
¢ Entire data set
- Amount of data removed

¢ QC can remove substantial amounts of data which should be
avoided

— e.g., >15% of variant sites

Transition/Transversion (Ti/TV) Ratios

* Transition
* Purine
* Pyrimidine — > Pyrimidine
* Transversion
e Purine —>  Pyrimidine
*  Pyrimidine —> Purine

—> Purine A c

j C—

e
i

Transition
Transversion

21 22
Transition/Transversion (Ti/TV) Ratios Sequence Data QC Overview
¢ Variant and genotype call level
« Ti/Tv Ratios — Evaluation of batch effects

* Whole genome ~2.0
* Exome novel ~2.7
* Exome known ~3.5

A C

» Ti/Tv ratios can be calculated by T«
» Sample or
» Dataset

—_— Transition
— Transversion

* Ti/Tv ratios can be evaluated for subsets of data
* e.g., by batch

¢ Genotype call level — Removal of genotype calls
— Low or high depth of coverage DP< 8
— Low genotype quality score GQ< 20
e Removal of individual samples
— >20% missing data
* After taking the intersect of capture arrays

— Samples without phenotype information

23
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Sequence Data QC Overview

* Variant level — removal of variant sites

— Low call rate
* i.e., missing call rate > 10%
— “Novel” variant sites observed >2 only in a single batch
— Deviation from Hardy-Weinberg-Equilibrium
* Population specific
* Unrelated individuals
— e.g., p<5x10%¢, p<5x10*°

Data Clean — Assessing Sex Chromosomes

e When data is collected on study subjects they are
asked about their gender/sex and not their genetic sex
— Differences in gender/sex and genetic sex can be due to

* Sample swaps
¢ Study subjects who are not cisgender

¢ Some study subjects may have neither a XX nor XY
karyotype
— Turner syndrome X0
— Klinefelter syndrome XXY

25
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Data Clean — Assessing Chromosomal Sex

¢ Study subjects labeled as females with an excess of
homozygous genotypes on the X chromosome can
denote
— That their genetic sex is male
— Turner Syndrome

Data Clean — Assessing Chromosomal Sex

¢ Study subjects labeled as males with an excess of
heterozygous SNPs* on the X chromosome can
denote
— That their genetic sex is female
— Klinefelter syndrome

¢ Note: Individuals who are XY will also be
heterozygous for markers in the pseudoautosomal
regions

e Availability of Y chromosome data

— Can greatly aid in determining genetic sex and if an individual has
Turner or Klinefelter syndrome

*Both males and females have two alleles for each locus on the X chromosome in
the datafile, although males are hemizygous

27
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Data Clean — Assessing Sex Chromosomes

¢ Individuals whose labeled gender/sex does not match
their genetic sex are removed from the analysis

¢ This observation may be due to a sample swap

— When samples are swapped
¢ Phenotype data will be incorrect
— e.g., may be a case when labeled as a control

Checking for Duplicate and Related Individuals

¢ Duplicate samples are sometimes included in a study as
part of quality control to detect inconsistencies
— Will not detect systematic errors

— Usually not included in exome and whole genome sequencing studies
— Intentional duplicates can easily be removed before data quality control

¢ Cryptic duplicates (unintentional)
— DNA sample aliquoted more than once

— Individual ascertained more than once for a study
* e.g. The same individual undergoes the same operation more than once and is

ascertained each time
¢ Individuals who are related to each other may

participate in the same study
— Unknown to the investigator
— Or be part of the study design

29
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Duplicate and Related Individuals Need to be
Identified

e For duplicate samples
— Only one can be retained
e For related individuals
— PCAis performed first with unrelated individuals and related individuals
are then projected onto the PCs of unrelated individuals
— Mixed-models need to be used to analyze the data if related individuals
are included*
* Case-Control
— Generalized linear mixed models (GLMM)
* Quantitative traits
— Linear mixed models (LMM)
— If not type | error rates can be increased

*If only a few related individuals in sample, may wish to remove them or use LMM/GLMM
to control type | errors. Must use LMM/GLMM if related individuals are included in the
dataset. If possible, opt for LMM/GLMM since it can help to control type I error due to
other types of structure in the data, even when no closely related individuals are included
in the analysis.

Identifying Duplicate and Related Individuals

¢ Duplicate and related individuals can be detected

— By examining Identity-by-State (IBS) adjusted for allele

frequencies (p-hat) between all pairs of individuals within a
sample

— Identify-by-descent (IBD) sharing can be estimated

31

32

Identity by Descent (IBD)/Identity-by-State (IBS)

o0 o0

12 1/3 1/2 1/3 172 1/3

1/3 1/2 11 1/3 172 1/2
IBD=0 IBD=1 IBD=2
IBS=1 IBS=1 IBS=2

IBD Sharing Estimated Pairwise for all Individuals
in a Samples
e PLINK (Purcell et al. 2007)

Uses sequence (or genotype array) data to check IBD

— Prune markers to remove those in LD
e eg.,r0.1

P-hat is calculated using the “population” allele frequency
e Used to approximates IBD sharing

e IBD is the number of alleles of alleles which are shared between
a pair of individuals

— Can either share 0, 1, and 2 alleles
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Identifying Duplicate and Related Individuals

¢ Monozygote twins and duplicate samples will share
100% of their alleles IBD

— IBD=2is 1.0 (can be lower due to genotyping error)

¢ Siblings and child-parent pairs will share 50% of their
alleles IBD

— For parent-child IBD=1is 1.0 (IBD=0is 0 & IBD=2 is 0)

— For sibs IBD=1is ~0.50 (IBD=0 is ~0.25 & IBD=2 is ~0.25)
e For more distantly related individuals the IBD measure will be lower

Identifying Duplicate and Related Individuals

KING [Kinship-based INference for Gwas
(Manichaikul et al. 2010)] can also be used to identify
duplicate and related individuals
— KING is more robust to population substructure and
admixture
o Prune markers for LD (e.g., r2<0.1)
— Provides kinship coefficients
* Duplicate samples
— Kinship coefficient equals 0.5
o Siblings
— Kinship coefficient equals 0.25

35
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King Graphical Output

Multiple Individuals observed that are distantly
“Related”

3 ¢ |If individuals in sample come from different populations
° b : é"cwtv.n Eellatti_ves - e.g., individuals from the same population within the sample will have
- o,?f; Typlic Relatives inflated p-hat values due to incorrect allele frequencies
Bl ?z O? * Incorrectly appear to be related to each other
£ o e, ¢ “Relatedness” amongst many individuals can also be observed
é S : when batches are combined if they have different error rates
§ — Individuals from the same batch appear to be related
£ S * DNA contamination can cause “relatedness” between multiple
< B individuals
T
3 o
T T T T T
0.000 0002 0004 0.006 0.008
PI(BS=0)
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Principal Components Analysis (PCA) / Principal Components Analysis (PCA) /
Multidimensional Scaling (MDS) Multidimensional Scaling (MDS)
¢ Can be used to identify outliers 3

Population substructure

— Individuals from different ancestry
¢ e.g., African American samples included in samples of European
Americans

Batch effects

e Use a subset of markers which have been LD pruned
— Only very low levels of LD between marker loci
e eg.,r0.1
— MAF cutoff dependent on sample size
¢ e.g MAF>0.01
— Can use lower MAF for large sample sizes

Unrelated individuals are used to generate PC plots
— Related individuals are projected onto to the PC plots

Plot 1%t component vs. 2" component

— Additional PCs should also be plotted
* e.g.PCs1-10

Mahalanobis distance can be used to determine outliers
- eg,<1

39
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PCA/MDS Can be Used to Identify Outliers

¢ Individuals of different ancestry
— e.g., African American samples included with European
Americans samples
— Can use samples from HapMap/1000 genomes to help to
determine the ancestry for samples that are outliers

* Should not include HapMap/1000 genomes samples when calculating
components to control for population substructure/admixture

¢ Batch effects

Principal Components Analysis Example

P1vs PC2 exomes N=189,016 P1vs PC2 exomes N=188,488

ethniity_1

etmnicty_1

P2

O R (R PR (S &z T g
pc1 pc1

P3 vs PC4 exomes N=188,488

&

ethvicity_1 ettriciy_1

pea

Exclusion of Outliers using Mahalanobis distance (0.997)
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Detecting Outliers Using PCA and HapMap
Sample

SCCOR, C58 and HAPMAP MDS

0.10
!

o & CE
+ [
g -
3 i,
-~
3 "1
i
YR :
- Wellcome Trust
g * 1958 Birth Cohor
ERR 2 Controls

T
-0.10 -0.05 000

Component 1

Detecting Outliers Using PCA and

HapMap Sample
[cusuer] ®
%i 7 CEU
R e
‘Wellome Trust

-0.05

»

1958 birth cohort
Controls

T
-0.15

T
-0.10

T
-0.05 0.00

Component 1
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Detecting Genotyping Error — Examining HWE

¢ Testing for deviations from HWE not very powerful to
detect genotyping errors

¢ The power to detect deviations from HWE dependent on:
— Error rates
— Underlying error model
¢ Random
* Heterozygous genotypes -> homozygous genotypes
* Homozygous genotypes ->Heterozygous genotype
— Minor allele frequencies (MAF)

Detecting Genotyping Error — Examining HWE

¢ Controls and Cases are evaluated separately
— Deviation found only in cases can be due to an association

¢ Test for deviation from HWE only in samples of the same
ancestry
— Population substructure can introduce deviations from HWE

¢ Do not include related individuals when testing for
deviations from HWE
— Can cause deviations from HWE

45
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Detecting Genotyping Error — Examining HWE
¢ What criterion is used to remove variants due to a
deviation from HWE
— GWAS studies have used 5.0 x 107to0 5.0 x 1015
e Quantitative Traits

— Caution should be used removing markers which deviate from
HWE may be due to an association
* Remove markers with extreme deviations from HWE and Flag markers
with less extreme deviations from HWE
¢ When performing imputation need to be more stringent in
removing variants which deviate from HWE

Sequence Data QC Overview
e Remove variant sites that fail VQSR
e Remove genotypes with low DP, GQ scores, etc.
* Remove variant sites with large percent of missing data
* Remove samples with missing large percent of missing
data
¢ Evaluate genetic sex of individuals based upon X and Y
chromosomal data
— Sample mix-ups
— Individuals with Turner or Klinefelter Syndrome

47
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Sequence Data QC Overview

e Evaluate samples for cryptically related individuals and
duplicates
— Use variants which have been pruned for LD
e eg,r<0.1
— King or Plink algorithm
¢ Always remove duplicate individuals

— Retaining only one in the sample
e If sample includes related samples use linear mix models
(LMM)/Generalized LMM (GLMM) to control for relatedness
— Best to perform even for data without related individuals
e If only a few related individuals can retain only one individual of a
relative group if not using LMM or GLMM

Sequence Data QC Overview
Detection of sample outliers

— Perform principal components analysis (PCA) or
multidimensional scaling (MDS) to detect outliers

o Use variants pruned for LD
- e.g.r<0.1

¢ Use unrelated individuals and then project related individuals
onto the PCs

¢ Due to population substructure/admixture and batch effects

Remove effects by

— Additional QC

— Removal of outliers (can be determined by Mahalanobis distance)
and\or

— Inclusion of MDS or PCA components in the association analysis

49
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Sequence Data QC Overview
* Remove/flag variant sites that deviate from HWE in
controls
— HWE should be only be tested in unrelated individuals from the
same population
o Post Analysis - Quantile-Quantile (QQ) plots

— To evaluate uncontrolled batch effects and population
substructure/admixture

QQ Plots - Genome Wide Association Diagnosis

» Thousands of variants/genes are tested simultaneously

* The p-values of neutral markers follow the uniform
distribution

e If there are systematic biases, e.g., population

substructure, genotyping errors, there will be a
deviation from the uniform distribution

QQ plots offers an intuitive way to visually detect
biases

¢ Observed p-values are ordered from largest to
smallest and their -logio(p) values are plotted on the y
axis and the expected -logio(p) values under the null
(uniform distribution) on the x axis

51
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QQ Plot of Exome Wide P Values
UK Biobank 200K

Observed  ~logso(p)
Observed ~loguo(p)

Expecied ~loge(p)

Expected ~logao(p)

Problem hearing

Hearing aid users
with background noise

Cases N=65,660
Controls N= 96,601

Case N= 6,436
Controls N= 96,601

Genomic Inflation Factor to Evaluate Inflation of
the Test Statistic
¢ Genomic Inflation Factor (GIF): ratio of the median of
the test statistics to expected median and is usually
represented as A
— No inflation of the test statistic A=1
— Inflation A>1
— Deflation A<1
* Can be observed when a study is underpowered
¢ Problematic to examine the mean of the test statistic

— Can be large if many variants are associated
o Particularly if they have very small p-values
e Should not be used
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Phi i hi IF (A . P
erotype | Covariste  Mean ChiSquare | GIF) Example -Project Description
BP 1.23829 1.16932
BP Age 1.24119 1.18025
BP AgeEV1 1.09471 1 e 1,667 Samples
BP Age-EV2 1.0881 1
BB Age-EV4 1.08385 1 * Seven COhorts
BP Age-EV10 1.09582 1.00402 .
= 112931 08921 e Two sequencing centers
BPI Age 1.15139 1.08113 — Center1
BPI Age-EV1 1.05079 1.01148 * Two capture arrays
BPI Age:EV2 1.0428 1 ~ NimbleGen V2Refseq 2010 (CA1): 1082
BB Age-EV4 1.04204 1 » Batchland3
BPI Age-EV10 1.05421 1.01724 — NimbleGen bigexome 2011 (CA2): 234
BPIl 1.17283 1.25664 » Batch2
BPII Age 1.17583 1.26996 — Center2
BPII Age-EV1 1.09874 1.15065 « One capture array
BPIl Age-EV2 1.09904 1.16425 — Agilent SureSelect
BPIl Age-EV4 1.09502 1.14609 » Batchd
BPIl Age-EV10 1.10046 1.1418
BPII Sex,Age-EV1 1.05958 1.06424 e Four batches
=21 SexAge:EV4 1.05817 1.05323 . . .
- byt T oeass py— ¢ No intentional duplicate samples
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Example Project Description MDS First 2 Components Before QC*
¢ Intersection of the three capture arrays used o0es
— NimbleGen V2Refseq 2010
e Batchland3
— NimbleGen bigexome 2011 0000
* Batch 2 é batch
— Agilent Sure Select E "
« Batch 4 %: o025 "
e Sequencing machine =
— Illumina HiSeq
e Sequence alignment e
- BWA
* Multi-sample variant calling s ot ot oo ol ok
- GATK king_all_variant_MDS1
*After VQSR
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Mean GP (genotype) by Batch Mean GQ by Batch
=1 variables =
- B3 b1_mean0P v —E
2 B2 mean0P 5 ) -
E oyt g =
o, &
b1_meanDP b2_meanDP b3_meanDP b4_meanDP o bl_meanGO b2_meanGQ. b3_meanGQ. b4_meanGQ.
varisbes sariables
59 60

24




Genotypes Removed by DP (genotype) Cut-off by Batch

Genotypes Removed by GQ Cut-offs by Batch

40% 20%-
35%
30% 15%
E g
5% Batch g / Batch
[ Batch1 [ Batch1
o o
» 20% ~+- Batch2 w 10% - Batch2
g -= Baich3 g -=- Batch3
> >
B 159% Batchd. 5 Batch4,
f=4 c
& 3
10% 5%
5% - o
0l //. N
12345678910 15 20 30 40 0 5 1 15 20 25 30 0 45
Genotype Depth Cutoff Genotype Quality Cutoff
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Genotypes Removed by DP (genotype) Cut-off by Batch Genotypes Removed by GQ Cut-offs by Batch
(First removing genotypes with GQ < 20) (First removing genotypes with a DP<8)
15%
40%|
35%
30% ° /
B gwo%—
> £ Batch
£25% Batch o Batcht
2 Bateht T ~+ Batch2
020% ~* Batch2 2 = Batch3
3 fia Batch3 2 Batch4
G 15% Batchd S 5% s
é © — :‘:-‘///
10% /
5% -
0%+
0% T T i U U v U T T
T f T T 0 5 10 15 20 25 30 5 40 45
12345678910 15 20 40 Genotype Quality Cutoff
Genotype Depth Cutoff
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Missing Rate Criteria & Sites Removed Ti/Tv Ratios during QC Process
Known Novel Al
Variant sites Variant sites
removed if removed if Before VQSR 2.95+0.05 1.18+0.29 2.86+0.07
missing missing
PG CIEED |- B Cdie] Before additional QC 342£003 2.01£032 3.11£0.03
genotypes genotypes
Percent of genotype data removed Genotype QC DP<8, GQ<20 3.18+0.04 210£0.32 3.16+0.03
Before QC* 2.5% 3.9% Remove sites missing >10% genotypes 3.39+0.04 242+052 3.39+0.04
After QC 12.9% 18.3%
Remove batch specific novel sites >2
N=17 835 3.39:004 241053 3.39+0.04
i i issi 0, i " o 8
Variant sites missing >10% of their data were removed Ei;ni:i sites deviating from HWE p<px10® (0 oo o 0 008
*After VQSR
65 66
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Ti/Tv Ratios by Individual Before and After QC

MDS First 2 Components After QC

>

' i 1}
— _I_ g os
i ] bateh
2 H =)
3, =—t— + g |
g E 2
|
Q 02 3
X y g N
Ti/Tv Ratios s
¢
£
01
varadies
Al Known Novel Al Known . . . . . .
Novel -00s 000 005 ol0 35 020
Before QC Alter QC king_VLQC_BMR10_MDS1

Sequence Data QC

Batch effects can sometimes be removed with
additional QC

e Extreme outliers should be removed

¢ Additionally, MDS\PCA components can be included in
the analysis to control for population
substructure\admixture and batch effects

— Unless correlated with the outcome (phenotype)

— The MDS or PCA components should be recalculated after QC
only including those samples included in the analysis

¢ Batch (dummy coding) may be included as a covariate
in the analysis
— Unless correlated with the outcome (phenotype)

Convenience Controls
¢ Can reduce the cost of a study
¢ Genotype data
¢ Type | error can be increased
— Ascertainment from different population

— Differential genotyping error
¢ Even if performed at the same facility

¢ Proper QC can reduce or remove biases
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Convenience Controls—Sequence Data

Obtain BAM files and recall cases and control together
— Can still have differential errors between cases and controls

— Check variant frequency by variant types in cases and control
* Synonymous variants should have the same frequencies

* Would not expect large differences in numbers of variants between cases and
controls

e For single variants can compare difference in frequencies with
gnomAD but is problematic
— Differences in frequencies can be due to differences in ancestry and/or
sequencing errors
— Cannot adjust for confounders
* e.g., sex, population substructure/admixture
e Don’t perform an aggregate test using frequency information
obtained from databases, e.g., gnomAD, TOPMed Bravo

Genotype Array Data
Genotype Data QC - Population Based Studies
e Initially remove DNA samples from individuals who are missing
>10% or their genotype data
e For variant sites with a minor allele frequency (MAF)>0.05
— Remove variants sites missing >5% of their genotype data
e For variant sites with a MAF<5%
— Remove variant sites missing > 1% of their genotype data
e The genotypes for variant sites with missing data may have
higher genotype error rates
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Order of Data Cleaning-Genotype Array Data

Remove samples missing >10% genotype data
Remove SNPs with missing genotype data
— If minor allele frequency >5%
« Remove markers with >5% missing genotypes
— If minor allele frequency <5%
« Remove markers with >1% missing genotypes

Remove samples missing >3% genotype calls

Check genetic sex of individuals based on X-chromosome
markers & Y chromosome marker data (if available)
— Remove individual whose reported gender/sex is inconsistent with
genetic data
* Could be due to a sample mix-up

Check for cryptic duplicates and related individuals

— Used “trimmed data set of markers which are not in LD
* e.g.r2<0.1
— Remove duplicate samples

Order of Data Cleaning-Genotype Array

Perform PCA or MDS to check for outliers
— Use trimmed data set of markers which are not in LD
* eg.,r2<0.1

— First with unrelated individuals and then project related individuals on
the components

— Remove outliers from data
* e.g., Mahalanobis distance
Check for deviations from HWE
— Separately in cases and controls
— Only unrelated individuals
— If more than one ancestry group

* Separately for each ancestry group
— As determined via PCA or MDS

Examine QQ plots for potential problems with the data
— e.g., not controlling adequately for population admixture

73

27

74




Complex Trait Association Analysis of
Rare Variants Obtained from
Sequence Data

© 2022 Suzanne M. Leal, suzannemleal@gmail.com

Complex Diseases (Traits)

Top 10 leading causes of
death in the United States

Genetic and environmental contribution to
complex disorders
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Heritability for Common Traits Allelic Architecture
. e OO,
Human height heritability is ~80% .
* Strongly associated common
variation explain 21—29%
* All common variation explains 60% of Low-frequency
height heritability - ‘ et
Modest ] Rare variants of
small effect
very hard to identify
11 by genetic means
Low
s
0.005 0.05
[Low frequency| [common]
Allele frequency
T.A. Manollo et a. Nature, 2009
4
. . Studying Complex Traits — Common Variant
Complex Disease — Common Variant ying P A .
Associations ssociations
e Disease susceptibility is conferred by variants which are ¢ Hundreds of thousands of Single nucleotide polymorphism
common within populations (SNPs) genotyped and analyzed
— Variants are old and widespread — Indirect mapping
* Markers usually had a minor allele frequency (MAF) > 0.05
e These variants have modest phenotypic effect * Usually not pathogenic - tag SNPs
* In linkage disequilibrium with disease susceptibility variant
e This model is supported by a large number of replicated
examples
— Age Related Macular Degeneration (Klein et al. 2005)
* Complement factor H (CFH) gene
6




Complex Trait — Common Variant Associations

« Although
highly
successful in
identifying
thousands of
complex trait
loci

Usually
pathogenic
susceptibility
variant(s) not
identified

Eaxe,
BERE:

NHGRI GWA catalogue

www.genome.gov/GWAstudies

SEEET wnwiohiac

Complex Disease — Rare Variant Associations

e Complex traits are the result of multiple rare variants

— Although first thought to large effects, there effect sizes are usually small
¢ Although these variants are rare, e.g., MAF<0.005

— Collectively they may be quite common

¢ Direct tests of this hypothesis where first reported >15 years ago
— Dallas Heart Study
* Small sample ~1,200 individuals
— Multi-ancestry
— Used “extreme” sampling

* Plasma low density lipoprotein levels (Cohen et al. 2004)
— NPC1L1

Rationale for Rare Variant Aggregate
Association Tests

e Testing individual variants with low effect sizes and minor allele
frequencies (MAFs)
— Underpowered to detect associations

e Testing variants in aggregate increases MAFs
— Improving the power to detect associations

Gene 1 Gene 2 Gene 3

Caveats - Aggregate Rare Variant Association Tests

e Misclassification of variants can reduce power
— Inclusion of non-causal variants
— Exclusion of causal variants
» Analysis is limited to
— Genes
— Genes within pathways
» Analysis outside of exonic regions is problematic
— Unlikely a sliding window approach will work
+ Size of window unknown and will differ across the genome

— A better understanding of functionality outside the coding regions is
necessary

+ Predicted functional regions, enhancer regions, transcription factors, DNase
| hypersensitivity sites, etc.

10

Analysis of Rare Variants

« For biobank sized datasets higher frequency rare variants,
e.g., 0.5% can be analyzed individually

— Using same same methods implemented for common

variants |
SAMPLE SIZE  #MAFO.001 $MAF0.005 MAF0.01 ®MAF0.05
10,000,000 7
500,000 { *
5,000,000 1
Example fpesan R
Example Tosoonz Lt *
a=5x 108 s 000000 {7
. 750,000 7
Disease prevalence 5% 500000 1 .
1-B =0.80 ooz 3. Ttea.,
100,000
75,000 1
*Note: a more stringent significance 500001 L.
criterion may be necessary for genome- 300’ | I I IR ST AP
wide sequence data. Due to a larger 10,000 7
number of effective tests compared to 7500 1 .
. . 5,000 + .
analysis of common variant GWAS 2,500 e,
panels -

T11213 141516 17 18 19 20 2122 23 24 25

Q008 BATIO

A Few Rare Variant Association Tests

Combined Multivariate Collapsing (CMC)
— Liand Leal AJHG 2008
e Burden of Rare Variants (BRV)
— Auer, Wang, Leal Genet Epidemiol 2013
Weighted Sum Statistic (WSS) Fixed Effect
— Madsen and Browning PloS Genet 2009 Tests
e Kernel based adaptive cluster (KBAC)
— Liuand Leal PloS Genet 2010
e Variable Threshold (VT)
— Price etal. AJHG 2010
e Sequence Kernel Association Test (SKAT)
— Wuetal AJHG 2011
e SKAT-0
— Leeetal AJHG 2012

Random Effect
Test

Optimal test

11
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Types of Aggregate Analyses

e Frequency cut offs used to determine which variants to include in
the analysis

— Rare Variants (e.g., MAF<0.05% frequency)

— Rare and low (MAF=0.05-5%) frequency variants

Maximization approaches

Tests developed to detection associations when variants effects

are bidirectional
— e.g., protective and detrimental

Incorporate weights based upon annotation

— Frequency

« e.g., gnomAD
— Functionality

* CADD c-scores

Methods to Detect Rare Variant Associations

Using Variant Frequency Cut-offs

framework
— Can use various criteria to determine which variants to collapse into

subgroups
* Variant frequency

* Predicted functionality

e Combined multivariate & collapsing (CMC)
— Li & Leal, AJHG 2008
¢ Collapsing scheme which can be used in the regression

13
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cMmC

o Define covariate Xj for individual j as

X;= .
o otherwise
e Compute Fisher exact test for 2x2 table

{1 if rare variants present

Number of cases for
which one or more rar
variants are observed

Number of cases
without a rare
variants

x
I
e

e.g., nonsynonymous
variants freq. £1%

cases

controls

Number of
controls without

Number of controls
for which one or morel
rare variants are
observed

Can also use same coding in a regression framework

a rare variants

— Binary coding 1

o

Rare Variant Sites
Green bars: Major allele is observed in the study subject
Red bars: Minor allele has been observed

cmC

e Example of coding used in regression framework:

if rare variants present

— Gene region with 5 variant sites

otherwise
- Codi
1 1
2 1
3 0
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Methods to Detect Rare Variant Associations
Using Variant Frequency Cut-offs

* Gene-or Region-based Analysis of Variants of Intermediate and
Low frequency (GRANVIL)
— Aggregate number of rare variants used as regressors in a linear
regression model
— Can be extended to case-control studies
* Morris & Zeggini 2010 Genet. Epidemiol
- Test also referred to as MZ

GRANVIL

e Example of coding used in regression framework

— Gene region with 5 variant sites — data available on all sites

Individual 1
|1 | .
1 | —

Individual 2

Individual 3

Individual 1: Coded 2

Individual 2: Coded 3
Individual 3: Coded 1

Coded 2/5 (0.4)

Coded 2/5 (0.4) Note same
coding for heterozygous and
homozygous genotypes

e Missing data for three of the five variant sites

Coded 1/2 (0.5)

(Auer et al. 2013 Genet Epidemiol)
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Methods to Detect Rare Variant Associations
Weighted Approaches

e Group-wise association test for rare variants using the
Weighted Sum Statistic (WSS)

— Variants are weighted inversely by their frequency in controls (rare
variants are up-weighted)

* Madsen & Browning, PLoS Genet 2009
¢ Kernel based adaptive cluster (KBAC)

— Adaptive weighting based on multilocus genotype
* Liu & Leal, PLoS Genet 2010

Methods to Detect Rare Variant Associations
Maximization Approaches

e Variable Threshold (VT) method

— Uses variable allele frequency thresholds and maximizes the test statistic
— Can also incorporate weighting based on functional information
* Price etal. AJHG 2010
e RareCover
— Maximizes the test statistic over all variants with a region using a greedy
heuristic algorithm
* Bhatia et al. 2010 PLoS Computational Biology
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Methods to Detect Associations with Protective
& Detrimental Variants within a Region

e C-alpha
— Detects variants counts in cases and controls that deviate from the
expected binomial distribution

* For qualitative traits only
— Neale et al. 2011 PLoS Genet

e Sequence Kernel Association Test (SKAT)

* Variance components score test performed in a regression framework
— Can also incorporate weighting
* Wuetal. 2011 AJHG

Optimal Test

* SKAT-O

— Maximizes power by adaptively using the data to combine a burden test
and the sequence kernel association tests
* Leeetal 2012 AJHG
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Significance Level for Rare Variant
Association Tests

e For exome data where individual genes are analyzed usually a
Bonferroni correction for the number of genes tested is used
— There is very little to no linkage disequilibrium between genes

¢ Bonferroni correction used
- e.g, p<2.5 x 10 (Correction for testing 20,000 genes)

Determine MAF Cut-offs for Aggregate Rare
Variant Association Tests

e MAF cut-offs are frequently used to determine which variants
to analyze in aggregate rare variant association tests

¢ MAF from controls should not be used
— Increases in type | error rates

e Determine variant frequency cut-offs from databases
— Using population frequencies for those understudy
— gnomAD
* hite://gnomad.broadinstitute.ora/
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http://gnomad.broadinstitute.org/

Problem of Missing Genotypes for Aggregate
Rare Variant Association Tests

Same frequency of missing variant calls in cases and controls

— Decrease in power

More variant calls missing for either cases or controls

— Increase in Type | error

— Decrease in power

Remove variant sites which are missing genotypes, e.g., >10%
Can impute missing genotypes using observed allele frequencies
— For the entire sample

* Not based on case or control status

Analyze imputed data using dosages

Dosages

e Genotypes are no longer assigned 0 (1/1), 1 (1/2) or 2 (2/2)
— Due to uncertainty
e Each genotype is assigned a probability
— Probabilities sumto 1
e For example
— Probability of 0(1/1) genotype is 0.98 and 1 (1/2) genotype is 0.015
e The dosage can be estimated for this example as follows

0x0.98=0
1x0.015= 0.015
2x0.005=0.01

Dosage = 0.025

¢ Instead of using the most likely genotype the dosage is used

25 26
Results Rare Variant Aggregate Methods
) . e |deally should be performed in a regression framework to adjust
. ° for covariates
— Logistic
§ — Linear regression
§
+ ouo .
B o * B o)

. * SloMmasa| o |, -

°1 ¢ s “ D .

- ;, - ’I
N ;o /
1 / B # e Almost all rare variant aggregate methods have been extended
g

5 / - to be implemented within a regression framework

B ;azzmm & EUH‘M,..,, e Some have also been implemented in a linear mixed model

" Woom (wared| o |, VEM (eree) (LMM)/generalized LMM

oy osnte — — Usually limited to fix effect tests
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Analyzing Quantitative Variants

Most rare variant aggregate analysis methods can be performed
on quantitative traits

If phenotype data includes outliers or deviates from normality

— Can increase type | errors

200

100

04 e
O 05 1 15 2 25 3 35 4 45 5 55 &

Egg 1o Smolt Survival (%)

g § 8

Frequarcy
g

Analyzing Quantitative Variants

¢ For data that deviates from normality
— Quantile-quantile normalization

¢ For data that includes outliers
— Winsorize

e Don’t winsorize and then normalize
¢ Instead of analyzing quantitative trait values
— Residual can be generated

¢ Adjusting for confounders
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Family-based Methods for Rare Variant
Aggregate Association Analysis

Binary Traits

Trios

Epstein’s ASP

Nuclear and

Multiplex
Families

Variance-Component Tests

famSKAT

Quantitative Traits

Linear Mixed Model (LMM) & generalized LMM (GLMM)
Analysis of Related & Unrelated Individuals
e LMM is an extension of the linear model to allow for both
fixed & random effects and also allows for non-
independence of samples
— Early implementations calculated the kinship matrix ® on the
basis of known relationships
— Amin et al. (2007) proposed to estimate kinships based on
genome-wide variant data

* The generalized relationship matrix (GRM) can be estimated for all
individuals using for example identical-by-descent (IBD) sharing

Extended to binary (case-control) traits - GLMM
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LMM and GLMM:
Analysis of Related & Unrelated Individuals

Can be applied to analyze families, cryptically related, & unrelated
individuals

- e.g., UK Biobank

* 500K study subjects of which 30.3% are ¢ 3rd degree relatives & 4.5% sib-pairs

More recent implementation for large scale data using a variety of
methods

— BOLT-LMM (Loh et al. 2015)
— FastGWA (Jiang et al. 2019)
— SAIGE (Zhao et al. 2015)*

* REGENIE (Mbatchou et al. 2020) *
« SMMAT (Chen et al. 2019)**

*Can be used to analyze data where case to control ratio is very
unbalanced

— e.g., 20 cases for every control

**Cannot be used for UK Biobank Scale data

LMM and GLMM:
Analysis of Related & Unrelated Individuals

To allow for use with very biobank sized data

REGENIE does not use the GRM

— It uses whole genome regression, i.e., the ridge regression
* In essence, it includes all the SNVs as covariates in the null model

— Performed by blocks to avoid having to load the entire genome in memory
» Using different effect size differences per block

This large-scale approximation may not control type |
error for individuals that are closely related
— e.g., when only families are being analyzed

— Can use for example SMMAT
¢ Which uses the GRM
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LMM and GLMM:
Analysis of Related & Unrelated Individuals

o A few programs which can perform rare variant aggregate
analysis

— REGENIE - Burden test
— SMMAT - Burden, SKAT, & SKAT-O tests

— rvtests (Zhan 2020) implements BOLT-LMM to perform burden
association analysis

e An alternative for rare variant aggregate analysis

— Recode variants within gene regions and then analyze

Rare Variant Aggregate Methods

Can control for covariates in the analysis which are potential
confounders
- Age

- Sex

- Batch

— Body Mass Index (BMI)
— Smoking pack years
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Confounder -Population Substructure and Admixture

Population Substructure and Admixture

e If proportion of cases and controls sampled from each
population is different
— Can occur due to
* Disease frequency is different between populations
e Sloppy sampling
¢ Population substructure\admixture can cause
detection of differences in variant frequencies within a
gene which is due to sampling and not disease status
— False positive findings can be increased
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Example River People

Population Substructure and Admixture

e Currently PCA or MDS are use:
to control for population
substructure\admixture

— Controls on the global level

— May not be sufficient in
particular for admixed
populations

39
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Rare Variant Aggregate Association Analysis

¢ When analyzing different populations, e.g.,
— Africans
— Europeans
e When analyzing data from different source
— Analyze each group separately
e Meta-analysis can be used to combine the results from
each group

Rare Variant Aggregate Methods

e Best to obtain principal components to include in the
regression model (including LMM and GLMM)
— using variants which are not in LD e.g., r’<0.1 (pruned)
— covering a wide range of the allelic frequency spectrum e.g., >0.1%
— Evaluate how many components need to be included
* Don’tinclude a fix number of components

- e.g.,, 5or 10 components

e Success of PCA\MDS in “1 =002 .
controlling for population
substructure\admixture can be
evaluated through lambda and
examining Quantile-Quantile
(QQ) plots

Osened -log(p)

Expected ~iogun(p)
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Part Il
Example of a Rare Variant Association
Study

Analysis of UK Biobank Exome Data to
Study the Etiology of Late-onset
Hearing Impairment

Age-related Hearing Impairment (ARHI)
(aka Presbycusis)

e ARHI can impact quality of life and daily functioning
e ARHI is one of the most common adult conditions
— In the USA
¢ ARHI affects 50% of individuals >75 years of age
o |t is estimated that 30-40 million will be affected with significant

ARHI by 2030
Pure Tone Audiogram O mamex
Frequency el e
<8~ =

2 0\

. %

. \ 1 e

. % o

* \ ><3
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Goals of the Study

e Using data from the UK Biobank to detect
associations between self-reported measures of

ARHL and genetic variants
— H-aid self-reported hearing aid use (f.3393: “Do you use a
hearing aid most of the time?”)

difficulty with your hearing?”)

— H-noise self-reported hearing difficulty with background noise
(f.2257: “Do you find it difficult to follow a conversation if there
is background noise e.g., TV, radio, children playing)?

— H-both individuals with both H-diff and H-noise

e With an emphasis of understanding the role that
rare variation plays in ARHL

— Current analysis - exome sequence data

— H-diff self-reported hearing difficulty (f.2247: “Do you have any

UK Biobank

e 500,000 individuals randomly sampled
— Aged 40-69 at time of enrollment
¢ To be followed for at least 20 years
* Predominantly white Europeans

— Also includes South Asians and individuals of African Ancestry and smaller number of
individuals of a few other ancestries

Extensive phenotype data
— Qualitative and quantitative traits
ICD-10 and ICD-9 codes
Self reports
Cognitive test
Brain MRIs
NMR-metabolomics data
* Genetic Data
— Genotype and imputed data
— Exome sequence data
— Whole genome sequence data
* 200K currently available
¢ Remining sample - Quarter 1 2023
— Telomere length data

L"Data showcase can be used to examine phenotypes and sample sizes available
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Genetic Data Analyzed

e Exome data
—~200,000 participants

¢ Imputed variant data (secondary replication
sample for common variants)
—~300,000 participants

¢ Did not have exome data at the time of the study

_wgmm | pVCF Quality Control

L Exome Data
e
) ‘ Threshold Used

Left normalization/ Mutti-allelic splitting

10
genotype depth (DP) b
level 2
O ion " oenote qualty (60) g 155 (sps -
alelc balance (AB) ol

Sample-level
2t Missingness >=0.1

T ?

monomorphic
Variantievel | Varianis removed
Filiration
missingness >=0.1
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Filtering Strategy

N=200,619
Individuals with exomes and phenotype data

N=200,386
Individuals consistent for sex

N=189,001
Individuals self-report to be of European ancestry

N=187,908
After removal of outliers based on PCA analysis — Mahalanobis distance
(£0.997)

8
eria (ICD10, ICD9, & self-report)

After applying phenotype exclusio

Principal Components Analysis and
Exclusion of Outliers

P1vs PC2 exomes N=189,016 P1vs PC2 exomes N=188,488

ethnicity 1 ethnicity_1

1 Any o it backgroung

05 i S5 92 41 @

P3vs PC4 exomes N=189,016 P3 vs PC4 exomes N=188,438

ethnicity_1 ethricty_1

-~

Exclusion Criteria
Obtained from ICD10, ICD9, & Self Report

Deafness

Early-onset hearing impairment
e Otosclerosis

e Meniere's

Labyrinthitis

Disorders of acoustic nerve
Bell’s palsy

History of chronic suppurative and nonsuppurative otitis
media

* Meningitis
Encephalitis, myelitis, and encephalomyelitis
e Etc.
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Filtering Strategy

N=200,619
Individuals with exomes and phenotype data

N=200,386
Individuals consistent for sex

N=189,001
Individuals self-report to be of European ancestry

N=187,908
After removal of outliers based on PCA analysis — Mahalanobis distance
(£0.997)

N=180,318
After applying phenotype exclusion criteria (ICD10, ICD9, & self-report)

Defining Cases and Controls

¢ Based on answers obtained from a touch screen
e Cases - self-reported hearing difficulty
—£.2247: “Do you have any difficulty with your
hearing?”
e Controls - did not have any self-reported

hearing problems

— H-aid hearing aid use (f.3393)

— H-diff self-reported hearing difficulty (f.2247)

— H-noise self-reported hearing difficulty with
background noise (f.2257)

Hearing difficulty/problems -Data field 2247

569,977* items of data are available, covering 498,704 participants

Yes [146,020]

No [399,713]

| am completely deaf [144]
Do not know [23,616] :|

Prefer not to answer [598]

0 80 160 240 320
(thousands)

400

*Due to repeat visits
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Repeat measures*

¢ Individuals with inconsistent answers removed

Visit 1 Visit 2 Visit 3 Visit 4
Study subject A Problems | No Hearing | No Hearing | No Hearing el
Hearing Problems Problems Problems Remove
. No Hearing | No Hearing | Problems Problems Consistent
Study subject B[RRI Problems Hearin Hearing (Case)
. No Hearing | No Hearing | No Hearing | No Hearing JEECISSEN
Study subject © Globlome (Gontreh

*Majority of study subjects currently have data from only one visit

QQ Plot using exome data for ridge regression

Analysis of Exome Data

Analysis performed using generalized linear mixed
models (GLMM) (REGENIE)

— To control for inclusion of related individuals
* For the UK Biobank data 30.3% of participants are ¢ 3rd degree relatives & 4.5%
sib-pairs
— Genotype array data (~800K) were used for the ridge regression

* Data pruned to remove variants with a 0.1
— Using exome data for the ridge regression led to an an inflated lambda value
QQ Plot using genotype data for ridge regression

Onsenved -logfp)

me—_"

Expeced ~ooia(p) Expected ~logia(p)
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Analysis of Exome Data

e Analysis limited to individuals of white European
Ancestry
¢ Sex, age, and two PCAs included as covariates
— Age for cases first report of hearing difficulty &
controls age at last visit

— The PCAs where recalculated for only individuals
included in the analysis
¢ Using the pruned genotypes array data (r2<0.1)

Analysis of Exome data - Single Variant

¢ All variants with four or more alternative
alleles observed in the sample analyzed

— A very low minor allele frequency was used since it
was hypothesized some of the variants may have
large effect sizes
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Analysis of Exome data - Single Variant

e Discovery sample
— Second release of 150K exome

e Replication sample
— First release of 50K exomes

¢ Entire exome sample (200K)

e Secondary Replication Sample*
— To replicate findings from the entire exome sample
— Genotype and Imputed data (Haplotype Reference
Consortium Panel)
¢ 300K individuals who were not included in the exome
data
— Imputed variants with an INFO score > 0.3 were analyzed
*Only used for replication of common variants

Significance Levels

e Discovery sample

— A genome-wide significance level was used to reject
the null hypothesis of no association
* p<5.0x10°8

¢ Replication sample

— Permutation was used to obtain empirical p-values

¢ Adjusting for the phenotypes and variants brought to
replication

For the replication it is not necessary to use a genome-wide
significance level of 5 x 10+ for single variant tests or 2.5 x 10-6
for gene-based rare variant aggregate analysis. Significance
level is adjusted for the number of variants/genes tested in the
replication sample
. Bonferroni correction

Estimate empirical p-values

- p<0.05
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Hearing Difficulty - Data Field 2247

Manhattan Plot QQ Plot

Observed ~logo(p)

~logwo(p)

Expectes -ogi(p)

78 9 11 1315 18 21

Chromosome

Genome-wide significance level 5 x 1O'B(red line)

Cases N=45,502
Controls N= 96,601

Hudson Plot Discovery and Replication
Hearing Difficulty Data Field 2247

Exome Sequence data: N=~200K
(Cases N=45,502 and Controls N= 96,601)

3

s 0 7 @ o 1 u

1 2 b i
A
.

[ = ) I" A -

Genotype array/imputed sequence data: N= ~300K
(Cases N=64,953 and Controls N=141,001)
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Analysis of Exome Data
Rare Variant Aggregate Analysis
e Genes with at least two variants were analyzed,
e.g., predicated loss of function (pLoF) variants
e Max coding was used
e Two masks were used

— Mask 1 — pLoF variants
— Mask 2 — pLoF and missense variants

e Minor allele frequency cut-off of <0.01 was used

— The frequencies for each variant site were obtained
from gnomAD non-Finnish Europeans

REGENIE Rare Variant Aggregate Analysis

* Three different codes can be used
* Max
* Sum

* Comphet
* This term is not correct because the phase is unknown
« Variants may be on the same haplotype

Single variant sites max sum  comphet
00000000000000 — 0 0 0
00000100010000 — 1 2 2
00201011010100 — 2 7 2

hittos:/racaithub aithub io/regenie/options
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Selection of Variants to Include in Rare
Variant Aggregate Association Tests

Annotation File Mask File AAF file

1:55039839:T:C PCSK9 LoF
1:55039842:G:A PCSK9 missense

Mask1 LoF
Mask2 LoF,missense

1:55039839:T:C 1.53e-05
1:55039842:G:A 2.19e-06

1:55039839:T:C PCSK9 CADD30

+ Mask1 CADD score > 30 + 1:55039839:T:C 1.53e-05
1:55039842:G:A PCSK9 CADD20

Mask2 CADD score > 20 1:55039842:G:A 2.19¢-06

REGENIE will use information from the annotation and alternative allele
frequency (AAF) files to build the Masks (variants to be included in the
association testing)

Analysis of Exome Data
Rare Variant Aggregate Analysis

* Exome sample was split
— Second release of 150K exome were used as the discovery sample.

— First release of 50K exome were used as the replication sample

e Entire exome sample (200K) was also analyzed*

e Discovery sample significance level
— p<2.5x10°
- 0.05/20.000 Bonferroni correction for testing 20,000 genes
e Replication sample significant level
- pg0.05
— Empirical p-values generated

* Permutation used to adjust for the number of phenotypes and genes brought
to replication (pLoF and pLOF & missense)

*No replication sample available for these findings
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https://rgcgithub.github.io/regenie/options/

Hearing Difficulty - Data Field 2247

pLoF Variants
Genes N=16,821

4 =1.038

~10g:0(p )
Observed ~logu(p)

12 34 5 7809 m B B2 o 2 4 6 s

Chromosome Expecied ~loai(p)
pLoF and missense variants

Genes N=18,010

12 34 s
Chromosome

79 uons w2 01
Exome-wide significance level
2.5 x 10° (blue line)

Obsenved —logn(p)

[——

Cases N=45,502
Controls N= 96,601

Expression - gEAR

Myo6 cell_type

g ¥
| e : ;

tSNE2
N
tSNE2

tSNE1 tSNE1

e DC1/2 Is e OHC

» DC3 e ldC OPC

© Hensen LGER1 os

e IHC ® LGER2 ® 0c90
IPC LGER3 e elHC
IPhC ® MGER ® eOHC
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Results
¢ Replicated some previously reported ARHL genes

— Some which had not been previously replicated
e e.g., BAIAP2L2, CRIP3, KLHDC7B, MAST2, and SLC22A7

Identified and replicated a new HL gene which has

not been previously reported

— Inner ear expression in humans and mice supports the
involvement of gene in HL etiology

Rare-variant aggregate analysis demonstrated the

important contribution of Mendelian HL genes,

i.e. MYO6, TECTA, and EYA4 the genetics of ARHL

Results

¢ Rare variants for ARHL tend to have larger effect
sizes than those for common variants
— Rare variants should play an important role in risk

prediction by increasing accuracy

¢ Although most of the studies findings were
replicated in independent samples of white
Europeans

— Additional studies are necessary to elucidate whether
these variants/genes play a role in the genetic etiology
of ARHL in other populations
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Genetic association studies

Identify genetic variants associated with complex traits

Linkage disequilibrium in genetic
association studies

e Association does not imply causality

e Disease, quantitative traits, molecular phenotypes

Gao Wang, Ph.D. in order to
Advanced Gene Mapping Course, November 2022 e Understand biological mechanism
The Gertrude H. Sergievsky Center and Department of Neurology e Identify potential drug targets

Columbia University Vagelos College of Physicians and Surgeons e Identify individuals with high disease risk

Sources of association signals Sources of association signals: analysis tools

Causal association — meaningful

Causal association — meaningful
e Tested genetic variations influence traits directly
e Fine-mapping, colocalization, Mendelian randomization
Linkage disequilibrium (LD) — useful
Linkage disequilibrium (LD) — useful
e Tested genetic variations associated with other nearby

variations that influence traits e Meaningful: LD scores regression, polygenic risk scores
e Meaningful or misleading, in different contexts (PRS), transcriptome-wide association studies (TWAS)

Population stratification — misleading e Misleading: fine-mapping, LD pruning / clumping

e Tested genetic variations is unrelated to traits, but is Population stratification — misleading
associated due to sampling differences e Principle component analysis, linear (mixed) models
e eg, minor allele frequency, disease prevalence
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LD in human genome is pervasive Impact of LD on GWAS analysis

ATTCATTC
e Oligogenic: trait influenced by a few genetic variants
AL
ATto e Misleading: difficult to identify causal variants
ATTC
ATTCATTC B . .
arrearc e Useful: ‘tag SNPs' in array based GWAS design
ATTC
ATTC
ATTC
ATTCATTC
ATTCATTC
ATTCATTC
ATTCATTC
ATTC
ATTC
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Strong correlation

No correlation

Altshuler et al. (2008) 5 6

Impact of LD on GWAS analysis A second thought on genomic inflation

Polygenic: trait influenced by numerous genetic variants Population stratification? Or, polygenic inheritance + LD?

o Misleading: stronger association due to more LD ‘friends’

e Useful: whole-genome prediction with sparse models

A

observed effect 3

Observed -log10(p)

0 2 4 6 8 10 12
Expected -log10(p)

Suggested reading: Yang et al (2011) EJHG
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LD score regression (LDSC) LD score regression (LDSC)

Separating hz, and population stratification

LD score regression model without population stratification

Population stratification factor

2
Chi-square GWAS Sample size 7
sla!i:ﬁc of variant j g E [XJZ] — le + 1 + —gl] - LD score of variant
¢ 9 - Narrow sense heritibility M
: 2 Nhg Regression slope
E[X]] = 1 —+ 71]- LD score of variant j
S A more powerful and accurate correction factor for GWAS

Total number of variants

summary statistics compared to genomic control approach.

® Bulik-Sullivan et al (2015) Nature Genetics — the LDSC regression paper

l. — Z rg LD score: sum of squared Pearson's
] jk  correlati ici SNPj
k#j and other (neighboring) SNPs ® Zhu and Stephens (2017) AoAS — a neat, alternative LDSC regression model

derivation in supplemental material

LDSC application: heritability estimation Variance of height explained in GWAS

Narrow sense heritibility a

= Within GWS loi (21% of the genome): gy Pone =P + Py
Outside GWS loci (79% of the genomel: 1,

e Proportion of phenotypic variation explained by additive
genetic factors

Estimation strategy

310,092 SNPs in GWS oci

g g
2 2
3 i
£ £
s =
s 1

304,478 SNPs in GWS loci

2
2
3
4
£
5

e Pedigree design: genetic covariance and IBD sharing

SNP-based heritabilty (HM3 SNPs)

e Population design: linear mixed models

Proportion of SNP-based hertabilty within GWS loci (/W epr) T

EUR" HIS SAS EAS AFR EUR S SAS S AER
g o o g (n=28645) (n=4,939) (;:c:;:ez (n=49939) (n=15149) (1130264)  (1277,112)  (1222935) (1,110,588  (1,180,574)
Population design, summary statistics Joome, Aot o S4Ps sy

e LDSC to estimate SNP-based heritability
o Stratified LDSC (S-LDSC) to partition heritability by
functional annotations

Yengo et al. (2022) Nature

11 12
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Fine-mapping with summary statistics:
current methods and practical
considerations

Gao Wang, Ph.D.
Advanced Gene Mapping Course, November 2022

The Gertrude H. Sergievsky Center and Department of Neurology
Columbia University Vagelos College of Physicians and Surgeons

Association analysis summary statistics Reasons to work with summary statistics

z-scores from univariate association studies:
2j = ,Bj/Sj,

where

B — (xTx) 1 o (5205 T ) -
Bj = (x]x)""xTy s;:=,/0%(x]x) 1

e Sufficient statistics: xTx, xTy, [sz
e “Summary” statistics:

e z-scores: £

e Genotypic correlation: R

GWAS data: GWAS summary
trait + genotypes statistics
o
i 3
' g 00 0000000
% eI T
D)
(]
Reference genotype LD information
panel size )
S .
. — RS
K2
Oww

Fine-mapping

Figure: Benner et al. (2017) Am. J. Hum. Genet.

Advantage over full data (genotypes and phenotypes):

e Easier to obtain and share with others

e Convenient to use: QC and data wrestling barely needed

e Computationally suitable for large-sample fine-mapping

o O(p?) (summary statistics) < O(np) (full data)
e when sample size 1 >> variants in fine-mapped region p

Suggested reading: Pasaniuc and Price (2017) Nat. Rev. Genet.
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Regression with Summary Statistics (RSS)

2 ~ N(Rz,R)
Assumptions:
1. Heritability of any single SNP is small

2. R is sample genotypic correlation for the same study

3. Genotypes used to computed z and R are accurate

Fine-mapping via RSS model Alternative models of GWAS summary statistics

"Single effect”: z;'s
% ~ N(Rz, R) Z
L []
z = Z] _
2 “E
Z1 = Y17 ]

z; ~ N(0, wlz)

Suggested reading:
v ~ Mult(1, 77)

Zou et al (2022) PLoS Genet.
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Properties of per SNP z scores

e z-score for a SNP depends on effects of both itself and
other correlated SNPs:

P
E(2J|R) = ZV,‘]'Z]'.
i=1
GWAS marginal effects are biased due to LD!
e z-scores are correlated,
Cor(ﬁj,ﬁk) = ij,Vj,k

e Recall the previously discussed connection with LDSC

The Z model: The b, 8 model:

2~ N(Rz,R) b|s ~ N(SRS'b,SRS)

e Both models can be easily written as SuSiE regression

e Z model: lower MAF variants have larger effects
o b,8 model: effect sizes are the same regardless of MAF

e Fine-mapping using £ model: CAVIAR, FINEMAP
e Fine-mapping using b, s model: DAP-G



Summary statistics methods comparison Impact of allele flips

in-sample LD
0.3 1
0.25
What is allele flip?
0.2 1 3
g 0454 A il o Different allele encoding between GWAS and LD reference
8 [P e o eg AA=0, AC=1, CC=2 in GWAS; AA=2, AC=1,
< --- SuSIE-RSS, L = true —0;
— EINENAR CC=0 in LD reference genotype
0-051 . E'/'\“F'f_"éAP' L=true e A challenging problem coupled with strand flip, when
0 CAVIAR merging sequence data from different platforms
0 005 01 015 02 025 03
FDR

Zou et al. (2022) PLoS Genet.

Impact of allele flips Addressing the allele flip challenge

A marginal associations B susie-rss with misaligned alleles
a 1 ©
10| 1 0.8 -

e o . . .
gs| ..v-"'"\'iq;, & gj R e susieR::susie rss() function implements a diagnosis
. o ﬁ# 02+ 8 e bigsnpr::snpmatch() function implements a basic

- s 0
o 200 400 600 800 1000 0 200 400 600 800 1,000 allele matching for two sets of summary statistics
SNP SNP
C diagnostic plot D after correcting allele encoding e Other resources
- i 0; @ o Allele flip illustration: https://statgen.us/
5 10 ¢ b
% . i o 06-] lab-wiki/compbio_tutorial/allele_qc
i | < o . .
3 , d 2:’ % e A powerful, multi-set data merger (by Yin Huang):
£ ol |
8 .| Yo 0| et https://cumc.github.io/xqtl-pipeline/
T J— 0 200 408 S B0 o pipeline/misc/summary_stats_merger.html

0 0
expected z-score

Zou et al. (2022) PLoS Genet. 11 12
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Impact of mis-matched LD reference: PIP

Impact of mis-matched LD reference: PIP

A CAVIAR, L =true

0.3 4

SuSiE-suff (in-sample LD)
sample LD
=1000, A=0
=1000, ) = 0.001
=1000, estimated A
=500,A=0
=500, A =0.001
~— n =500, estimated

T

0 005 01 015 02 025 03
FDR

power

Impact of mis-matched LD reference: PIP

E SuSIiE-RSS, L =true

0.34

0.254

0.0591 —

n=500,A=0
)= 0.00 --- n=500, k= 0.001
0 — n=1000, estimated 2.~ n =500, estimated A

0 005 01 015 02 025 03
FDR

power

power

B DAP-G

0.3

0.254

SuSiE-suff (in-sample LD)
in-sample

0.054

- 00, 2= 0.001
~— n =500, estimated A

T T T T
015 02 025 03

FDR

13

F SuSiE-RSS

0.3
0.25 1

02
0.15

0.14

e+ SUSIE-suff (in-sample LD)
4 -sample LD
0051 =1000, =0 n=500,A=0
n=1000, A =0.001 -~ n=500, %.=0.001
0 4 — n=1000, estimated A~ n =500, estimated A

T T T — T
0 005 01 015 02 025 03
FDR
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C FINEMAP, L = true

0.3
0.25-
0.24
i =
9] n 9]
2 0159, 2
o o
Q. o
0.1
wweee SUSIE-suff (in-sample LD)
4 = in-s le LI
0.059 = =G0 7e0 500,720
=== n=1000, A =0.001 -~ n=500, A =0.001
0+ — n=1000, estimated A = n=500, estimated A
0 005 01 015 02 025 03

FDR

0.3
0.251

0.2
0.159

0.1

- SuSiE-suff (in-sample LD)
4 — in-sample L
e — n=1000,A=0 — n=500,A=0
-=- n=1000, .= 0. -~ n=500, A.=0.001
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T
03

13

Impact of mis-matched LD reference: credible sets

A coverage B power
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of mis-matched LD reference: real data Impact of mis-matched LD reference: real data

A 501 pcGwas on 15,626 . 08 06 04 02 B 131 FiNEMAP with LD information
individuals from the FINRISK o from the original genotype data
50 study LD information 11
(Absolute value of
Pearson correlation)

- 9
~40 o
° 2
3 8

g30 g !

o

s

g s
g =3
T 20 )

- 3

10 3 %
! °
e °
0 -

Benner et al. (2017) Am. J. Hum. Genet. Benner et al. (2017) Am. J. Hum. Genet.
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Impact of mis-matched LD reference: real data Fine-mapping in meta-analysis: overview

13 h ) ! ) o
C FINEMAP _wu_h LD information % %, GWAS cohorts Meta-analysis Fine-mapping
from the Finnish panel of the 5. Cohort 1 .
1000 Genomes Project with ‘?6‘ Across constituent cohorts, inter-cohort Effect models: ‘Summary statistics-
1 X Ge ) N O s o heterogeneity could arise from: « Fixed-sffect based methods include:
99 individuals 2, s | « Random-effect « ABF
2 « Genuine biological mechanisms « CAVIAR
9 ° ’% « Population-specific variants Ancestries: « PAINTOR
o *GxG and GxE interactions « Single-ancestry « FINEMAP
L Cohort 2 « Phenotyping « Multi-ancestry « SuSIE
8 « Different diagnosis criteria
o b « Different proportion of subtypes
3 « Different measurement protocols
T |« Genotyping and imputation
Q5 « Different genotyping array
S + Different imputation reference panel
2 : < Diftstent [mptation qiaty Typically, both pre- and Standard outputs:
2 3 Cohort N * Quality control (QC) post-meta-analysis QC « Posterior inclusion
) « Different thresholds for MAF, are applied to summary probabilty (PIP)
" imputation quality, etc. statistics - 95% credible sets
| *GWAS § (Data S1).
1 « Different statistical model and Additional post-fine-map-
i ping QC is sometimes
: adopted.
-1

Kanai et al. (2022) Cell Genomics

Benner et al. (2017) Am. J. Hum. Genet.
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Fine-mapping in meta-analysis: key factors

A [

061 Genotyping array ~z== < | Imputation panel Genetic ancestry A= ome | Heterogenous settings
2 * Oomni2s © 1000GP3 (matching ref) * EUR ® Mixed array & panel EEUR)
g |3 MEch < HRC + EAS+EUR © Mixed array & panel (muit-ancestry)
> GSA  Topied * AFR+EUR
g 041 o Mixed < TopMedifover ' © AFR + EAS + EUR 4
8 |Effectsize ry o 14 09 w05 ‘
o2
2 M 4 4 } + 4
2 4 +
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Genotyping array Imputation panel Genetic ancestry Heterogenous settings

Kanai et al. (2022) Cell Genomics

Fine-mapping in meta-analysis: diagnosis
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Fine-mapping in meta-analysis: diagnosis

A Additional independent signal

| Suspicious loci analysis of
‘meta-analysis summary statistics

Input: summary statistics and LD reference
1 1 Mb window

2. For each locus, detect outlier variants based on LD
using the DENTIST-S stati

T, =t

~logio(P)

3. identty N
variants in LD with a lead variant
(Poessrs < 10 and £ > 0.6).

Output: st of predicied suspicious loci for fine-mapping

02 05 075 1
1o the lead variant

-
-logioPoenmists g , 3 4

Kanai et al. (2022) Cell Genomics
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Covariate adjustment in LD reference

E r
3 . 152099684
3 DENTIST-S outlier variants ,‘ Ancestry Effective N
® AFR ® 1000
40 - ® AMR ® 5000
-logio Poenmists o 4 5 5 4 ~ ® EAS ® 10,000
B ~ 50 ® FIN @ 50,000
o . > o 3 g;g
______ o __.____ 3 0
® . s * g > Meta ® Meta
= e B 25 b Missi
20 ; . e i issingness
. 4 & ° O Both exist
l 3 ) KB ® Missing rs396991
L * a0t - - - S P
o . Ukes
% 15396991 o0 ™8
0{h e » o 25
000 025 050 075  1.00 25 00 25 50

r’to the lead variant Z-score (rs2099684)

Kanai et al. (2022) Cell Genomics
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Consider two GWAS regression analysis:

1. Evaluate SNP effect in Trait ~ SNP+Age+Sex+PCs

2. Fit model Trait ~ Age+Sex+PCs, compute residual of
Trait (remove covariates), and evaluate SNP effect in
model Residual_Trait ~ SNP

Are these two analysis equivalent?

20



Covariate adjustment in LD reference Covariate adjustment in LD reference

Covariates should be removed from genotype before
computing LD reference for fine-mapping

Consider two GWAS regression analysis:

Adjusted LD Unadjusted LD Reference LD
1. Evaluate SNP effect in Trait ~ SNP+Age+Sex+PCs a ! 1]e ° o
. . . o ;
2. Fit model Trait ~ Age+Sex+PCs, compute residual of 57 0.75 B 3
17} . v 4
Trait (remove covariates), and evaluate SNP effect in B 05 os|# ~
; v
model Residual_Trait ~ SNP E ozs , 0.25 | 207 , ,
. . 3, =1 x r2=0.81 r2=029
They are not equivalent because covariates should also be 0 025 05 075 1 0 025 05 075 1 0 025 05 075 1
removed from SNP data: Residual_Trait ~ Residual SNP ndividual-level PIP
Quick et al. (2020) biorxiv
20 21
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Fine-mapping with summary statistics:
current methods and practical
considerations

Gao Wang, Ph.D.
Advanced Gene Mapping Course, November 2022

The Gertrude H. Sergievsky Center and Department of Neurology
Columbia University Vagelos College of Physicians and Surgeons

Association analysis summary statistics Reasons to work with summary statistics

z-scores from univariate association studies:
2j = ,Bj/Sj,

where

B — (xTx) 1 o (5205 T ) -
Bj = (x]x)""xTy s;:=,/0%(x]x) 1

e Sufficient statistics: xTx, xTy, [sz
e “Summary” statistics:

e z-scores: £

e Genotypic correlation: R

GWAS data: GWAS summary
trait + genotypes statistics
o
i 3
' g 00 0000000
% eI T
D)
(]
Reference genotype LD information
panel size )
S .
. — RS
K2
Oww

Fine-mapping

Figure: Benner et al. (2017) Am. J. Hum. Genet.

Advantage over full data (genotypes and phenotypes):

e Easier to obtain and share with others

e Convenient to use: QC and data wrestling barely needed

e Computationally suitable for large-sample fine-mapping

o O(p?) (summary statistics) < O(np) (full data)
e when sample size 1 >> variants in fine-mapped region p

Suggested reading: Pasaniuc and Price (2017) Nat. Rev. Genet.
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Regression with Summary Statistics (RSS)

2 ~ N(Rz,R)
Assumptions:
1. Heritability of any single SNP is small

2. R is sample genotypic correlation for the same study

3. Genotypes used to computed z and R are accurate

Fine-mapping via RSS model Alternative models of GWAS summary statistics

"Single effect”: z;'s
% ~ N(Rz, R) Z
L []
z = Z] _
2 “E
Z1 = Y17 ]

z; ~ N(0, wlz)

Suggested reading:
v ~ Mult(1, 77)

Zou et al (2022) PLoS Genet.
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Properties of per SNP z scores

e z-score for a SNP depends on effects of both itself and
other correlated SNPs:

P
E(2J|R) = ZV,‘]'Z]'.
i=1
GWAS marginal effects are biased due to LD!
e z-scores are correlated,
Cor(ﬁj,ﬁk) = ij,Vj,k

e Recall the previously discussed connection with LDSC

The Z model: The b, 8 model:

2~ N(Rz,R) b|s ~ N(SRS'b,SRS)

e Both models can be easily written as SuSiE regression

e Z model: lower MAF variants have larger effects
o b,8 model: effect sizes are the same regardless of MAF

e Fine-mapping using £ model: CAVIAR, FINEMAP
e Fine-mapping using b, s model: DAP-G



Summary statistics methods comparison Impact of allele flips

in-sample LD
0.3 1
0.25
What is allele flip?
0.2 1 3
g 0454 A il o Different allele encoding between GWAS and LD reference
8 [P e o eg AA=0, AC=1, CC=2 in GWAS; AA=2, AC=1,
< --- SuSIE-RSS, L = true —0;
— EINENAR CC=0 in LD reference genotype
0-051 . E'/'\“F'f_"éAP' L=true e A challenging problem coupled with strand flip, when
0 CAVIAR merging sequence data from different platforms
0 005 01 015 02 025 03
FDR

Zou et al. (2022) PLoS Genet.

Impact of allele flips Addressing the allele flip challenge

A marginal associations B susie-rss with misaligned alleles
a 1 ©
10| 1 0.8 -

e o . . .
gs| ..v-"'"\'iq;, & gj R e susieR::susie rss() function implements a diagnosis
. o ﬁ# 02+ 8 e bigsnpr::snpmatch() function implements a basic

- s 0
o 200 400 600 800 1000 0 200 400 600 800 1,000 allele matching for two sets of summary statistics
SNP SNP
C diagnostic plot D after correcting allele encoding e Other resources
- i 0; @ o Allele flip illustration: https://statgen.us/
5 10 ¢ b
% . i o 06-] lab-wiki/compbio_tutorial/allele_qc
i | < o . .
3 , d 2:’ % e A powerful, multi-set data merger (by Yin Huang):
£ ol |
8 .| Yo 0| et https://cumc.github.io/xqtl-pipeline/
T J— 0 200 408 S B0 o pipeline/misc/summary_stats_merger.html

0 0
expected z-score

Zou et al. (2022) PLoS Genet. 11 12
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Impact of mis-matched LD reference: PIP

Impact of mis-matched LD reference: PIP

A CAVIAR, L =true
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Impact of mis-matched LD reference: PIP
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C FINEMAP, L = true
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Impact of mis-matched LD reference: credible sets

A coverage B power
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of mis-matched LD reference: real data Impact of mis-matched LD reference: real data

A 501 pcGwas on 15,626 . 08 06 04 02 B 131 FiNEMAP with LD information
individuals from the FINRISK o from the original genotype data
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Benner et al. (2017) Am. J. Hum. Genet. Benner et al. (2017) Am. J. Hum. Genet.
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Impact of mis-matched LD reference: real data Fine-mapping in meta-analysis: overview

13 h ) ! ) o
C FINEMAP _wu_h LD information % %, GWAS cohorts Meta-analysis Fine-mapping
from the Finnish panel of the 5. Cohort 1 .
1000 Genomes Project with ‘?6‘ Across constituent cohorts, inter-cohort Effect models: ‘Summary statistics-
1 X Ge ) N O s o heterogeneity could arise from: « Fixed-sffect based methods include:
99 individuals 2, s | « Random-effect « ABF
2 « Genuine biological mechanisms « CAVIAR
9 ° ’% « Population-specific variants Ancestries: « PAINTOR
o *GxG and GxE interactions « Single-ancestry « FINEMAP
L Cohort 2 « Phenotyping « Multi-ancestry « SuSIE
8 « Different diagnosis criteria
o b « Different proportion of subtypes
3 « Different measurement protocols
T |« Genotyping and imputation
Q5 « Different genotyping array
S + Different imputation reference panel
2 : < Diftstent [mptation qiaty Typically, both pre- and Standard outputs:
2 3 Cohort N * Quality control (QC) post-meta-analysis QC « Posterior inclusion
) « Different thresholds for MAF, are applied to summary probabilty (PIP)
" imputation quality, etc. statistics - 95% credible sets
| *GWAS § (Data S1).
1 « Different statistical model and Additional post-fine-map-
i ping QC is sometimes
: adopted.
-1

Kanai et al. (2022) Cell Genomics

Benner et al. (2017) Am. J. Hum. Genet.
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Fine-mapping in meta-analysis: key factors
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Fine-mapping in meta-analysis: diagnosis
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Fine-mapping in meta-analysis: diagnosis

A Additional independent signal

| Suspicious loci analysis of
‘meta-analysis summary statistics

Input: summary statistics and LD reference
1 1 Mb window

2. For each locus, detect outlier variants based on LD
using the DENTIST-S stati

T, =t

~logio(P)

3. identty N
variants in LD with a lead variant
(Poessrs < 10 and £ > 0.6).

Output: st of predicied suspicious loci for fine-mapping

02 05 075 1
1o the lead variant

-
-logioPoenmists g , 3 4

Kanai et al. (2022) Cell Genomics
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Covariate adjustment in LD reference

E r
3 . 152099684
3 DENTIST-S outlier variants ,‘ Ancestry Effective N
® AFR ® 1000
40 - ® AMR ® 5000
-logio Poenmists o 4 5 5 4 ~ ® EAS ® 10,000
B ~ 50 ® FIN @ 50,000
o . > o 3 g;g
______ o __.____ 3 0
® . s * g > Meta ® Meta
= e B 25 b Missi
20 ; . e i issingness
. 4 & ° O Both exist
l 3 ) KB ® Missing rs396991
L * a0t - - - S P
o . Ukes
% 15396991 o0 ™8
0{h e » o 25
000 025 050 075  1.00 25 00 25 50

r’to the lead variant Z-score (rs2099684)

Kanai et al. (2022) Cell Genomics
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Consider two GWAS regression analysis:

1. Evaluate SNP effect in Trait ~ SNP+Age+Sex+PCs

2. Fit model Trait ~ Age+Sex+PCs, compute residual of
Trait (remove covariates), and evaluate SNP effect in
model Residual_Trait ~ SNP

Are these two analysis equivalent?

20



Covariate adjustment in LD reference Covariate adjustment in LD reference

Covariates should be removed from genotype before
computing LD reference for fine-mapping

Consider two GWAS regression analysis:

Adjusted LD Unadjusted LD Reference LD
1. Evaluate SNP effect in Trait ~ SNP+Age+Sex+PCs a ! 1]e ° o
. . . o ;
2. Fit model Trait ~ Age+Sex+PCs, compute residual of 57 0.75 B 3
17} . v 4
Trait (remove covariates), and evaluate SNP effect in B 05 os|# ~
; v
model Residual_Trait ~ SNP E ozs , 0.25 | 207 , ,
. . 3, =1 x r2=0.81 r2=029
They are not equivalent because covariates should also be 0 025 05 075 1 0 025 05 075 1 0 025 05 075 1
removed from SNP data: Residual_Trait ~ Residual SNP ndividual-level PIP
Quick et al. (2020) biorxiv
20 21
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Integrating GWAS with functional
annotations

Gao Wang, Ph.D.
Advanced Gene Mapping Course, November 2022

The Gertrude H. Sergievsky Center and Department of Neurology
Columbia University Vagelos College of Physicians and Surgeons

GWAS variants catelog by functional annotations

N

1 significant lead SNP
W Nonssignificant %« ,

eo oo
oo

oee

>

.
Genomic:position (bp)

LD ()
H | M

Genomic position (bp)

Which are the
causal variants?

Fine-mapping

=

In which cell types
do the variants act?

SNP enrichment

} Regulatory activity,

Genomic:position (bp)

Which genes are regulated ‘ HHH
i K H—
by the variants? .

Colocalization Genes

Functional enrichment in fine-mapped variants

Most GWAS variants are non-coding

GWAS Catalog

Regulatory Noncoding
region transcripts

Downstream
= % 5%

Upstream
7%

Intergenic
19%

Intron
54%

Lee et al. (2018) Human Genetics

Y

Signals concentrated in tissue / cell specific functional area
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Figure: Huang et al. (2017) Nature



Functional annotation filters in aggregated tests

Aggregated tests are sensitive to (mis-)classification of
Functional annotation in functional variants. Different sets can be evaluated in practice:

aggregated rare variant
e Loss of function: start-loss, stop-gain, splice sites

association analysis

e Damaging missense: start-loss, stop-gain, splice sites,
nonsynonymous with REVEL score > 0.5
e loannidis et al (2016) AJHG

e All: start-loss, stop-gain, splice sites, nonsynonymous

Annotations integrated to aggregated tests Annotations integrated to aggregated tests

a. Prepare data b. Annotate variants . Define variant:sets it SR amtiics 8Ot TR aliee
for each variant-set for all variant-sets
Weight

Indiidial Aunctional Functional Categories b

Variants Annotations

E et wets gy STAARSKAT

Genotypes

Gene-Centric

Variants

Individuals |5

(sparse)

2| Genetic g
3 - &
2 | Relatedness L™ B
E| Matrix | I 1 Genel  Gene2
< oo
Traits H I 1 9
s ] &
2 k3 g L
2| pheno B i <
3 | types+ 1 i §
2| covari i Ll 8
£ ates & & ,@“ f
v & & Sliding Windows
V7

Figure: Li et al. (2020) Nature Genetics

Also see Li et al. (2022) Nature Methods

Figure: Li et al. (2020) Nature Genetics
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A polygenic model: stratified LD score regression

- - - Chi-square GWAS Sample size
Functional annotation in statistic of variant ) -
. . . \ P, 2 . larrow sense heritibility
common variant association E[3] = 1+ Nwhgzj. o )

a n a IySiS Total number of variants

PR— 2 LD score: sum of squared Pearson's
l] - Erjk correlati icient bet SNP |
k#j and other (neighboring) SNPs

A polygenic model: stratified LD score regression Cell-type enrichment in GWAS traits via S-LDSC

B Adrenal/Pancreas

B Central Nervous System
Em Cardiovascular

BN Connective/Bone

B Gastrointestinal

Chi-square GWAS Sample size
statistic of variant j

Height

Narrow sense heritibility

Gategory

B Immune/Hematopoietic
B Kidney

- Liver

[ Skeletal Muscle

= Other

7, .
Nbg, .
M ]

Elxfl =1+

LD score of variant j

BMI

Rheumatoid arthritis Crohn's disease

Total number of variants

L — 2 LD score: sum of squared Pearson's
=23 Tik ici

e Enrichment: The proportion of SNP-heritability in the
category divided by the proportion of SNPs

cor i b SNP j R e e S e T e
k#j and other (neighboring) SNPs Years of education Eversmoked Age at menarche
e Perform LDSC restricted to a functional category } § i - i
m ;
B tE |

~tond) o)

Figure: Finucane et al. (2015) Nature Genetics
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Integration approaches A sparse model (a somewhat oligogenic view)

o Integrate directly as range based binary annotations Generalized linear model for SNP effects given K annotations
o Finucane et al (2015) Nature Genetics — Stratified
LDSC paper
e Possibility to work with variant specific continuous Bi= (L= nj)50 + T[jg(®)
annotations mj = Pr(y; = 1|a,d)
e Gazal et al (2017) Nature Genetics . K
e Compute variant level annotations from epigenomic log [1 ,]7-[].] =&+ k_zl’xkdkf

feature ranges

o Deep Learning methods « are log fold enrichment of functional genomic features

e Zhou et al (2015) Nature Genetics, Zhou et al (2018)
Nature Genetics

® Suggested reading: Wen (2016) AoAS

Enrichment of DNase | in GTEx eQTLs

A B

= Integrative fine-mapping with
functional annotations

Figure: Wen et al. (2016) AJHG

11
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Annotations improves fine-mapping resolution Recall the toy example

-~ @
T T Probability of association assuming one effect variable,
E s _ R ey R g3

LR; + LRy ’ LR; + LRy '

Integrating functional information prioritizes the left SNP.

12

13

Recall the toy example Fine-mapping with functional annotations

Probability of association assuming one effect variable, Recall the BVSR model
=Xb
R g g3 J e
LR; + LR, LRy + LRy e ~ N(0,0%1,)
What if we determine a priori that SNP 1 is twice as i~ Bernoulli(7r)
important as SNP 27 byly ~8(")
b_ ~
2xLRL (g IR _oor 7ly~ o
2XLR1+LR2_ ’ 2><LR1+LR2_ ’

Key idea: 7t, prior inclusion probability, can be modelled by
enrichment of functional annotations

13 14
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Genome-wide approach with S-LDSC Functionally informed fine-mapping in UK Biobank

In analyses of 49 UK Biobank traits, PolyFun 4+ SuSiE
identified >32% more fine-mapped variant—trait pairs

A single locus may not have enough power to leverage
annotation enrichment

. . . compared to using SuSiE alone.
e Genome-wide evaluation of thousands of annotations can P &

increase power Of fine—mapping ? 400 | PolyFun + SUSIE (3,025 PIP > 0.95 SNP—trait pairs)
. . - W SUSIE (2,292 PIP > 0.95 SNP-trait pairs)
e Lead to new loci to discover 2
(% 300
e Functional enrichment can be done under the same % 250
g 200 -
framework H
3 150
o Prioritize genomic features / tissues / cell-types £ 100 |
- . . 50
e Enrichment coefficient may be transferrable cross ) I I Il a._
. E>Dzoo§og§mugmgé
population $EE 9 58cscsBecE s
. . TEECos Bu 53
e Weissbrod et al. (2021) medrxiv B ° i S 3
<
15 Figure: Weissbrod et al. (2020) Nat. Genet. 16

Example: SuSiE with functional informed prior Caution: disease specific enrichment

~ iPSCOCR ~log, (Pvalue)
® 5
R S (x10%) - 5 NPC OCR ® 10
152027349 10 05 00 g5, o IN-Glut OCR o
D . -l — & iN-Glu .
u_cg "ws‘ql W o T SN -':;'. St as * Pmen - o% P=0.028 ; e
S e S L. 238, — iN-DN OCR -
9 |- RTINS 7Y ! 1
o Bk aten i 28 )
" 7150 Mb 150.24 Mb > =2 IN-GAOCR | B
chrt " VPS45s  PLEKHO1 ANP3ZE CA14 32 os NPCASoC o o o ° ¢ o . . . - . . o
iN-Glut OCR v o 22 IN-GILtASOC ® ® ® ¢ 0 o o . e
N | N TR =
N-DNOcR : A LY T DD DD DD DS DD DS DD DDA DD DD
PSOCR o g EEEEEEEEEEEEEEEEEEEE S
& 'y N > @ @ 2
NPG OGR T R LS PR LELEL S S &S EN TP D P
RuC a W ¥ PR ) R Q‘ g S
Codin, ] ' 1 S 04 O &\QQ&@\ RO «°
Conserve AA  AG GG Fo@ v s & &
Promoter . . . L1 J;@ ) <% SF
& &
Figure: Zhang et al. (2020) Science
Figure: Zhang et al. (2020) Science
17 18
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Complex phenotype prediction and
transcriptome-wide association studies

Gao Wang, Ph.D.
Advanced Gene Mapping Course, November 2022

The Gertrude H. Sergievsky Center and Department of Neurology
Columbia University Vagelos College of Physicians and Surgeons

Rationale and assumptions

@ Rationale and assumptions

@ Univariate TWAS methods (credits: Haky Im @ UChicago)

© Multivariate TWAS methods

O Connections between TWAS and fine-mapping,
colocalization and Mendelian Randomization

Motivation: eQTLs are enriched in GWAS signals

63

A B
Causality: Gene Differential Clinical

Counfounder
Wémﬁlﬁﬂ m&mmm

SNP —» RNA —> Tral(

GWAS \
i Population Population
Flelotropy: Sample 1, ample 2
Trait Genotypes
P4
SNP Counfounder
~a AN Colocahzalxon

SMR
2 sample MR

Figure: Heinig (2018) Front. Cardiovasc. Med.



Transcriptome-wide association study (TWAS) TWAS challenge: association vs causality

1 1 1 1 1 1 A. GE independent of trait
Contributions of multiple genetic variants to complex traits [ snp H . | | TRAIT | e
through their impact on molecular phenotypes

Reference Panel

B. Trait independent of GE
L 85 FHAIT Well-controlled: Supp. Table 59

C. All independent
SHp G TRAI Subsurmed by (A and B)

&
CEICIEICI N )
Alalo|T[o| i .
o[ - D. Trait effects GE independently of SNPs
e w [ SNP | l GE }GOI;FHAIT l With cis-GE component, equivalent to (C)
Alxlolalc] W
ofafe]=fe] i} Null
Figure: Gusev et al. (2016) Nat. Genet. Figure: Gusev et al. (2016) Nat. Genet.
4 5

TWAS challenge: association vs causality TWAS challenge: technical considerations

Alternative
E. Expression mediates ldeal TWAS SEtup
[ SNP H GE H T"A'T] Desired case .
e Homogenous population
e Tissue and cell-type specific
F. Trait | (no cis-GE effects)
SNP | | GE H TRAIT | Only identified if trait effects gene in cis ) i .
’ o sl i ool e Training data-set is large and complete (N > 200)
— %
But in reality
G. Independent effectsatsame SNPs i X .
. . Unlikely to detect for multiple SNPs e Cross population TWAS aplications
I SNP | | GE ‘ | TRAIT I Less parsimonious than (E)
| R ———— e Multiple tissue and cell-types
Figure: Gusev et al. (2016) Nat. Genet. e Availability of individual level data vs summary statistics
6 7
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TWAS methods overview

PrediXcan DPR

First TWAS, use Use non- UTMOST
elastic net as parametric DPR as Multi-tissue two-

prediction modle prediction model stage analysis

Univariate TWAS methods

E»E»E»E» W » m (credits: Haky Im @ UChicago)

TWAS CoMM PMR
Use BSLMM as The first likelihood- Accommodate
prediction model based inference horizontal

pleiotropic effects

Figure: Zhu and Zhou et al. (2020) Quantitative Biology

Univariate TWAS methods overview Simple regression method

LETTERS

‘ Y = Zﬁka+€

Univariate
Regression

Common polygenic variation contributes to risk of
schizophrenia and bipolar disorder

The International Schizophrenia Consortium*

Penalized regression

T7

LASSO m Univariate
M Regression

Y = ZBkGWASXk
k=1

\ 4

\W>§:&mm+hwm+&wm
k

1Y - Xisils

These methods can also be used for Polygenic Risk Score
(PRS) calculations 0

10
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Ridge regression / BLUP

REPORT

GCTA: A Tool for Genome-wide Complex Trait Analysis

Jian Yang,* S. Hong Lee,! Michael E. Goddard,23 and Peter M. Visscher!

AJHG 2011

Penalized regression

M
S A

k=1

Ridge
Y =Y XiBllz + Az[B2]l2
k

11

Bayesian variable selection regression

Other penalized regression

J. R. Statist. Soc. B (2005)
67, Part2, pp. 301-320

Regularization and variable selection via the
elastic net

Hui Zou and Trevor Hastie Penalized regression

Stanford University, USA

LASSO

M
Y =Y BENX,

k=1

1Y =" XiBillz + MBIl + Azl el
k

12

Choice of methods: cross validation

@' PLOS | cenercs

OPEN B ACCESS Freely available online

Polygenic Modeling with Bayesian Sparse Linear Mixed
Models

Xiang Zhou'*, Peter Carb B

M M
Y= BEXk+) B Xkte
k=1 k=1

BE ~ N(0,0%)
Bi ~ N(0,0%)

MultiBLUP: improved SNP-based prediction for complex traits
Doug Speed and David J Balding

Genome Res. published online June 24, 2014
Access the most recent version at doi:10.1101/gr.169375.113

13

&% TWAS / FUSION

Functional Summary-based Imputation

5 New! RWAS (Grishin et al.) models for TCGA ATAC-seq
[E5 New! CONTENT (Thompson et al.) context-specific models for single-cell and bulk expression

] New! GTEx v8 models

FUSION is a suite of tools for performing transcript ide and r association studies (TWAS and RWAS).
FUSION builds predictive models of the genetic component of a functional/molecular phenotype and predicts and tests that
component for association with disease using GNAS summary statistics. The goal is to identify associations between a
GWAS phenotype and a functional phenotype that was only measured in reference data. We provide precomputed predictive
models from multiple studies to facilitate this analysis.

Please cite the following manuscript for TWAS methods:

Gusev et al. “Integrative approaches for large-scale transcriptome-wide association studies” 2016 Nature Genetics

14



Multivariate TWAS methods

Multivariate TWAS hands-on exercise

Multivariate TWAS methods overview

Leverage similarity between molecular phenotypes

5151515115151515) 8

Genotype matix

450 individuals

450 individuals
—_—

<8
:
A
J %@
H &

¢
44 tissues 11 million SNPs

Similarity between tissues

g

high low Nodata

e UTMOST, Yu et al. (2019) Nature Genetics
e MR-JTI, Zhou et al. (2020) Nature Genetics

15

statgen-setup launch --tutorial twas

Connections between TWAS
and fine-mapping, colocalization
and Mendelian Randomization

16
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TWAS and fine-mapping: variable selection

b TWAS
associations

~10g10 Prwas

s00000

Predicted expression
correlation matrix

TWAS + GWAS (cTWAS)

|-

GRS sentinelz

E-H

Avtice | Published: 29 March 2019
Probabilistic fine-mapping of transcriptome-wide
association studies

Nicholas Mancuso &, Malika K. Freund, Ruth Johnson, Huwenbo Shi, Gleb Kichaev, Alexander Gusev &

‘Bogdan Pasaniuc

Noture Genetics 51, 675-682 2019 | e s aricle

10k Accesses | 135 Ciatons | 89 Altmetric Metrics

17

TWAS and Mendelian randomization

A B
X
sy Exposu Cau
s ear.ef - S e X ‘Neﬁsﬂ‘”
{Reiiaal__ () eQTL effects Causal effecta (R 3
el Exposure Outcome L . Outcome
ear, ez
iy Oects 5 Exposuie 2 — Gause'
Horzontalpliotopy y
c D
] [TTTT T T T TS e ey
| T=Xpre, | } 2=XB+e, I
ression | s Expression
1 s s S | !
i I
R A PERE——— | !
I et b Comploteothairong
| owas Predicted | Y= 2ty |
| Gl P expression | Queemeri & (? %B)
| : | [ y=akpre, !
i '
________ N S TS Latent
L i1 [ genoype expression Qukome 1
——————————— Stagez) ---------' | |

Figure: Zhu and Zhou (2022) Quantitative Biology
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TWAS and colocalization: pleiotropy

Association

*

Coloc, Enloc, eCAVIAR, Sherlock

Colocalization

PrediXcan, SMR, FUSION

e Image credit: Haky Im @ UChicago
e Locus level colocalization combined with TWAS: Hukku
et al. (2022) Am. J. Hum. Genet.

18



Multivariate analysis in genetic
association studies

Gao Wang, Ph.D.
Advanced Gene Mapping Course, November 2022

The Gertrude H. Sergievsky Center and Department of Neurology
Columbia University Vagelos College of Physicians and Surgeons

Motivation

@ Motivation

@ Meta-analysis review

© Meta-analysis: a multivariate regression prospective

@ Variant colocalization: variable selection in meta-analysis

@ Multivariate adaptive shrinkage and fine-mapping

Beyond per trait per variant association studies

69

Statistical fine-mapping (multiple regressors)

o |dentify non-zero effect variables by accounting for LD
Meta-analysis (multiple responses)

e Integrate information across multiple conditions / studies
“Causal” variants across multiple conditions?

e Cross-population fine-mapping; colocalization; pleiotropy;
mediation; . ..



The problem The problem

&4 Methylation
s
® e

b . .

° ] : & x LA -

gl atas o3 o -3 V. SN

<

g4 . 2

s Histone acetylation
L S

S1TE .

% =

s ane d PR

o w

= | Expression s
2 = ®

z T

g | ]

» GWAS

g o

SNPs within 500Kb radius of ABCA7 transcription start site

The problem Multivariate relationships?

For a genetic variable analyzed in two conditions:

P(“causal” in trait 1 & 2 | association data for 1 & 2)

Denote data as Dy and D;, and use indicator variables 1, 72
for variable having effects in 1 and 2, and hyperparameters ©:

P(y1 =1,72 = 1|Dy,D,,0)

70

For a genetic variable analyzed in two conditions:

P(“causal” in trait 1 & 2 | association data for 1 & 2)

— VWY . VML
ANV MANNNN
—_— —_—

suppress 5 suppress
WY A AR
- VAWV —
MWV MARAAADBAVS
VWY
enhance @ suppress @

negative genotype
correlation (LD)

Figure: Pleiotropy or Linkage?



Fixed effect and random effects models

Meta-analysis review

Fixed effect (FE) model

Let /%i be the observed effect size of study i, 1 < i <k, and S%
its variance. The true effect size is B. The observed effect is
modelled as

Bi ~ N(B,s?),
with likelihood function
k " 2

L(B) = P(BIB) HPﬁIﬁ ocHeXP Z

i

71

Fixed effect (FE) model

Different assumptions on effects across studies

e Fixed effect model: all studies share a common effect size
e Random effects model: effect sizes are random variables
from an underlying distribution

Let ﬁi be the observed effect size of study i, 1 < i <k, and slz
its variance. The true effect size is B. The observed effect is
modelled as
i~ N(B,s),
with likelihood function
k " 2

L(B) = P(BIB) HPﬁIﬁ ocHeXp Z

i

Let w; = 1/512 be the weight of study i. The MLE of
summary effect is

Inverse variance weighting



Random effects (RE) model

Let ,Bi be the observed effect size of study i, 1 < i <k, and 512

its variance. Let B; be the true effect size of study i. The
observed effect is modelled as

BilBi ~ N(Bi,s7), PBi~ N(B,o?)

with likelihood function

k . p)2
P ) = ] ozew [~ 2 AL

Meta-analysis: a multivariate
regression prospective

Random effects (RE) model

Let ,3,- be the observed effect size of study i, 1 < i <k, and slz
its variance. Let B; be the true effect size of study i. The
observed effect is modelled as

BilBi ~ N(Bi,s7), PBi~ N(B,07)

with likelihood function
k ‘Bl
ﬂwa«l‘[z s R Brvi sy ]
+o T 2(s; + )

RE has weight w} = 1/(s? + ¢2); summary effect 8 can be

similarly computed as FE, replacing w; with w?. 02 can be

estimated (e.g. , MLE).

Multivariate model(s) for effect sizes

Consider a parametric model on effect sizes across studies,

By =1~ MVN(0,U)

Consider 2 studies, e.g. height GWAS in Europeans and
Africans.

10
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Fixed-effect model multivariate analysis Random effects model multivariate analysis

. . Effect sizes are different between two studies, but are from the
Effect sizes are exactly the same between two studies, S
same distribution,

11
Ufixed = 05 ¥ 10
fixed 0 |:1 1:| Urandom = 0'(% X |:0 1:|

11 12

Other multivariate models Other flexible multivariate models

More generally,

_ 2 1T p 2 2

Upartially shared = 0 X 1 u= ST
Y T g2 o2

12 2

where |p| < 1. This contains the two meta-analysis models as 5  than UL du
. e Pro: mor neric than Ug n
special cases! ore generic than Ufixed a random

e Con: 3 parameters to deal with, compared to one (Tg

13 14
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Analogy to popular multivariate models

Analogy to popular multivariate models

(some necessary, but not sufficient)

(some necessary but, not sufficient)

e Colocalization correlation matrix:

£

e Condition specific correlation matrix:

e Mediation:

1 Plz}

2
umediation =05 X
P12 P2

e Genotype — Trait 1 — Trait 2.

{1 O} [0 0} e Effect on trait 2 should be smaller than that on trait 1.
0 0|’ 01

15 16

The problem

Variant colocalization: variable
. . . For a genetic variable analyzed in GWAS and eQTL studies:
selection in meta-analysis

P(')’g =17 = 1|Dg/De/®)

17
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Colocalization method: coloc Colocalization method: eCAVIAR

coloc [Giambartolomei et al. (2014) PLoS Genet.]

e On X: “one causal” assumption

e On Y: the null + 4 combinations given “one causal*

1.

ok~ wDn

eCAVIAR effects assumption Colocalization method: enloc

In 1 but not 2

In 2 but not 1

In 1 and 2 but not the same variable

In 1 and 2 and the same variable (colocalization)
No association in both data 1 and 2

18

Effect sizes are independent,

O ogls
)
—_

20

eCAVIAR [Hormozdiari et al. (2016) Am. J. Hum. Genet.]

e On X: multiple effect variables
e On Y: each effect variable can be
1. In 1 but not 2
2. In 2 but not 1
3. In both 1 and 2
4. No association in both data 1 and 2

19

enloc [Wen et al. (2017) PLoS Genet.]

e Key difference: cross-condition effects not independent
e eQTL signals are enriched in GWAS

21
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Colocalization method: enloc enloc two step procedure

enloc [Wen et al. (2017) PLoS Genet.]

o Key difference: cross-condition effects not independent

e eQTL signals are enriched in GWAS
But how?
1. Obtain P(yg = 1) and P(7, = 1) using fine-mapping

* Recall fine-mapping with functional annotation for j 2. Fit the enrichment model via multiple imputation

T
log [ 7] = ao + a7
and in this context

mi=P(yg =1y =1)

21 22

Connections among colocalization methods Connections among colocalization methods

e eCAVIAR is a special case of enloc with & = 0.

e eCAVIAR is a special case of enloc with & = 0. e coloc is a special case of “one causal” fine-mapping
e coloc is a special case of “one causal” fine-mapping based enloc with fixed, high(!) a value by default.
based enloc with fixed, high(!) a value by default. o Recent coloc extension: coloc version 5, aka SuSiE-coloc
e Recent coloc extension: coloc version 5, aka SuSiE-coloc removed the “one causal” assumption.
removed the “one causal” assumption. e Wallace (2021) PLoS Genetics
e Wallace (2021) PLoS Genetics e https://chriswallace.github.io/coloc/

* https://chriswallace.github.io/coloc/ Summary: pattern and scale of effect size correlations,

represented as different prior models.

23 23
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Practical considerations

e Choice of prior . 5 a a
prior. _ Multivariate adaptive shrinkage
e Best to estimate enrichment « from data
e & € [0,5] suggested by > 4,000 GWAS + GTEx data and fine-mapping

e LD reference mismatch: underestimate a, thus power loss

Hukku et al. (2021) Am. J. Hum. Genet.

24

More phenotypes, more complications Major challenges

L e For a given variant: the less assumption made on

[ ]
.. or,| ™y |or, . or, ... multivariate effects, the more parameters to estimate.
[ ]
[ | e FE and RE models are restrictive but easy to fit.

Figure: Plausible patterns of sharing ¢ Different variants: may fit in different multivariate
effect models

25 26
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A naive mixture model A data-adaptive mixture model

“FE and RE are equally likely for any variant”:

Instead of making assumptions, can we learn from data:

2 2 2
U,pived = 0.5 % [U% Ug +0.5 % [00 02} e What are the latent structures for multivariate effects?
% 9 % e How often does each structure appear?
Prior allows for possibility of both; data will determine where and use these to construct the mixture model?

posterior lands.

27 28

Patterns of sharing: factor analysis Incorporating all possible patterns

Multivariate effects of a variant follows the k-th pattern with
probability 7t

Decomposing effect estimates, B=LF+E

Factor 1 ; pve: 0.694 Factor 2 ; pve: 0.022

. || | “ || |l| o T 24 03 1.6 0.001
BN At i k] = 1L 03 15 R 0.001 0.02 X
Factor 3 ; pve: 0.016 Factor 4 ; pve: 0.01
tissue
” L e amion This is the Multivariate Adaptive Shrinkage Prior.
| Adrenal Gland
1 | Artery - Aorta
it it AL L M Ty o e Step 1: estimated 71 via EM algorithm using data across
Brain - Anterior cingulate cortex
] ] ’ genome.
Fi 3 t lysi TEx dat . . . . .
(3 SRS G BRI CLHOUISC L e Step 2: apply this prior to each variant in association
mapping.
29 30
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Multivariate effect size sharing in eQTLs Application to multivariate fine-mapping
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&6 4 Los 2. GWAS data c. estimate residual correlations. . MVSUSIE fine-mapping
04/“‘ 7 ::f ¥ _ phenotypes * posterior H’\C\ugon probabilities (PIPs)
R e « credible sets (CSs)
& 5 G ,?,o} £ - ol g - posterior effects (NCPs) and CS ffsrs
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Figure: mvSuSiE fine-mapping with adaptive shrinkage model

Figure: Quantitative characterization of eQTL effects
heterogeneity in GTEx
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The Ethics and
Regulation of Human
Subjects Research

CONSULTING GROUP

Judy Matuk, M.S.
Independent Consultant

Tuskegee Study of Untreated Syphilis
in the Negro Male (1932-1972)

CONSULTING GROUP

The Ethics of Conducting Research with
Humans: The Belmont Report (1979)

= Beneficence
= maximize benefits, minimize risks

= Justice

= Who should bear the burdens of the |
research?

= Who should benefit from results?

= Respect for Persons
» Autonomy
= Protect those with diminished autonomy

CONSULTING GROUP
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The Nuremberg Code
(1947)

Ten Basic Principles, including:

“The voluntary consent of the human subject is absolutely
essential...”

“The experiment should be conducted as to avoid all
unnecessary physical and mental suffering and
injury...”

“No experiment should be conducted where there is an a
priori reason to believe that death or disabling injury will

occur; except, Rerhaps, in those experiments where the
experimental physicians also serve as subjects.

“During the course of the experiment, the human subject
shotild be at liberty to bring the experiment to an end if
he has reached the physical or mental state where
continuation of the experiment seems to him to be
impossible.”

During the course of the experiment the scientist in
charge must be prepared to terminate the experiment
at any stage, if he has probable cause to believe...that
a continuation of the experiment is likely to result in
injury, disability, or death to the experimental siy i

CONSULTING GROUP

National Research Act (1974)

Required the creation of the National Commission for
the Protection of Human Subjects of Biomedical and
Behavioral Research.

hirlp

CONSULTING GROUP

The Belmont Report was the basis for
federal requirements of human
research protections

Office for Human Research Protections
* 45 CFR 46 Subpart A (‘Common Rule’)
* Subpart B (Pregnant Women, Fetuses, and
Nonviable/Questionable Viable Neonates),

 Subpart C (Prisoners),
* Subpart D (Minors)

Food & Drug Administration

(jurisdiction: clinical investigations of drugs, devices, biologics)
* 21 CFR 50: Protection of Human Subjects
* 21 CFR 56: Institutional Review Boards r 0
* 21 CFR 312: Investigational Drugs

* 21 CFR 812: Investigational Devices L0 SN




It is the Federal Policy for the
Protection of Human Subjects

What is the
Originall Igated in 1991, with
Co rr%mlor; T S e e U U
ule®

Rockefeller’s Federal Wide Assurance
$FWA) certifies compliance with this
ederal policy (for human research
conducted or supported by Common
Rule agencies...)

P

CONSULTING GROUP §

First Question: Is your
activity “human subjects
research” (HSR)?

CONSULTING GROUP

9
Start with the Common Rule
First assess:
Does the activity involve Research?
rp
11

81

v19 federal agencies follow the new
Common Rule, e.g.,

What's so
Common
about the
Common

Rule?

* DHHS, including NIH (45 CFR 46,
Subpart A)*

* DoD (32 CFR 219)

« NSF (45 CFR 690)

« DoEnergy (10 CFR 745)

* Department of VA (38 CFR 16)

* DoEducation (34 CFR 97)

*FDA is within DHHS, but also has its own

regulations
CONSULTING GROUP |

*DoJ has not signed on yet

Specifically:

1. Is it HSR according to the Common Rule?
2. Is it HSR according to FDA?

(could be both!)

hirp

CONSULTING GROUP
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Common Rule Definition of
Research:

“..a systematic investigation, including
research development, testing and
evaluation, designed to develop or
contribute to generalized knowledge...”

(Both parts of the definition must be met)

hirlp

CONSULTING GROUP
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Part | of the definition:
What's a Systematic Investigation?

an activity that involves a prospective plan
which incorporates data collection, either
quantitative and/or qualitative, and data
analysis to answer a question

Does a case study involve a systematic
investigation?

CONSULTING GROUP
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An activity is not likely to be
generalizable if the intent is:

The evaluation or improvement of a process, practice, or
program at the site where the activity is being conducted

Results only to be applied to populations, or inform practice
within the target population or within the site where the activity
is being conducted

Implementation and evaluation of an evidence-based practice,
process, or program (is it functioning as intended within the site
where the activity is being conducted or with the local target
population

15

CONSULTING GRDUP|

Once you determine if the activity is or is
not human subjects research according to
the Common Rule...

You still need to assess if the activity is human
subjects research according to FDA

CONSIUTING GROIIP

17
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Part Il: What does ‘designed to develop
or contribute to generalizable
knowledge’ mean?

...designed to draw general conclusions:
v'what we know about what is being tested is not
yet firmly established or accepted;
and

v'the activity is not dependent on the unique
characteristics of the target population or system in
which it will be implemented
hirip

CONSULTING GROUP
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If the activity IS research:
Does the research involve human subjects,
according to the Common Rule?

A living individual about whom an investigator conducting
research:

(i) Obtains information or biospecimens through intervention
or interaction with the individual, and uses, studies, or
analyzes the information or biospecimens; or

(ii) Obtains, uses, studies, analyzes, or generates identifiable
private information or identifiable biospecimens.

hirlp

CONSULTING GROUP
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FDA Decisions

Does the activity evaluate an FDA-regulated test article (i.e.,
drug, biologic, device)?

Does the activity involve Human Subjects?

An individual who is, or becomes, a Participant in research,
either as a recipient of the test article or as a control. A
subject may be either a healthy human or a patient. Also
included in the FDA human subject definition: The use of a
biolo%[cal specimen —even if de-identified-from an individual
used to test an investigational device

Does the activity involve research (clinical investigation)?

Any experiment that involves a test article and one or mor
human subjects... r E

CONSIITING GROIIP
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If the activity IS human
subjects research, next
qguestion: Is it exempt
from the federal
regulations? *

*this does not mean exempt from institutional 0

review! CONSULTING GROUP

19

Exemption #4: Secondary research uses
of identifiable private information or
identifiable biospecimens can be
exempt under this category, if at least
one of the following criteria is met:

nirlp

CONSUITING CROID
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Exemption 4 (iii)

“The research involves only information collection and analysis
involving the investigator’s use of identifiable health information
when that use is regulated under 45 CFR parts 160 AND 164,
subparts A and E [HIPAA], for the purposes of “health care
operations” or “research” as those terms are defined at 45 CFR
164.501 or “public health activities and purposes” as described
under 45 CFR 164.512(b)”

CONSULTING GROUP
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Focus on: Exemption #4

Secondary research* for which consent is not required

*Secondary research only! (i.e., re-using identifiable information and/or
identifiable biospecimens that were, or will be, are collected for another

reason, e.g., clinical or research)

20

Exemption 4(ii)

Identifiable private information...is recorded by the
investigator in such a manner that the identity of the
human subjects cannot readily be ascertained directly or
through identifiers linked to the subject, the investigator
does not contact the subjects, and the investigator will
not re-identify subjects;

CONSIUTIG runu!
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What are the ethical standards that should
be considered for all exempt studies?

ided to potential sul

that subjects will be
h

hirp

CONSULTING GROUP
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If the activity IS human
subjects research, but does
not qualify for exemption, it
is HSR that is not exempt,
i.e., itis subject to federal
regulations governing human
research protection...

...including review by a
federally mandated

Institutional Review Board N
(IRB)

CONSULTING GROUP
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For a non-exempt study to qualify for
Expedited (not full IRB Board)
Review...

...The research must be all of the following:
* no greater than minimal risk

* not involve prisoners (per OHRP guidance)
* not be classified

* not involve identifiable data that would place subjects at risk of
criminal or civil liability or be damaging to the subjects financial
standing, employability, insurability, reputation, or be
stigmatizing. If it could, reasonable protections must be in place
so that risks related to invasion of privacy and breach of
confidentiality are no greater than minimal, and

* Fit into one or more of these categories:

https://www.hhs.gov/ohrp/regulations-and-_ )
policy/guidance/categories-of-research-expedited-review-
procedure- mdex-html

CONSIUTING RO !

27
Whether expedited or full board, a
study must meet federally-defined
criteria in order to be approved
ie.,
“The .111 Criteria”
29

84

Two Types of Non-Exempt Review

1. Expedited Review

2. Full Board Review

hrlp

26

If the nonexempt
research doesn’t qualify
for expedited review, it
must be reviewed at a
convened IRB meeting.

hirjp

CONSULTING GROUP
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§ 46.111 Criteria for IRB approval of

(a) In order to approve research

research.

covered by this policy the IRB shall
determine that all of the following
requirements are satisfied:

nirlp

CONSULTING GROUP
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https://www.hhs.gov/ohrp/regulations-and-policy/guidance/categories-of-research-expedited-review-procedure-1998/index.html
https://www.ecfr.gov/current/title-45/section-46.111

1. Risks to subjects are minimized:

(i) By using procedures which are consistent with
sound research design and which do not
unnecessarily expose subjects to risk, and

(i)  Whenever appropriate, by using procedures
already being performed on the subjects for
diagnostic or treatment purposes

CONSULTING GROUP
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3. Selection of Subjects is Equitable
Consider:
* The setting in which the research will be conducted

* Who is included, who is excluded? Does it make
scientific sense? Ethical sense?

* If applicable: Are children in a study involving a test
article that hasn’t first been tested in adults?
Pregnant women before non-pregnant women?

* Costs or compensation that may impact ‘fairness’

* Screening and recruitment?

* What about non-English speakers? D

CONSULTING GROUP
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5. Informed consent will be
appropriately documented or
appropriately waived in accordance with
§46.117

If not:
Does the research meet one of the

allowable criteria to waive

documentation? ﬂn
0

CONSULTING GROUP
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2. Risks to subjects are reasonable in
relation to anticipated benefits, if any, to
subjects, and the importance of the
knowledge that may reasonably be
expected to result

hirlp

CONSULTING GROUP
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4. Informed consent will be sought from
each prospective subject or the
subject's legally authorized
representative, in accordance with, and
to the extent required by, §46.116

If not:

Are ALL the criteria for waiving informed
consent or for altering/excluding specific
elements of informed consent met?

hirlp
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6. When appropriate, the research plan makes
adequate provision for monitoring the data
collected to ensure the safety of subjects

* What data will be monitored for safety purposes?
When? How?

* Who will be responsible for evaluating safety data?
Is a DSMB needed?

* Stopping Rules?

* Communication plan of findings to investigators
and IRBs (from the IRB of Record or Sponsor)

hirlp

CONSULTING GROUP
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7.When appropriate, there are
adequate provisions to protect the
privacy of subjects...

Consider:

* Settings where recruitment, consent, and research
procedures and interactions will occur
* Provisions to ensure privacy for each of the above

* Provisions to ensure privacy when contacting or
soliciting information from subjects

CONSULTING GROUP
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A closer look at data security: minimize the risk
of disclosure or breach of data

* Obtaining the data
* What is the sensitivity of the data? Are all the data points that will be
accessed or gathered for the research necessary to achieve the objectives
of the research?

* Recording the data
* What (if any) identifiers, including codes, will be recorded for the
research?

* Storing the data
* Wh ill h ds, including signed t fi , b
stored? How Will paper records be kept secre and restricied 1o -
authorized project personnel?
Wh il| the electroni h data be studly be stored (University-
prosilge\glJata%gs%ca;)%rrilgarteié% Iirltée REDaCag,SI'IuﬂYe seerng,eetz(:lf;[?‘NersI v
If there a key that links code numbers to identifiers, that list should be
kept separate from the coded data, including copies of signed informed

consent f?{ms Additionally, a(fcess to that list/key must be restricted
authorized research personnel.

CONSIITING CROI

39

And (111.b) When some or all of the subjects are likely to be vulnerable to
coercion or undue influence, such as children, prisoners, individuals with
impaired decision-making capacity, or economically or educationally
disadvantaged persons, additional safeguards have been included in the

study to protect the rights and welfare of these subjects.

(set aside issues with children, pregnant women/fetuses, prisoners,
regulations for which are codified in the Common Rule subparts---more
on that in a moment)
* What are some considerations when determining if additional
safeguards are necessary and sufficient?
* Examples:
* For economically disadvantaged...is there payment? What
is the amount? schedule?
* For educationally disadvantaged...is the consent process
particularly simplified? Should there be a witness to the
consent process?

CONSULTING GROUP
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...and to protect the confidentiality of
subject data

General:

* How will the data/biospecimens be stored?

* If identifiers will be removed or replaced, is there a
possibility that such information/biospecimens could be re-
identified?

* Will the data/biospecimens be shared/transmitted/
transferred to a third party or otherwise disclosed or
released? How?

* Is there a potential risk of harm to individuals if the
data/biospecimens are lost, stolen, compromised, or
otherwise used in a way contrary to the parameters of the
study?

* Plans for data retention and destruction? n

0

CONSULTING GROUP
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Data security, continued

+ Transporting or transmitting the data

« If any research data will be collected on a mobile device, such as an
electronic tablet, cell [phone, or wireless activity tracker, details are needed
regardin%the hysical security of the device, electronic security, and how
the tranls_ %r of data from device to research storage location will be securely
accomplished.
If any research data will be directly entered/sent by subjects over the
internet or via email, will a University-provided database application (like
REDCap) be used, or is there an encrypted tunnel to the site/application?

* Access to the data

* How will the investigators ensure only approved research personnel have
access to the stored research data? Password-protected files, role-based
security, etc.?

+ Sharing of the data

* Will data be transferred or disclosed tg or fromfthe University? Is ?I %ontract
r data transfer agreement necessary? What¥ any) identifiers will be
included? How will the data be securely transferred or disclosed (University-

approved secure file transfer, etc.)? n

CONSULTING GROUP
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That’s it for the .111 criteria...
but that’s not all!

Pregnant Women?
Subpart B of 45 CFR 46

Prisoners?
Subpart C of 45 CFR 46

Children?
Subpart D of 45 CFR 46

Department of Education (ED)?
Family Educational Rights and Privacy Act (FERRAL(34 CFR 99)
and the Protection of Pupil Rights Amendment (PERA)(34 CFR 98)
See resources provided by ED when developing your research protocol

Investigational Drugs, biologics, devices?
FDA regulations at 21 CFR 50, 21 CFR 56, 21 CFR 312, 21 CFR 812

HIPAA?
45 CFR Part 160 and Subparts A and E of Part 164

CONSULTING GROUP

42



http://www2.ed.gov/policy/gen/guid/fpco/index.html
http://familypolicy.ed.gov/ppra?src=fpco
http://www2.ed.gov/about/offices/list/ocfo/humansub.html
http://www.access.gpo.gov/nara/cfr/waisidx_07/45cfr160_07.html
http://www.access.gpo.gov/nara/cfr/waisidx_07/45cfr164_07.html
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From cross-phenotype associations to
pleiotropy in human genetic studies

Andrew DeWan, PhD, MPH
Associate Professor of Epidemiology
Director, Yale Center for Perinatal, Pediatric and Environmental Epidemiology
Yale School of Public Health

Work done in collaboration with Yasmmyn Salinas, PhD, MPH, Assistant Professor of Epidemiology]
Yale School of Public Health
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Solovieff et al. Nat Rev Genet. 2013 July ; 14(7): 483-495. doi:10.1038/nrg3461.

3

Examples in humans
» Marfan syndrome
— FBN1 (fibrillin-1)
— thinness, joint hypermobility, limb elongation, lens dislocation,
and increased susceptibility to heart disease.
* Holt-Oram syndrome,
— TBX5 (transcription factor)
— cardiac and limb defects
* Nijmegen breakage syndrome
— NBS1 (DNA damage repair protein)
— microcephaly, immunodeficiency, and cancer predisposition

88

Pleiotropy

+ Phenomenon in which a genetic locus affects more than
one trait or disease

* Molecular level

— Single gene with multiple physiological function

— Two domains of a single gene product with different functions
and affecting multiple phenotypes

— Gene product with a single function that affects multiple
phenotypes acting in multiple tissues
+ Statistical level
— Alocus displaying cross-phenotype associations is often
considered pleiotropic
— Can be at the variant, gene or region level

4

Early example of “pleiotropy”

Gregor Mendel documented one of the earliest examples of
pleiotropy in his pea plant experiments

& | Violet flowers
220" - seed coats = brown-grey A

5«5‘ - axils = red and spotted &?
i i. -i ;
Violet White
flowers

White flowers
- Seed coats = white
- Axils = white and unspotted

flowers

Mendel, J. G., 1866 Experiments in plant hybridization. Ve

des Vereines in Brunn 4: 3-47 (in German).

Pleiotropy and complex disease
comorbidity

« Examples of correlated (comorbid) disease

— Obesity, hypertension, dyslipidemia, type 2 diabetes
(metabolic disorder)

— Depression, anxiety, personality disorders (psychiatric
disorder)

— Asthma, obesity (pro-inflammatory conditions)

» Why do certain disease occur together

— Causality
— Shared environmental risk factors
— Shared genetic risk factors
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comorbidity

Hypertension

Asthma Obesity

Dyshpidem;a 4

*., Overlap rep a narrowly-defined pe with
low heterogeneity (relative to the individual phenotypes)

Pleiotropy and complex disease comorbidity

« Detecting shared genetics and/or molecular pathways
between comorbid diseases can help us understand exactly
how the etiology of the diseases overlap

« Etiologic overlaps:

 provide opportunities for novel interventions that prevent
or treat the comorbidity, rather than preventing/treating
each disease separately

facilitate drug repurposing (that is, known drugs targeting
a pleiotropic locus may be repurposed to treat other
diseases controlled by that locus, precluding the need for
the development and testing of a brand-new drug)

« Mapping a single genotype to multiple phenotypes has the

« It can also offer insights into the mechanistic underpinnings of

It can increase power to detect novel associations with one or

Pleiotropy in gene mapping
potential to uncover novel links between traits or diseases

known comorbidities

more phenotypes

11
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Pleiotropy and complex disease
comorbidity

* Pleiotropy-informed analyses consider multiple
phenotypes together and take into account the
correlation between the phenotypes

— Analyzing multiple correlated phenotype (e.g.
comorbid diseases) is equivalent to analyzing a single
narrowly-defined phenotype with low heterogeneity

Abundant Pleiotropy in Human Complex
Diseases and Traits

Shanya Sivakumaran,!6 Felix Agakov,1.26 Evropi Theodoratou,.6 James G. Prendergast,® Lina Zgaga,+
Teri Manolio,s Igor Rudan,! Paul McKeigue,! James F. Wilson,! and Harry Campbelll*

The American Journal of Human Genetics 89, 607-618, November 11, 2011

Table6. Extent of Pleiotropy in Different Disease Classes

Genes SNPs

Disease Class Pleiotropic (%) Nonpleiotropic (%) p Value® Pleiotropic (%) Nonpleiotropic (%) p Value®
Al comparison group) 233 (16.9) 1147 (83.1) 77 (4.6) 1610 (95.4)

Immune-mediated phenotypes 106 (37.7) 175 (62.3) <00001  31(8.3) 343 91.7) 0.0066
Cancer 49 (348) 92 (65.2) 00001 8(48) 158 (95.2) 08456
Metabolic syndrome 79 (28.5) 198 (71.5) <0.0001 30 (8.4) 327 916) 0.0056

* Fisher's exact test p value.
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A practitioners’ guide for studying pleiotropy
in genetic epi studies

A Eidamil 2017 Aug 1. g 101083ljwnZ96 Epu ahead of )
Statistical Analysis of Multiple
Phenotype Associations to Pleiotropy.
Sainas YO, WangZ, DeWan AT

in Genetic Cross-

Abstract

In the context of genetics, pleiotropy refers to the phenomenon in which a single genetic locus affects more than one trat or disease,
have identified loci multiple phenotypes, and these cross-phenotype associations are

often incorrectly interpreted as examples of pieolropy. Pleiotropy is only one possible explanation for cross-phenatype associations.

Cross-phenotype associations may also arise due to issues related to study design, confounder bias, or non-genetic causal links

between the phenotypes under analyss. Therefore, it h !

carefully to uncover true
pleiotropic loci. In this review, we describe statistical methods that can be used to identify robust statistical evidence of pleiotropy. First,
Wwe provide an overview of univariate and multivariate methods for discovery of cross-phenotype associations and highlight important
‘considerations for choosing among available methods. Then, we describe how 1o dissect cross-phenotype associations by using
mediation analysis. Pleiotropic loci provide insights into the mechanistic underpinnings of disease comorbidity, and may serve as novel

targets for Discerning between of
is necessary to realize the public health potentialof pleiotropic loc.
© (92017 Uriversy e For

permissions, please e-mal: journals, permissions@oup.com

KEYWORDS: genetc epidemiology; mediatio analysis; pleiotropy
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Guidelines for generating robust
statistical evidence of pleiotropy

Discover CP

associations

13

Analytic options for discovery of
CP associations

G | ecee

con a2

Multivariate :

« Univariate methods examine the association between a given SNP and each
trait separately

 Multivariate methods examine the association between a given SNP and
each trait by modeling the traits jointly

Cross-phenotype (CP) associations

Statistical associations between a single genetic locus — a single
gene or a single variant within a gene — and multiple phenotypes

Note that the dashed lines denote uncertainty
about whether the SNP has a direct effect on the
phenotypes.

14

Analytic options for discovery of
CP associations

e
[t

Multivariate

« Types of data available on our phenotypes of interest
* Summary statistics vs. individual-level data?
Are the phenotypes measured on the same subjects?
« Distribution of the phenotypes (e.g., quantitative or disease trait)

Vo

G

15
Univariate methods are by far the most
commonly used to detect CP associations
« Univariate methods include (but are not limited to) the
methods you've discussed in class so far:
allelic Chi-Square test
genotypic Chi-Square test
regression-based methods
« The overall approach is to:
obtain univariate association p-values for each phenotype
declare CP associations at genetic loci that are statistically
significantly associated with each phenotype
17

90
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Hypothetical example: Discovery of CP
associations for hypertension and heart
disease by using logistic regression

Step 1. Fit two univariate regression models within PLINK
E[hypertension] = B, + B, * SNP
/ Elheart disease] = B, + B; * SNP

Word of caution: The univariate tests of association should be
marginal tests (conducted irrespectively of the second phenotype)
NOT conditional tests (conducted on a subset defined based on
absence/presence of the second phenotype). In this example, what
that means is that the regression for hypertension should be fit on all
subjects irrespectively of their heart disease status; and the
regression for heart disease should be fit on all subjects

irrespectively of their hypertension status. More on this later!
evidence 1o declare a association al IS SNP.

18




Hypothetical example: Discovery of CP
associations for hypertension and heart
disease by using logistic regression

Step 1. Fit two univariate regression models within PLINK
E[hypertension] = B, + B, * SNP
Elheart disease] = By + B * SNP

Step 2. For a given SNP, examine p-values for $, from each model.

 P-value for B, in hypertension model = 1.03 x 1012
« P-value for B, in heart disease model = 6.02 x 10¢

Step 3. Declare CP associations at a given SNP, if the p-values for 3, in
each model surpass the study significance threshold.

« Assuming the standard GWAS significance threshold (alpha=5 x108), there
is a statistically significant association with both hypertension and heart
disease at this particular SNP. Therefore, we have sufficient statistical
evidence to declare a CP association at this SNP.

19

A Comparison of Multivariate Genome-Wide Association
Methods

Tessel E. Galesloot', Kristel van Steen?, Lambertus A. L. M. Kiemeney'*, Luc L. Janss®>,
Sita H. Vermeulen™*+>
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A comparison of univariate and multivariate
GWAS methods for analysis of multiple
dichotomous phenotypes

Yasmmyn D. Salinas’, Andrew T. DeWan?, and Zuoheng Wang?

Department of Chronic Disease Epidemiology; ?Department of Biostatistics,
Yale School of Public Health, Yale University, 60 College St, New Haven,
Connecticut, USA

Genet. Epidemiol. 41 (7), 689-689
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Using multivariate methods to increase the
power to detect cross-phenotype associations

20

Table 1. Simulation scenarios.

# traits associated with QTL

Heritability (h%)

Effect size (a))

MAF (g)

1
2

3

h?=01%, h;=h% =0
W, =h,=0.1%, h; =0
= =0.1%, W =0

>0, 2;=2;=0
323 2,=0
—ay=a32:=0

IR Y

—ay=ay=a;

3X03X03/3x07
3X0/303/3%0.7
3x03x03/3x07
3X03x03/3x07
303 x03/3x07

o01/04
001/04
oo1/04
00104
001104

d0i:10.1371 journal pone.0095923.1001

Powar(h)

MAF indicates minor allele frequency; J trait; QTL, quantitative trait locus; rE, residual correlation; 1G, genetic correlation.

22

Simulation scenarios

h12=0.1%,h,?=0%

[-0.9,0.9]

P1=P2=10%

P1=P2=20%

P1=10%, P2 = 20%

P1=20%, P2=10%

he2= hy2=0.1%

[-0.9,0.9]

P1=P2=10%

P1=P2=20%

P1=10%, P2 =20%

P1=20%, P2=10%

h{?2=0.1%,h,? = 0.05%

[-0.9,0.9]

P1=P2=10%

P1=P2=20%

P1=10%, P2 = 20%

P1=20%, P2=10%
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PLEIOTROPY PRESENT
equal effect sizes
Figure 2. Power when both phenotypes are associated with the SNP (h,2 = h,2 = 0.1%) 2

Py=P,=10% P, =10% and P, = 20%

. p
2w fa
e )
H ie

0 30

. .

.

o
0 08 06 04 02 00 02 04 06 08 10 £
Cross-phenotype correlation

0 08 05 04 92 00 02 04 06 08 10
Cross-phenotype correlation

. P, = 20% and P, = 10% » P,=P,=20%
1
0 “MutPhen  —GLMM  —GEE  —Uniariate 0 —MultiPhen —GLMM —GEE —Univariate
80 80
w0 w
£w £w
5@ 5 %
w©
; i

o
40 08 06 04 02 00 02 04 06 08 10

40 08 08 04 02 00 02 04 08 08 10
Cross-phenotype correlation

2 Results for GLMMs are shown for ryyy < 0.5 only, since the models experienced convergence issues for ry;y > 0.5.
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Biological
pleiotropy

[ CP associations ]

Mediated Spurious
pleiotropy pleiotropy

27

Mediated pleiotropy

Association between a genetic locus (A) and an intermediate
phenotype (M) that causes a second phenotypic outcome (Y)

Anon-genetic causal link between Mand Y
induces an association between Aand Y,
even in the absence of a direct effect of Aon Y.

29

92

Problem: CP associations need not be
indicative of pleiotropy

26

Biological pleiotropy

Independent associations between a genetic locus (A)
and multiple phenotypic outcomes (Y)

The SNP has a direct effect on each phenotype.
(Note that direct or causal effects are depicted
with solid lines).

N

&
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Spurious pleiotropy

Artifactual associations with multiple phenotypes due to issues related
to study design, confounding, or associations with markers in strong
linkage disequilibrium* with multiple causal variants in different genes

*Linkage disequilibrium is the non-random co-segregation of alleles.
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Spurious pleiotropy

Artifactual associations with multiple phenotypes due to issues related
to study design, confounding, or associations with markers in strong
linkage disequilibrium* with multiple causal variants in different genes

Confounders of the
relationship between the
phenotypes induce spurious
cross-phenotype associations

*Linkage disequilibrium is the non-random co-segregation of alleles.
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Spurious pleiotropy

Artifactual associations with multiple phenotypes due to issues related
to study design, confounding, or associations with markers in strong
linkage disequilibrium* with multiple causal variants in different genes

Variables associated with the phenotypes and the
SNP induce spurious cross-phenotype associations

*Linkage disequilibrium is the non-random co-segregation of alleles.
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Pleiotropy exercise (Parts 1 and 2)

Univariate:

Phenotype 1 | . p<5x108

P<5x10%
> Mediation

Univariate:
Phenotype 2

35

93

Spurious pleiotropy

Artifactual associations with multiple phenotypes due to issues related
to study design, confounding, or associations with markers in strong
linkage disequilibrium* with multiple causal variants in different genes

or

The SNP has a direct effect
on only one of the
phenotypes.

*Linkage disequilibrium is the non-random co-segregation of alleles.
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Spurious pleiotropy

Artifactual associations with multiple phenotypes due to issues related
to study design, confounding, or associations with markers in strong
linkage disequilibrium* with multiple causal variants in different genes

on either phenotype.

‘ The SNP does not have a direct effect ‘

*Linkage disequilibrium is the non-random co-segregation of alleles.
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Pleiotropy exercise (Parts 1 and 2)

Univariate:

Phenotype 1 P<5x10%

P<5x10%

> Multivariate » Mediation

Univariate:
Phenotype 2

36



Guidelines for generating robust
statistical evidence of pleiotropy

Discover CP

associations associations

»

Dissect CP

37

Mediation analysis: Data requirements

» Al phenotypes must be measured on

. Total Effect
the same subjects

Bt ®
+  The occurrence of the
intermediate variable M must B 0.

precede that of the phenotypic N

outcome variable Y
Indirect Effect

«  Temporality must be ascertained

39

Mediation analysis: Assumptions

Typically met in genetic epi studies!

*  There must be no unmeasured:

« confounders of the total effect

Total Effect
6
= confounders of the relationship @ . @
between SNP A and the
mediator M B 6

Indirect Effect

»  confounders of the relationship
between mediator M and
phenotypic outcome Y

41

94

Mediation analysis provides a tool
for dissecting CP associations

* Mediation analysis decomposes the _
Total Effect

total effect of the SNP (A) on a
phenotypic outcome (Y') into: @ 9 @
+  Direct effect: effect of Aon Y ., DirectEifect =
that occurs independently of an B e
1 /D2

intermediate phenotype (M)

» Indirect effect: effect of Aon Y
that occurs through the
intermediate phenotype M

Indirect Effect
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Mediation analysis: Assumptions

«  There must be no unmeasured:

« confounders of the total effect

" Total Effect
O
*+  confounders of the relationship @ " Direot Effoct @
between SNP A and the

mediator M B ."'"‘vez

Indirect Effect

» confounders of the relationship
between mediator M and
phenotypic outcome Y
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Mediation analysis: Assumptions

«  There must be no unmeasured:

« confounders of the total effect

Total Effect
61
« confounders of the relationship @
between SNP A and the
mediator M By, o

» confounders of the relationship
between mediator M and
phenotypic outcome Y

Indirect Effect

/

Requires adjustment for known confounders to prevent bias
(Note: this effectively restricts the use of mediation analyses to datasets
in which data on such variables have been collected)
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Mediation analysis:
Regression-based approach

* Requires fitting two regression models,
one for mediator M and one for
phenotypic outcome Y: [}

* E[Mla,cl = fo+Bra+frc
« E[Y|am,c] =0y +6ia+6,m+6;c

Total Effect

| . Direct Effect

Assesses the effect of Aon M,
while controlling for measured
confounders (C)

Indirect Effect

Mediation analysis:
Regression-based approach
* Reaquires fitting two regression models, —_
. Total Effect
one for mediator M and one for
phenotypic outcome Y:
. E[M Ia,c] = ﬁ0+ﬁ1a+ﬁéc Direct Effect )
e E[Y]|a,mc]=0y+61a+6,m+0,c )

» The parameter estimates from these \\@/
models (na_mely B1, 6_1, and 62_) alfe Indheot Effect
used to estimate the direct and indirect
effects

Mediation analysis: Interpretation

Mediated pleiotropy

Complete mediation: SNP A is associated with

mediator M and the total effect of A on phenotypic e ——

outcome Yis equal to its indirect effect (i.e., the Total Effect

direct effect is equal to 0). o

Incomplete mediation: SNP A is associated with @ T : @

mediator M and A has both direct and indirect -, Direct Effect

effects on phenotypic outcome Y (i.e., the total Y

effect is equal to the sum of the direct and indirect By, 0

effects) L :
Biological pleiotropy @

SNP A is associated with mediator M, and the total v

effect of SNP A on phenotypic outcome Y is equal .

to its direct effect (i.e., the indirect effect is equal to Indirect Effect

0)

95

Assesses the effect of Aon Y,
while controlling for both M and C

Mediation analysis:
Regression-based approach

* Requires fitting two regression models,
one for mediator M and one for
phenotypic outcome Y:

* E[Mla,c] = By+Bra+ P ‘ )
* E[Y |la,m,c]=0y+61a+0,m+ 04c| a{*,} 92

Total Effect

@2 )

-, DirectEffect =

Indirect Effect

Guidelines for generating robust
statistical evidence of pleiotropy
i i Classify them as examples
Discover CP |$ Disseat P |$ of biological, mediated; or
spurious pleiotropy
Mediation analysis: Interpretation
Mediated pleiotropy
Complete mediation: SNP A is associated with
mediator M and the total effect of A on phenotypic ——
outcome Yis equal to its indirect effect (i.e., the Total Effect
direct effect is equal to 0).
Biological pleiotropy
SNP A is associated with mediator M, and the total
effect of SNP A on phenotypic outcome Y is equal
to its direct effect (i.e., the indirect effect is equal to
0)
ncomplete mediation: SNP A is associated with @
mediator M and A has both direct and indirect
effects on phenotypic outcome Y (i.e., the total .
effect is equal to the sum of the direct and indirect Indirect Effect
effects)




Mediation analysis:
Interpretation

+ Spurious pleiotropy

« SNP Ais not associated with
mediator M after controlling for
measured confounders

Total Effect

o @

. Direct Effect =

Indirect Effect

mediation R package

> med.fit<-gIm(W1~rs1_2, data=combined, family=binomial("logit"))
> outfit<-gim(W2~W1+rs1_2, data=combined, family=binomial("logit"))

> med. fit,outfit, treat="rs1_2", mediator="W1", boot=TRUE, boot.ci.type="bca", sims=1000)
> summary(med.out)

Causal Mediation Analysis
Nonparametric Bootstrap Confidence Intervals with the BCa Method

Estimate 95% CI Lower 95% Cl Upper p-value
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Empirical searches for pleiotropic loci
for asthma and obesity

51

Am.J Hum Gene. 2009 Ju85(1)87-96. doi: 10.1016/,3jng.2009.06.011. Epub 2009 Jul 2.
PRKCA: a positional candidate gene for body mass index and asthma.
Murphy A", Tantisira KG, Soto-Quirds ME. Avila L, Klanderman BJ, Lake S, Weiss ST, Celeddn JC.

Study design

« Two phases:
+ genome-wide linkage analysis of BMI

+ follow-up family-based candidate-gene association study
of BMI and asthma

« Strategy for candidate-gene study:

+ Authors focused on a single gene (PRKCA) within the BMI
linkage peak because:

+ animal models suggest role of PRKCA in obesity; and

* published association studies of other genes within the
linkage peak had found no association with BMI.
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ACME (control) 002152 001823  0.03 <2e-16 "
ACME (treated) 002199 001868  0.03 <2e-16
ADE (control) 0.00723 000415  0.01 <2e-16
DE {treatod 0.00771—0.00443 01 20-16
Frotares y 0246+ y 4 ]
Prop. Mediated (control) 073634 065420  0.84 <2e-16
Prop-Medialed reated) 07524708 085 20162
I o § § § P
[ eg g 6 0 ]
‘Prop-iediated-taveragey 006254 B4 16
Effect Modifiers
Obesity/BMI .=.':> Asthma
Shared environmental
risk factors
o aiz0
SiksDR. e chcenar ot
P ——r o395
g, Etinger A5, e AT ot T, FoimenTl. Backen V.
the UNT Sy, Pt chesty. 2004
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Study population

+ Costa Rica study
* N =415 asthmatic children + parents
+ Childhood Asthma Management Program
» N =493 non-Hispanic White asthmatic children + parents

Note that ALL children in both study populations are asthmatic

54




Phenotype definitions

* Body mass index (BMI)
« calculated from objective measures of height and weight
* Asthma
+ physician-diagnosed asthma + one of the following:
+ 2 respiratory symptoms or asthma attacks in prior year

+ increased airway responsiveness or bronchodilator
response

55

Results for BMI

Table 3. Evidence for Association of PRKCA with BMI in Costa Rica and CAMP.

Number of Informative
Families® (number o

Allele offspring with 0/1
Frequency  recoded genotype) Effect Size®
CAMP Replication ~ Joint p Value'
Location  Minor «® p Value®® (CR, CAMP
Marker __(BP)° __Allele CR__CAMP_CR cAmP CR__CAMP _pValue®* _(two-sided) two.sided)
5228883 61874457 T 027 033 91(6724) 11060/39) 245 1.60 400011  +0.0038 (10.0076) 5.6 X 105
10x10°
S1005651 61868473 C 026 033  83(6023) 11383/39) 227 160 400019  +0.0039 (+00077) 9.5 x 10
18107
TOB87S | 61924337 A 02 035 10100 129024 171 12 100109 100182 (100365 00019 & |
(0.0035)
152244497 61931405 C 031 036 1208634 13608/47) 169 121 400160  +0.0171 (+0.0341) 00025
0.0046)

Two BMlI-associated variants
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Conclusions

« Authors’ conclusion: PRKCA displays pleiotropy for
asthma and BMI (pleiotropy at gene level)

» Two variants (rs228883 and rs1005651) displayed
statistically significant associations with body mass index

« Adifferent variant (rs11079657) displayed a statistically
significant association with asthma.

Statistical methods

+ Univariate family-based association tests (FBATs) were used

to test PRKCA SNPs for association with BMI and asthma
separately

» Note: The FBAT statistic takes into account the
phenotype of the offspring only

« Significance threshold used by study authors: a = 9.5 x 105
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Results for asthma

Table4. Evidence for Association of PRKCA with Asthma in Costa Rica and CAMP.

Number of Informative
Families® (number of offspring
Allele Frequency  with 0/1 recoded genotype)

CAMP Replication _ Joint p Value®
< «

Location  Minor Costa Rica p Value* (CR, CAMP

Marker  (8P)°  Allele CR camP R camp pValue™®  (two-sided) two.sided)

2191 61779673 G 046 035 168 (117/51) 14111343 00194 -0.0214 (-0.0428) 00036 (0.0067)
159895580 61789701 C 047 035 168 (117/51) 14111443 00171 ~0.0160 (-0.0320) 00025 (0.0047)
4411531 61793662 A 029 012 88 (70/18) 25 (24/1) 00058 -0.0058 (-0.0117) 0.0004 (0.0007)
8080771 61824330 G 046 035 164 (116/48) 108 9029) 00161 ~0.0070 (-0.0140) 00011 (0.0021)
1511652956 61839798 G 020 012 83 (65/18) 23 @2/1) 00101 -0.0111 (-0.0222) 00011 (0.0021)
7221968 61848731 C 027 om 7 (63/16) 18 (17/1) 0012 -0.0216 (-00432) 0.0024 (0.0045)
17405806 61862056 A 049 031 164 (109/55) 90 (77/20) 00309 ~0.0009 (~0.0018) _0.0003 (0.0006)
(11079657 61862528 A 03 02 129 (94735) 60 (56/8) 0009 -0.0002 (-0.0004) 26 x 107

(£0X1075

t

One asthma-associated variant
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Conclusions

+ Our conclusion: PRKCA is associated with asthma and
with BMI among asthmatics (no true CP association!)

« There is insufficient evidence to declare a CP association at
PRKCA because the test of association with BMI was not a
marginal test

« FBAT test for BMI only took into account the phenotype of the
offspring — which were ALL asthmatic

* Thus, it remains to be seen whether the association with
BMl is also present among non-asthmatics subjects

+ Without that information, we would not be able to assess
whether asthma is a mediator or a moderator of the
relationship between PRKCA and BMI.
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A GWAS study of pleiotropy

Discovery and Mediation Analysis of Cross-Phenotype Associations Between
Asthma and Body Mass Index in 12q13.2

Yasmmyn D. Salinas*, Zuoheng Wang, and Andrew T. DeWan

Yasmmyn D, Sainas,

. Yalo School of Pubic Hoalth, 60
Collogo Stroet, Now Haven, CT 06520 (o-mai: yasmimyn sainas @ yale.od.

Am J Epidemiol. 2021;100(1):85-94
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Study population

« N = 305,945 White, British subjects from the UK Biobank (a

population-based prospective cohort study of > 500,000
subjects, aged 40-69 years at baseline)

bio

Improving the health of future generations

ank’
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Statistical Methods

( QC in PLINK

I

[ Estimation of genetic correlation using BOLT-REML

I

Univariate association analyses using
linear mixed effects models in BOLT-LMM

Part 1

Search for overlapping signals between asthma and BMI

l

!

Assessment of asthma-BMI relationship in the UK Biobank GWA sample

I

— o — ——

Part 2

Assessment of potential confounders of the asthma-BMI relationship

) J UJ

!

[ Follow-up mediation analysis in ‘mediation’ R Package

65

98

Study design

* Two parts:

+ Genome-wide search for cross-phenotype associations
with asthma and body mass index

» Follow-up mediation analysis to dissect genome-wide
significant CP associations

62

Phenotype definitions

+ BMI at baseline (kg/m?):

+ calculated based on height and weight measurements
collected by trained UK Biobank staff at the recruitment
sites

» Asthma diagnosed prior to baseline (yes/no):

+ ascertained via the question “Has a doctor ever told you
that you had asthma?”

* Note: In mediation analyses, two subgroups were created

based on age-at-diagnosis
A uk
ank

Improving the health of future generations
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Overlap in GWA signals

Association with BMI among the 1,457 SNPs with genome-
wide significant p-values for asthma

805
(85%)

#p<005 ®p<5x105 5p<5x10%

= Not associated with BMI

Figure 1. Overlap in GWA signals between asthma and BMI. Results for asthma are for the
analysis of all asthmatic subjects (35,373 asthmatics vs. 270,572 non-asthmatics). Results for
BMI are for the quantitative BMI analysis (n=305,945). Both analyses are sex- and age-
adjusted. The threshold for genome-wide significance was alpha=5x10-.
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Overlap in GWA signals

Association with asthma among the 1,699 SNPs with
genome-wide significant p-values for BMI

#p<005 ®p<5x105 = p<5x10® =Notassociated with asthma

Figure 1. Overlap in GWA signals between asthma and BMI. Results for asthma are for the
analysis of all asthmatic subjects (35,373 asthmatics vs. 270,572 non-asthmatics). Results for
BMI are for the quantitative BMI analysis (n=305,945). Both analyses are sex- and age-
adjusted. The threshold for genome-wide significance was alpha=5x10-.

Regional plot around rs705708 for BMI
(blue) and asthma (red)

Plotted SNPs [WIIITT IR I 111 101 001011 AR 0 0000 (0000 R
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Cross-phenotype associations in 12q13.2

Table 2. Cross-phenotype associations in 12q13.2*

BMI-
SNP Gene Effectireference allele | EAF 5% CI) 3
2069408 | CDK2 | 56,364,321 GIA 3388 50510 [ 0.06 (0.0 40x107
1873914 | RABS 379421 CIG 4237 .40x107_| 0,05 (-0.0° 90x10°
13705702 3376 .10x10™ | -0.05 (. 10x10%
1310876864" | SUOX. K 4279 | L. X S0x10° | 0,05 (<. 60x10°
1701704 | IKZF4_| 56412487 GIT 03433 11.07(1.05,1.09) | 1.50x10 | -0.06 (:0.09,-0.04) | 3.70x107
152456973 | IKZF4_ | 56,416,928 CIA 03432 | 1.07(1.05,1.09) | 1.50x10™ |-0.06 (:0.08,-0.04) | 6.00x107
m11171739% | ERBB3 | 56470625 CIT 04337 11.06(1.04,1.07) | 880x10": | -0.05 (:0.07, - 1.10x10%
152292239 | ERBB3 | 56,482,180 T/G 03470 | 1.07(1.05,1.08) | 450107 |-0.06 (:0.08,-0.04) | 4.20x107
™705708 | ERBB3 | 56488913 A/G 04712 ]1.05(1.03,1.07) | 720x10° | -0.06 (0.0, 130x10%
11171747" | ESYTI | 56518408 T/G 0.6180 | 1.04(1.02,1.05) | 2.90x10° | -0.06 (:0.08,-0.04) | 4.50x107

Abbreviations: BP = base-pair ; BMI = body mass index; CI = confidence interval; EAF = effect allele frequency; OR = odds ratio; SNP = single-nucleotide
polymorphism

Results shown for SNPs with p < 5x10°* for asthma and p < 0.05 for BMI.

For intergenic SNPs, the nearest gene is lsted, with priority given to genes directly downstream of variant.
P-value from BOLT-LMM, derived using the standard “infinitesimal” mixed model.

P-value from BOLT-LMM, derived using the Gaussian mixture model,
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Decomposing the effect of rs705708 on BMI
via mediation analysis

Among childhood asthmatics Adult asthmatics (n=16,801) and

70

(n=4,817) and common set of non-
asthmatics (n=181,304)

total effect = -0.0656

direct effect = -0.0655
IS705708 cr-r - BMI

+ 0 # varies by sex

asthma

indirect effect = -0.0001*

Population Average

common set of non-asthmatics
(n=181,304)

total effect = -0.0560

direct effect = -0.0582
rs705708 ;- s BMI

+

asthma”

indirect effect = 0.0022

Population Average

Note: Effect estimates shown are adjusted for common determinants of asthma and
BMI: age, sex, breast-feeding status, exposure to maternal smoking, and smoking
status at asthma diagnosis (adult analyses only). Unless otherwise noted by an
asterisk(*), all paths are significant at the 0.05 level.
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Conclusions

* rs705708 has a positive direct effect on asthma

+ Stronger in magnitude for childhood asthma

+ rs705708 has a negative direct effect on BMI

+ Consistent in magnitude and direction in analyses
including childhood vs. adult asthmatics

+ This suggests that locus 12q13.2, tagged by rs705708, has

pleiotropic effects on asthma and BMI.
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Conclusions

* 12q13.2 is multigenic and our CP associations span genes
CDK2, RABS5, SUOX, 1ZK4, RPS26, ERBB3, and ESYT1.

« rs705708 is the top regional BMI signal and resides in ERBBS3.
« The top regional asthma signal, rs2456973, resides in IZKF4.

*  While rs705708 and rs2456973 could be in LD with the same
causative variant in either ERBB3 or IKZF4 or another gene in
12913.2, it is also possible that each variant could tag a distinct,
trait-specific causative variant in different genes.

« Therefore, locus 12q13.2 displays pleiotropic effects on
asthma and BMI, but this may not be an example of pleiotropy

at the gene level (biological pleiotropy).
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Pleiotropy exercise (Part 3)

Univariate:

Phenotype 1 _P<5x10%

P<5x108

> Multivariate —_

P<5x10%

Univariate:
Phenotype 2

Mediation

74




Mendelian randomization:
An Introduction

Andrew DeWan, PhD, MPH
Associate Professor of Epidemiology
Director, Yale Center for Perinatal, Pediatric and Environmental Epidemiology
Yale School of Public Health

Yale scHooL OF PUBLIC HEALTH

[Adams ot a1 (2008) Overwoiont. Ovesty ana woriatty

05 5010 71 Years 014 N Eng 3 Med 255785778

2

The “Obesity Paradox” I N

BMI and Bloodstream Infection (BSI)/Sepsis
Mortality

aseor 1

10,05 0001635
o0

. o wmon osiforsosm

a4,

Areas of Concern (BMI/BSI as an example)

« Selection Bias: If obesity is associated with BSI risk, non-obese
patients may have other characteristics that cause their BSI that in
turn are more strongly associated with mortality

* Reverse Causation: if measured BMl is affected by BSI

» Confounding: if factors such as chronic diseases and smoking habits
that affect both BMI and BSI mortality are not adequately adjusted
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Mendelian randomization

* Mimic randomized trial using genetic data as instruments for
exposures

* Leverages information on genetic variants that segregate randomly at
conception

« If an association between the instrument and outcome is detected, a
causal relationship for this association is strengthened

MR Assumptions

* The genetic instrument (G) is associated with the exposure (X)

* The genetic instrument is not associated with any confounder (U) of
the exposure-outcome association

* The genetic instrument is conditionally independent of the outcome
(Y) given the exposure and confounders

—e— Risk factor-outcome association
~~ce= Mendelian randomisation results

N ——— Mean difference (95% CI)

Dairy consumption on systolic blood pressure (serving/day)*’ =
Uric acid on blood pressure (SD)"* -
10 05 20 25 30
Binary outcomes
Uric acid on heart disease (SD)"* P ol -
Vitamin D on mortality (20 nmol/L)” e
CRP on heart disease (SD)’2 = -
LDL-C on myocardial infarction (SD)* T e
HDL-C on myocardial infarction (SD)* e -
BMI on coronary heart disease (SD)'*
o4 07 10 19 22 25 28

10

CRP and Heart Disease

Single nucleotide  Allele _ No of studies/cases  Per allele higher Per allele higher Per allele risk Per allele risk
Polymorphism  frequency® " jpanicpanist ~  mean n Ch ‘mean n CRP "atiofor CHD et for D
(95% C1), mg/L. (95%C), mg/L (5% ) (95%C1)
53093077 006 19/15133/96807 — 020170020 093 087101.00)
51205 067 43/40527/172567 - 018(01610020) 10009810 1.02)
1130864 030 41/37145/157 905 - 01301210015 098 (09610 1.00)
151800947 094 31/31636/93 507 ~ 0260230029 099094 101.03)
o1 0 0102 03 08 085090095 1 105 110
Risk ratio* (95% CI) Risk ratio* (95% C1)
for CHD per 1 S| or CHD per 15D
higher In CRP (mg/L) higher In CRP (mg/L)
Circulating usual concentrations of CRP ! (me/1) 8! (mg/1)
Adjusted for age, sex, and ethnicity —_— 1.49 (1.40 to 1.59)
Further adjustedt b 1.33(1.23t0 1.43)
Genetically raised concentrations of CRP#
SNP analyses 1.00 (0.90 t0 1.13)
Haplotype analyses 1.00 (0.89 t0 1.12)

BMI and CHDIStrokel Type 2 Diabetes

b stoke

Diabetes

11




One-sample

* Genotype(s), risk factor and
outcome all measured in the
same set of study subjects

* Individual level data must be
available

One-sample vs. two-sample designs

Two-sample

* Genotype(s) and risk factor
measured in one set of study
subjects and genotype(s) and
outcome measured in a separate
set of study subjects

* Can use summary statistics or
individual level data

One-sample vs. two-sample designs

Assumption/Issue One-sample

Two-sample

Instrument variable related to risk ~ Weak instrument biases towards

factor the confounded regression result

Confounders Can (and should) check this for
measured confounders

Pleiotropy Multiple methods to explore this

issue (including MR-Egger)

Subgroup analyses Possible if large sample sizes and
data on relevant risk factors are
available

Bias from adjustments made in
GWAS

N/A as all adjustments made in the
same set of subjects

Weak instrument biases towards
the null

Not often possible when using
summary statistics

Multiple methods to explore this
issue (including MR-Egger) and may
be more powerful with large
consortium datasets since methods

tend to be statistically inefficient
Only possible if individual level data
are available

Summary data may or may not
have been adjusted

13

14

« Single or multiple variants

Selecting genetic variants for an instrument

* Current recommendation is to select variant(s) that are significantly
associated with the exposure at the genome-wide level

* Want a strong genetic instrument to avoid weak instrument bias
* Asingle variant or variants with modest effects in small samples are likely to
have low power and can suffer from bias

« If selecting multiple variants these should not be in LD and assumes
negligible gene-gene interaction among variants

Instrument strength

exposure

N: sample size
K: number of genetic variants

* Measured using the F statistic in the regression of the IV on the

R2: proportion of the variance of the exposure explained by IV

General Rule: F < 10 is an indication of a weak instrument

15

16

Pleiotropy

* Assumption that the IV is not
associated with Y independently
from X

causal estimate

« Sensitivity analyses such as MR-

not the pleiotropy assumption has
been violated

* Presence of pleiotropy can bias the

Egger can be used to test whether or

—e— Risk factor-autcome assaciation
—m- Mendelian randomisation resuls

0dds ratio (95% C1) of coronary heart

disease per 15D increase in HDL cholesterol

HDL-C-CHD association from Ef
MR inverse variance weighted
MR Egger estimate from Bowden et al”
Weight
Weighted mode estimate from Hartwig et al

mate from Bowden etall?  eemt

jan estimae from Bowden el al

Testing MR: Wald Ratio

« Simple ratio of the effects of the
instrument variable on the
outcome over the instrument
variable on the exposure ~

* Can be implemented in both one
and two sample designs

* One sample can use either a single
variant or a GRS

* Two sample design that uses
multiple variants requires a
method for combining Wald Ratios

BIV

_ P

B

17

18
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Testing MR: 2 stage least squares (2SLS)

« Single continuous instrument * Regress Xon G

(GRS) * Calculate genetically predicted
* Only for one sample method values of X
* Assumes a linear relationship * Regress Y on genetically

between exposure and outcome predicted values of X

* Fix the standard errors (e.g.
sandwich estimator)

Testing MR: Inverse variant weighted

For each variant calculate the Wald ratio:

* One or two sample designs

« Tends to give more reliable G _ F_,
results in the presence of J ¥
heterogeneity and when using ) . .

. Combine into an overall estimate using a
large number of instruments

formula from meta-analysis literature:

52 20
« Fixed (assumes no heterogeneity - Zij Oyj B;
across SNP) or random effects ww = ZAZ—_Z
meta-analysis jYjOyj

19

20

Testing MR: Weighted Median

* Calculate the Wald ratio for each instrument
* Select the median value according to the weighted method

B B B B B B B BB P 1 1

095
085
o8
085
085
045
0as
0z
015
+oos
£

0

Simple median 085
Weight ()
Percentile (p

chgepeticyariant ()

* Valid estimate when more than half of the genetic variants satisfy the IV
assumptions

* No single IV contributes more than 50% of the weight

Testing MR: MR-Egger

* Provide a valid causal estimate in the presence of some violations of the
MR assumptions (mainly pleiotropy)

* MR consisting of a single study with multiple IVs is analogous to a meta-
analysis

+ Bias resulting from pleiotropy is analogous to small study bias in meta-
analysis
+ Small studies with less precise estimates tend to report larger estimates than big
studies with more precise estimates
* Regress the standard normal

deviate (odds ratio divided gl s 52 Qisis4

g2
by its se) on the estimate’s £o &x -
precision (inverse of the se) 6 .
4
* Without bias, intercept = 0, 4 .. .
and in the presence of bias 2 o . : e ) °
. . I DR R S .
the intercept is a measure of Oy o 05 i 2 A Lg 0s 1 2 o
asymmetry O rato 0dds ratio

21

ncessing
erumant
gt

- ww
- Egger

—t

Databases and software

Table 3 | Databases of genome-wide association study results

Number Integrated with
Data source Description of traits statistics package?
MR-Base A curated database of genome-wide Over 1000 Yes

association study results with
integrated R package for MR*

PhenoScanner A curated database of genome-viide Over 500 Yes
association study results with
integrated R package for MR”

GWAS catalog  Searchable database of genome-wide Over24000  No
association study results™




Body mass index and risk of dying from a
bloodstream infection: A Mendelian
randomization study

Tormod Rogne('23*, Erik Solligard 2, Stephen Burgess*°, Ben M. Brumpton»®7:8,

Julie Paulsen(>®, Hallie C. Prescott»'®'", Randi M. Mohus "%, Lise T. Gustad " "2,
Arne Mehl'2, Bjern O. Asvold %%, Andrew T. DeWan'*, Jan K. Damas»"'*1%*

PLOS Medicine | https:/doi.org/10.137 1/journal.pmed.1003413 November 16, 2020

Assess the causal association between BMI and risk of and mortality
from BSI by overcoming the limitations of previous observational
studies by conducting an MR study in a general population of
approximately 56,000 participants in Norway with 23 years of follow-up

Study Population

* The Trondelag Health Study (HUNT) is a series
of cross-sectional surveys carried out in Nord-

Trondelag County, Norway

* 130,000 inhabitants who are representative of
the general Norwegian population in terms of
morbidity, mortality, sources of income and age
distribution

* Based on HUNT2 survey conducted in 1995-
1997 with 65,236 participants, 55,908 of whom
had complete data for the analysis

25 26
Outcome
13 18
1,955 (3.7) 144(6.2)
— — — * Linked to all prospectively recorded blood cultures at the two
e S e community hospitals in the catchment area (Levanger and Namsos
1617 294 723.090) s 269) Hospitals) as well as St. Olav’s Hospital in Trondheim (tertiary referral
) ) P center)
FERrere Heom « Data on blood cultures were available from January 1, 1995 through
13810 (27.4) 397 (19.4) 64(18.2) the end Of 2017
e o * Date of death and emigration out of Nord-Trondelag County were
108203 Ba0s) obtained from the Norwegian population registry
St bloodsccam ifection. Data e prseedas * BSI was defined as a positive blood culture of pathogenic bacteria
. coninuaton * BSI mortality was defined as death within 30 days of BSI diagnosis
27 28
Genetic Instrument Analysis Methods
* Based on a BMI meta-analysis of ~700,000 individuals ....... s s * Fractional polynomial model (suggestion of a nonlinear relationship
o e o e between BMI and BSI)
* 939 of 941 SNPs identified as associated with BMI (p<5x10°8, two . X X .
SNPs did not pass imputation quality control) . 2—s.tage Ieast.squa'res (with sandwich estimator) for analyses assuming
o . a linear relationship between exposure and outcome
* Genetic risk score (GRS) was calculated for BMI using the --score o
command in PLINK (version 1.9) and weighted based on the effect * Sensitivity analyses
estimates from the meta-analysis * MR Egger (random effects)
* INW
* Weighted median
* GRS (939 variants) explained 4.2% of the variation in BMl in the « 2-sample (using Yengo et al. for SNP-exposure associations)
population (F-statistic = 2,461)
29 30
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Table 1. Background chractrisis

Hazard ratio for B incidence

50
Body mass index

31 32

2
L

-2
L

Instrument-outc%me associations
L

Hazard ratio for BS| mortality

05 <
v T T T T T
0 .05 A 15 2 25
Instrument-exposure associations
* Instuments 959 Cls MR Eggor MREqger95% Gl — — = VW
% £ E3
Body mass index
S5 Table. Mendel I body
bloodstream infection mortality in the general population - N e . . . X
WROR  bowe  Uppe P e Lover  Upper v STROBE-MR: Guidelines for strengthening the reporting of
Mendelian randomization studies

Authors (in alphabetical order):

George Davey Smith, Neil M Davies, Niki Dimou, Matthias Egger, Valentina Gallo, Robert

Golub, Julian PT Higgins, Claudia Langenberg, Elizabeth W Loder, J Brent Richards, Rebecca

i C Richmond, Veronika W Skrivankova, Sonja A Swanson, Nicholas J Timpson, Anne Tybjaerg-
Hansen, Tyler J VanderWeele, Benjamin AR Woolf, James Yarmolinsky

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.27857v1 | CC BY 4.0 Open Access | rec: 15 Jul 2019, publ: 15 Jul 2019,
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INTRODUCTION

2. Background

Explain the scientific background and rationale for the reported study. Is causality between
exposure and outcome plausible? Justify why MR is a helpful method to address the study
question.

METHODS

4. Study des
Present key elements of study design early in the paper. Consider including a table listing
sources of data for all phases of the study. For each data source contributing to the analysis,
describe the following

ign and data sources

a) Describe the study design and the underlying population from which it was drawn.
periods of recruitment,

be also the setting, locations, and relevant dates,
exposure, follow-up, and data collectior

if available,

b) Give the eligibility criteria, and the sources and methods of selection of participants.

©) Explain how the analyzed sample size was arrived at

ants.

d) Describe measurement, quality and selection of genetic vau
nt variables, describe methods of assessment
ria used.

€) For each exposure, outcome and other relev
and, in the case of diseases, the diagnostic c

) Provide details of ethics committee approval and participant informed consent, if

relevant.

5. Assumptions

Explicitly state assumptions for the main analysis (e.g. relevance, exclusion, independence,
homogeneity) as well assumptions for any additional or sensitivity analysi

6. Statistical methods: main analysis
Describe statistical methods and statistics used.

a) Describe how quantitative variables were handled in the analyses (i.e., scale, units,
model).

b) Describe the process for identifying genctic variants and weights to be included in the
ses (i, independence and model). Consider a flow diagram.

©) Describe the MR estimator, e.g. two-stage least squares, Wald ratio, and related statistics.
Detail the included covariates and, in case of two-sample MR, whether the same
covariate set was used for adjustment in the two samples.

e

Explain how missing data were addressed.

If applicable, say how multiple testing was dealt with.

7. Assessment of assumptions

Describe any methods used to assess the assumptions or justify their validity

analyses or additional analyses performed.

10. Descriptive data

) For two-sample Mendelian randomization:

i of the genetic varia associa

ovide l
between the exposure and outcome san
e

i Pro amp posure an
outcome data sources.

37

38

11. Main results

a) Report the associations between genetic v

ant and exposure, and between genetic
and 75"

preferably on an interpretable scale (¢
level data a

variant and outcom

percentile of allele count or genetic risk score,
b) Report causal effect estimate between exposure and outcome, and the measures of
uncertainty from the MR analysis. Use an intuitive scale, such as odds ratio, or relative
risk, per standard deviation difference.
nsider translating estimates of relative risk into absolute risk for a

©) If relevant, c

meaningful time-period.
d) Consider any plots to visualize results (e.g. forest plot, scatterplot of associations between

genetic variants and outcome versus between genetic variants and exposure).

12. Assessment of assu

a) Assess the validity of the assumptions.

b) Report any additional statistics (e.g., assessments of heterogeneity., such as I, Q statistic).

ensitivity and additional analyses

) Use sensitivity ai
assumptions.

lyses to assess the robustness of the main results to violations of the

b) Report results from other sensitivity analy

yses (e.g., replication study with different
yses of subgroups, validation of instrument(s), simulations, etc.

dataset,

y (e.g. bidirectional MR).

assessment of direction of causal

¢ Reporta

d) When relevant, imates from non-MR analyses.

report and compare with e:

one-out

€) Consider any additional plots to visualize results (e.g., leav alyses).

Strong evidence Interventional
of causation

Systematic
review of RCTs

RCT

Cohort
Case control

Very weak evidence Ecological Observational

of causation

39

40

Limitations

* Exposure randomization may not be truly random

* Unmeasured or residual confounding (population stratification,
parental genotype associated with outcome)

* Weak instrument bias resulting from measurement error for the
exposure of interest

* Adaptation to the exposure
* Inconsistent results and selective publication

ASE e g — .

http://app.mrbase.org/

Harmonise exposure and
outcome effects

 —rw—]
s o T s o T

-EE EES & SRS
7

41
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BMI and Lung Cancer
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W Linear Mixed Models (LMM:s)
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‘_— Heather Cordell (Newcastle)

Linear Mixed Models (LMM:s)

@ Linear Mixed Models have been used for many years in the plant and
animal breeding communities
@ In the mid 1990s they became popular in the human genetics field,
mostly for performing linkage analysis and estimating heritability
o Using family (pedigree) data i.e. related individuals
® In recent years they have become popular in the genetic association
studies field for:
e Testing for association while accounting for varying degrees of
relatedness
@ Close family relationships
@ Distant relationships and population stratification/substructure

Heather Cordell (Newcastle) GWAS (Part 2) 2/
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Linear Mixed Models (LMM:s)

@ Linear Mixed Models have been used for many years in the plant and
animal breeding communities

@ In the mid 1990s they became popular in the human genetics field,
mostly for performing linkage analysis and estimating heritability
o Using family (pedigree) data i.e. related individuals

@ In recent years they have become popular in the genetic association
studies field for:
@ Testing for association while accounting for varying degrees of
relatedness

@ Close family relationships
@ Distant relationships and population stratification/substructure

e Estimating the heritability accounted for various partitions of SNPs:
@ All SNPs typed on a GWAS panel
@ All typed SNPs and others in LD with them
@ Partitions of SNPs in various functional categories
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Linear Mixed Models (LMM:s) Linear Mixed Models (LMM:s)

@ Linear Mixed Models have been used for many years in the plant and @ Linear Mixed Models have been used for many years in the plant and
animal breeding communities animal breeding communities
@ In the mid 1990s they became popular in the human genetics field, @ In the mid 1990s they became popular in the human genetics field,
mostly for performing linkage analysis and estimating heritability mostly for performing linkage analysis and estimating heritability
e Using family (pedigree) data i.e. related individuals e Using family (pedigree) data i.e. related individuals
@ In recent years they have become popular in the genetic association @ In recent years they have become popular in the genetic association
studies field for: studies field for:
e Testing for association while accounting for varying degrees of e Testing for association while accounting for varying degrees of
relatedness relatedness
@ Close family relationships @ Close family relationships
@ Distant relationships and population stratification/substructure @ Distant relationships and population stratification/substructure
e Estimating the heritability accounted for various partitions of SNPs: e Estimating the heritability accounted for various partitions of SNPs:
@ All SNPs typed on a GWAS panel @ All SNPs typed on a GWAS panel
@ All typed SNPs and others in LD with them @ All typed SNPs and others in LD with them
@ Partitions of SNPs in various functional categories @ Partitions of SNPs in various functional categories
e Investigating genetic correlations between different traits @ Investigating genetic correlations between different traits

e Predicting trait values in a new individual

Heather Cordell (Newcastle) GWAS (Part 2) 2 /38 Heather Cordell (Newcastle) GWAS (Part 2) 2 /38

Population stratification and relatedness Linear Mixed Models (LMM:s)

® A linear mixed model is a statistical model in which the dependent
variable is a linear function of both fixed and random independent
variables
& Known respectively as fixed and random effects
e Fixed effects are considered ‘fixed' at their measured values
e Random effects are considered to be sampled from a distribution

Genes mirror geography within Europe

J Novembre et al. (2008) Nature 456(7218):98-101, doi:10.1038/nature07331

Heather Cordell (Newcastle) GWAS (Part 2) 3/38 Heather Cordell (Newcastle) GWAS (Part 2) 4 /38
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Linear Regression

Linear Mixed Models (LMM:s)

@ A linear mixed model is a statistical model in which the dependent
variable is a linear function of both fixed and random independent

variables
e Known respectively as fixed and random effects 3 | o
o Fixed effects are considered ‘fixed' at their measured values o
e Random effects are considered to be sampled from a distribution ER . <l
@ Recall the usual linear regression model S * T
- -
y=mx+c or y = Bo + Six & _.

@ This model may also be written =1

Yi = Bo + B1x; + €; ; . : : ‘

] 5 10 15 20
e y; refers to the trait value of person i x
e x; refers to the measured value of person i's predictor variable
o ¢; refers to the displacement from the regression line
@ j.e. the discrepency between the observed and the predicted y value
Heather Cordell (Newcastle) GWAS (Part 2) E Heather Cordell (Newcastle) GWAS (Part 2) E

Linear Mixed Models (LMM:s) Linear Mixed Models (LMM:s)

@ In linear regression we have y; = By + S1xi + €;
e Here By and 31 are fixed effects while ¢; is a random error

@ In linear regression we have y; = o + S1xi + €;
@ Here By and f3; are fixed effects while ¢; is a random error
e X; is the ‘loading’ of the fixed effect that someone has (based on their
genotype)

e X; is the ‘loading’ of the fixed effect that someone has (based on their
genotype)

@ |n matrix notation we can write this model: @ |n matrix notation we can write this model:

n 1 x €1 n 1 x €1
y2 1 x €2 y2 1 x €2
_ Bo " Bo "
B1 B1
Yn 1 xp €n Yn 1 xp €n
sor y=X8+e eor y=XB+c¢€
o A LMM takes the formy = X8 + Zu + €
@ where u corresponds to a vector of random effects
@ with loadings specified in Z
Heather Cordell (Newcastle) GWAS (Part 2) / 38 Heather Cordell (Newcastle) GWAS (Part 2) / 38
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Linear Mixed Models (LMM:s) LMMs in genetics

@ In genetics we generally work with two equivalent forms of LMM

@ E.g. suppose 2 fixed effects 81 and 52, and 3 random effects (plus n

random errors) @ One is: y=XB+Zu + ¢

@ Theny = X3 + Zu + € corresponds to: e The random effect u; corresponds to a scaled additive effect of causal
variant (locus) /

Y1 X11  X12 Z11  Z12 2413 €1 @ Assuming many (m) such causal variants all across the genome
y2 X21  X22 221 222 223 uy €2

_ 5 e Z is a standardized genotype matrix i.e. zj takes value

= 5, + uz [+

us : —2f, (1-2f) 21— £)
X X Z Z Z € s )

Yn nl n2 nl n2 n3 n \/21(/(1_1(/) \/Zf/(l—f/) \/Qﬁ(l—ﬂ)

if individual i has genotype (qq, Qq, QQ)
e or y; = Bixj + Boxiz + u1Zin + taZip + UzZiz + €
@ where f; is the frequency of allele Q at locus /

Heather Cordell (Newcastle) GWAS (Part 2) 7 /38 Heather Cordell (Newcastle) GWAS (Part 2) 8 /38

LMMs in genetics LMMs in genetics

@ The other formis: y=X8+ g+ € @ The other formis: y=X8+ g+ €
e Where g; = 27;1 zjjuy is the total genetic effect in individual i, @ Where g; = 27;1 zjjuy is the total genetic effect in individual i,
summed over all the causal loci summed over all the causal loci
® In this form, g; can be considered as a random effect operating @ In this form, g; can be considered as a random effect operating
in individual / in individual /
o The vector of random effects g takes distribution g ~ N(0, Go?2) o The vector of random effects g takes distribution g ~ N(0, Go?2)
@ Where G is the genetic relationship matrix (GRM) @ Where G is the genetic relationship matrix (GRM)
between individuals — i.e. their IBD sharing at the causal loci between individuals — i.e. their IBD sharing at the causal loci
e 02 = mo? is the total additive genetic variance ® 02 = mo? is the total additive genetic variance
® G=2ZZ'/m ° G=ZZ'/m

® For family data (close relatives), the expected values of the elements
of G equal the expected IBD sharing

@ i.e. twice the kinship coefficients
@ Thus G is just equal to twice the kinship matrix

@ Models their expected relatedness at the causal loci (and elsewhere)

Heather Cordell (Newcastle) GWAS (Part 2) 9 /38 Heather Cordell (Newcastle) GWAS (Part 2) 9 /38
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Use of LMMs in genetics Testing for association using LMMs

@ Idea is to test a fixed SNP effect 31

® The formulation y = X3 + g + € is known as the Animal Model e While including a random effect y; that models relatedness
and has been used extensively in plant and animal breeding
@ Fit regression model: yi = Bo+ Bixi +7i

@ y is the trait value

e x is a variable coding for genotype at the test SNP
(e.g. an allele count, coded 0, 1, 2 for genotypes 1/1, 1/2, 2/2)

@ Y =gite¢

e Mostly to predict the breeding values g; in order to inform breeding
strategies
@ E.g. to increase milk yield, meat production etc. etc.

e Similar approaches could be used for prediction of trait values given
genotype data

@ In the mid 1990s it became popular in human genetics as the
backbone of variance components linkage analysis

@ Now commonly used in association analysis (GWAS)

e To correct for relatedness, when testing for association

Heather Cordell (Newcastle) GWAS (Part 2) 10 / 38 Heather Cordell (Newcastle) GWAS (Part 2) 11 /38

Testing for association using LMMs Testing for association using LMMs

@ Idea is to test a fixed SNP effect 31
e While including a random effect +; that models relatedness

Vi = Bo + Bix; + i ® | MMs were first (?) applied in human genetics by Boerwinkle et al.

@ Fit regression model:
(1986) and Abney et al. (2002)

e y is the trait value

° xisa Variﬁblle coding fo; gderg)oti/pz ?t the test SNT 1 1/2 2/2 ® Chen and Abecasis (2007) implemented them via the " FAmily based
(e.g- an allele count, coded 0, 1, 2 for genotypes 1/1, 1/2, 2/2) Score Test Approximation” (FASTA) in the MERLIN software

° i =8itE package

e We assume v ~ MVN(0, V) where variance/covariance matrix V o Closely related to earlier QTDT method (Abecasis et al. 2000a;b)

follows standard variance components model which implements a slightly more general /complex model

@ Variance/covariance matrix structured as: . . . .
' fovari T structu @ FASTA was also implemented in GenABEL, along with a similar test

Vi = oi+02 (i=)) called GRAMMAR (Aulchenko et al. 2007)
Vi = 20505 (i#))

@ 02, 02 represent the additive polygenic variance (due to all loci) and
the environmental (=error) variance, respectively

Heather Cordell (Newcastle) GWAS (Part 2) 11 /38 Heather Cordell (Newcastle) GWAS (Part 2) 12 / 38
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Estimating the genetic relationship matrix Estimating the genetic relationship matrix

@ Once you move to estimating the GRM, you are no longer limited to
using family data

@ These early implementations calculated the kinship matrix ® on the @ Kang et al. (2010) and Zhang et al. (2010) suggested applying the
basis of known (theoretical) kinships constructed from known approach to apparently unrelated individuals
pedigree relationships e As a way of accounting for population substructure/stratification
) ) o o e Also proposed applying to binary traits (case/control coded 1/0)
@ Amin et al. (2007) proposed instead estimating the kinships based on e Implemented in EMMAX and TASSEL software, respectively

genome-wide SNP data
o Ideally we want to use G=ZZ’/m, the genetic relationship matrix
(GRM) between individuals at the causal loci

@ Since we don't know the causal loci, we approximate G by A, the
overall GRM between individuals

@ Various different ways to estimate this, usually based on scaled
(by allele frequency) matrix of identity-by-state (IBS) sharing

Heather Cordell (Newcastle) GWAS (Part 2) 13 /38 Heather Cordell (Newcastle) GWAS (Part 2) 14 / 38

Estimating the genetic relationship matrix Software implementations

@ Once you move to estimating the GRM, you are no longer limited to @ Main difference between them is the precise computational tricks used
using family data to speed up the calculations
@ Kang et al. (2010) and Zhang et al. (2010) suggested applying the @ And the convenience/ease of use
approach to apparently unrelated individuals @ See comparison in Eu-Ahsunthornwattana et al. (2014)
» As a way of accounting for population substructure/stratification PLoS Genetics 10(7):1004445

o Also proposed applying to binary traits (case/control coded 1/0)
e Implemented in EMMAX and TASSEL software, respectively

@ Subsequently a number of other publications/software packages have
implemented essentially the same model
e FaST-LMM (Lippert et al. 2011)

o GEMMA (Zhou and Stephens 2012)
o GenABEL (GRAMMAR-Gamma) (Svishcheva et al. 2012)
e MMM (Pirinen et al. 2013)
e MENDEL (Zhou et al. 2014)
o RAREMETALWORKER
e GCTA
e DISSECT
Heather Cordell (Newcastle) GWAS (Part 2) 14 / 38 Heather Cordell (Newcastle) GWAS (Part 2) 15 / 38

114



Software implementations Binary traits

@ Main difference between them is the precise computational tricks used
to speed up the calculations Eor bi . di d | 1/0 o .
o And the convenience/ease of use @ For binary traits, coding cases and controls as a 1/0 quantitative trait

is not optimal
@ See comparison in Eu-Ahsunthornwattana et al. (2014) P . L.
PLoS Genetics 10(7):e1004445 @ Though in practice it seems to work reasonably well

@ BOLT-LMM (Loh et al. 2016) uses a slightly different approach, ® LTMLM (Hayeck et al. 2015) and LEAP (Weissbrod et al. 2015)

based on a Bayesian implementation of LMM formulation 1: instead use an underlying liability model to improve power

y=X8+2u+e€
e One of the first mixed model packages that worked for really large-scale
(e.g. UK Biobank) datasets

o Now potentially (?) superseded by fastGWA module in GCTA

e And by REGENIE (https://doi.org/10.1038,/s41588-021-00870-7),
which uses a slightly different formulation based on analysing the
residuals following a whole-genome blockwise ridge regression

@ Again based on LMM formulation 1: 'y = X3 + Zu + €

e Assuming known disease prevalence

Heather Cordell (Newcastle) GWAS (Part 2) 15/ 38 Heather Cordell (Newcastle) GWAS (Part 2) 16 / 38

Binary traits Binary traits

@ For binary traits, coding cases and controls as a 1/0 quantitative trait
is not optimal

o Though in practice it seems to work reasonably well @ SAIGE software (Zhou et al. 2018, AJHG 50(9):1335-1341)

o LTMLM (Hayeck et al. 2015) and LEAP (Weissbrod et al. 2015) implements a mixed model test that deals with large case-control
instead use an underlying liability model to improve power imbalance, as you might see (for example) in UK Biobank

e Assuming known disease prevalence . . . X i
@ REGENIE also implements this same saddle point approximation

@ Chen et al. (2016) showed that high levels of population stratification (SPA) test
can invalidate the analysis, when applied to a case/control sample
e Resulting in a mixture of inflated and deflated test statistics

e Along with an approximate Firth penalized likelihood-ratio test

e Developed GMMAT software to address this problem
e See also CARAT software (Jiang et al. 2016, AJHG 98:243-55)

Heather Cordell (Newcastle) GWAS (Part 2) 16 / 38 Heather Cordell (Newcastle) GWAS (Part 2) 17 / 38

115



Elucidating genetic architecture Elucidating genetic architecture

@ Seminal paper by Yang et al. (2010) [Nat Genet 42(7):565-9]

@ Basic idea is to use formulation
@ Showed that by framing the relationship between height and genetic

factors as an LMM, 45% of variance could be explained by y=XB+gte

considering 294,831 SNPs simultaneously with g ~ N(0, Ao?) and € ~ N(0, I62) so V = Ao2 + lo2
@ So-called 'SNP heritability’ or ‘chip heritability’
s Demonstrated that modelling effects at all genotyped SNPs explained e Ais the GRM between individuals, estimated using all genotyped SNPs
the ‘known’ heritability (~ 80%) much better than just the top SNPs e 02 and o2 estimated using REML (or MLE)
from GWAS

@ Thus we can estimate heritability accounted for by the genotyped

. . . . . SNPs as 03/(03 + 0?)
@ Moreover, if you estimate effects of additional SNPs in LD with the

genotyped SNPS, the variance explained goes up to 84% (s.e. 16%), @ Implemented in several software packages including GCTA and
consistent with ‘known’ value DISSECT
e ALBI software (Schweiger et al. 2016, AJHG 98:1181-1192) can then
@ Subsequently many papers have shown similar results for a variety of be used to construct accurate confidence intervals for the heritability

complex traits
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Partitioning variance Other approaches

@ The same formulation can be used to partition the variance explained
by different subsets of SNPs @ Some recent work has focussed on achieving similar ends
@ j.e. estimating
@ heritability explained by sets of SNPs
@ genetic correlations across traits

o Yang et al. (2010) partitioned variance onto each of the 22 autosomes
using formulation

y=XB+ Y2 g +e withV=32 Ao?+102 using summary statistics only
where g is a vector of effects attributed to the cth chromosome,
and A is the GRM estimated from SNPs on the cth chromosome o Bulik-Sullivan et al. (2015) [Nat Genet 47:291-295]
@ Slight adjustment is needed for estimating variance explained by SNPs o Bulik-Sullivan et al. (2015) [Nat Genet 47:1236-1241]

on chromosome X
@ Clever idea that allows the variance component parameters to be

® Similar partitioning can be used to examine subsets of SNPs defined estimated via a simple regression on ‘LD Scores’
in other ways e.g. according to MAF or functional annotation
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Short break Gene-gene (and gene-environment) interactions

@ GWAS have been extraordinarily successful at detecting genetic
locations harboring genes associated with complex disease
e But the SNPs identified do not account for the known (estimated)
heritability for most disorders
@ Could GxG and GxE effects account for part of the ‘missing
heritability’ ?
@ Zuk et al. (2012) PNAS 109:1193-1198
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Gene-gene (and gene-environment) interactions Gene-gene (and gene-environment) interactions
@ GWAS have been extraordinarily successful at detecting genetic @ GWAS have been extraordinarily successful at detecting genetic
locations harboring genes associated with complex disease locations harboring genes associated with complex disease
e But the SNPs identified do not account for the known (estimated) e But the SNPs identified do not account for the known (estimated)
heritability for most disorders heritability for most disorders
e Could GxG and GxE effects account for part of the ‘missing @ Could GxG and GxE effects account for part of the ‘missing
heritability' ? heritability’ ?
@ Zuk et al. (2012) PNAS 109:1193-1198 @ Zuk et al. (2012) PNAS 109:1193-1198
@ Effects operating through interactions may not be visible unless you @ Effects operating through interactions may not be visible unless you
stratify by or take account of the interacting genetic (or stratify by or take account of the interacting genetic (or
environmental) factors environmental) factors
e By modelling interactions, we hope to increase our power to detect loci @ By modelling interactions, we hope to increase our power to detect loci
with weak marginal effects with weak marginal effects

@ Phenomenon of biological interest?
@ |dentifying genes that interact to cause disease could help us
understand the mechanisms and pathways in disease progression
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Definition of (pairwise) interaction

Interaction

o Expected trait values (log odds of disease) take the form:

@ Statistical interaction most easily described in terms a of (logistic)

. Factor 2
regression framework Factor 1 | 1 0
e Supppose x; and x, are binary factors whose presence/absence 1 Bo+PBri+P2+P2 Bot+ b
(coded 1/0) may be associated with a disease outcome 0 Bo + F2 Bo

e Logistic regression models their effect on the log odds of disease as:

log

P _ p
17p—/5o+;51><1

Marginal effect of factor 1

log

1

fp = fo + Bixi + faxz

log

p
| = Bo + G
Oglip Do + P2x2

Marginal effect of factor 2

1

f - = fo + fix1 + Pax2 + Braxixz

e S0, 1, B2, P12 are regression coefficients (numbers) that can be

estimated from real data

Main effects of factors 1 and 2 Main effects and interaction term

o For quantitative traits, use linear regression (replace log r”p with y)

e For modelling as an LMM, add in a random effect ~y
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Interaction Interaction

@ Expected trait values (log odds of disease) take the form:

® Expected trait values (log odds of disease) take the form:

o Sy, 1, B2, P12 are regression coefficients (numbers) that can be

estimated from real data

@ Having factor 1 adds f31 to your trait value
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e Sy, 1, B2, P12 are regression coefficients (numbers) that can be
estimated from real data

Factor 2 Factor 2
Factor 1 | 1 0 Factor 1 | 1 0
1 Bo+Bi+ B2+ B2 Bo+ b1 1 Bo+Bi+ B2+ B2 Bo+ b1
0 Bo+ B2 Bo 0 Bo+ B2 Bo

@ Having factor 1 adds 31 to your trait value
@ Having factor 2 adds 3> to your trait value

Heather Cordell (Newcastle)

GWAS (Part 2)



Interaction Interaction

@ Expected trait values (log odds of disease) take the form: o Expected trait values (log odds of disease) take the form:
Factor 2 Factor 2
Factor 1 | 1 0 Factor 1 | 1 0
1 BotPi+Pe+B2 Po+h 1 BotPi+Pe+B2 Po+h
0 Bo + B2 Bo 0 Bo + B2 B
e 3y, 1, B2, P12 are regression coefficients (numbers) that can be e S0, 1, B2, P12 are regression coefficients (numbers) that can be
estimated from real data estimated from real data
@ Having factor 1 adds f31 to your trait value @ Having factor 1 adds 31 to your trait value
@ Having factor 2 adds f3; to your trait value @ Having factor 2 adds 3> to your trait value
@ Having both factors adds an additional 12 to your trait value @ Having both factors adds an additional 12 to your trait value
= Implies that the overall effect of two variables is greater (or less) = Implies that the overall effect of two variables is greater (or less)
than the ‘sum of the parts’ than the ‘sum of the parts’
@ The ‘effect’ of factor 2 is different in the presence/absence of factor 1 @ The ‘effect’ of factor 2 is different in the presence/absence of factor 1

@ Suppose no main effects (81 = 2 = 0)

Factor 2
Factor 1 | 1 0
1 Bo+ P2 Po
0 Bo Bo

e Trait value only differs from baseline if both factors present
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Gene-gene interaction (epistasis) Gene-gene interaction

@ However SNPs are not binary, but rather take 3 levels according to
the number of copies (0,1,2) of the susceptibility allele possessed

. , @ Alternativel dditive effects of each allele at each locus:
@ Most general ‘saturated’ (9 parameter) genotype model allows all 9 ernatively we can assume additive etlects of each aflele at each focus

penetrances to take different values e Corresponds to fitting
e Via modelling log odds in terms of: log 15 = Bo+ Bext + Brxa + Berxaxs
@ A baseline effect (o) P
@ Main effects of locus G (B¢, (c,) with x1, % coded (0,1,2)

@ Main effects of locus H (8h,, BH,)

@ 4 interaction terms Tocus H
0 m Locus G | 2 1 0
Locus G | 2 locus 0 2 Bo+2B6 +26n +4BcH  Bo+286+Bu+266H  Bo+28¢
- . 1 Bo + B6 + 2BH + 2BcH Bo + Bc + BH + Ben Bo + Be
2 Bo+Bc, +0H, +522  Bo+0Bc,+BH +521  Po+Be, 0 Bo + 28w 8o + By Bo
1 Bo+B6, +BH, +512  Po+Be +BH+511 Bo+Ba
0 Bo+BH, Bo+BH, Bo
e Corresponds in statistical analysis packages to coding x1, x2 (0,1,2)
as a “factor”
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Change of scale Change of scale

@ Transformations of outcome variable y can change whether or not the @ Transformations of outcome variable y can change whether or not the
predictor variables interact predictor variables interact
e Due to definition of interaction as departure from a linear model for @ Due to definition of interaction as departure from a linear model for
the effects of x; and x,, for predicting y the effects of x; and x,, for predicting y
@ Two SNPs that interact on the log odds scale may not interact on the @ Two SNPs that interact on the log odds scale may not interact on the
penetrance scale (and vice versa) penetrance scale (and vice versa)
@ Makes biological interpretation of resulting interaction model difficult @ Makes biological interpretation of resulting interaction model difficult

® Much discussion in the literature
@ Siemiatycki and Thomas (1981) Int J Epidemiol 10:383-387; Thompson (1991) J Clin Epidemiol 44:221-232

Phillips (1998) Genetics 149:1167-1171; Cordell (2002) Hum Molec Genet 11:2463-2468

McClay and van den Oord (2006) J Theor Biol 240:149-159; Phillips (2008) Nat Rev Genet 9:855-867
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Clayton DG (2009) PLoS Genet 5(7): €1000540; Wang, Elston and Zhu (2010) Hum Hered 70:269-277

Change of scale Change of scale
@ Transformations of outcome variable y can change whether or not the @ Transformations of outcome variable y can change whether or not the
predictor variables interact predictor variables interact
e Due to definition of interaction as departure from a linear model for @ Due to definition of interaction as departure from a linear model for
the effects of x; and x,, for predicting y the effects of x; and x,, for predicting y
@ Two SNPs that interact on the log odds scale may not interact on the @ Two SNPs that interact on the log odds scale may not interact on the
penetrance scale (and vice versa) penetrance scale (and vice versa)
@ Makes biological interpretation of resulting interaction model difficult @ Makes biological interpretation of resulting interaction model difficult
@ Much discussion in the literature @ Much discussion in the literature
@ Siemiatycki and Thomas (1981) Int J Epidemiol 10:383-387; Thompson (1991) J Clin Epidemiol 44:221-232 @ Siemiatycki and Thomas (1981) Int J Epidemiol 10:383-387; Thompson (1991) J Clin Epidemiol 44:221-232
@ Phillips (1998) Genetics 149:1167-1171; Cordell (2002) Hum Molec Genet 11:2463-2468 @ Phillips (1998) Genetics 149:1167-1171; Cordell (2002) Hum Molec Genet 11:2463-2468
@ McClay and van den Oord (2006) J Theor Biol 240:149-159; Phillips (2008) Nat Rev Genet 9:855-867 @ McClay and van den Oord (2006) J Theor Biol 240:149-159; Phillips (2008) Nat Rev Genet 9:855-867
@ Clayton DG (2009) PLoS Genet 5(7): €1000540; Wang, Elston and Zhu (2010) Hum Hered 70:269-277 @ Clayton DG (2009) PLoS Genet 5(7): €1000540; Wang, Elston and Zhu (2010) Hum Hered 70:269-277
@ Bottom line is, little direct correspondence between statistical @ Bottom line is, little direct correspondence between statistical
interaction and biological interaction interaction and biological interaction
@ In terms of whether, for example, gene products physically interact @ In terms of whether, for example, gene products physically interact

@ However, existence of statistical interaction does imply both loci are
“involved” in disease in some way
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Change of scale Gene-environment (GxE) interactions

@ Transformations of outcome variable y can change whether or not the @ The same regression model
predictor variables interact p )
o Due to definition of interaction as departure from a linear model for log 7— P fo + Boxi + fuxe + fenxaxe

the effects of x; and x,, for predicting y . . .
@ Two SNPs that interact on the log odds scale may not interact on the can be used to model interaction between a genetic factor G and an

penetrance scale (and vice versa) environmental factor H
@ Makes biological interpretation of resulting interaction model difficult e With the environmental variable x» coded in binary fashion (e.g.

@ Much discussion in the literature smoking) or quantitatively (e.g. age)

@ Siemiatycki and Thomas (1981) Int J Epidemiol 10:383-387; Thompson (1991) J Clin Epidemiol 44:221-232

Phillips (1998) Genetics 149:1167-1171; Cordell (2002) Hum Molec Genet 11:2463-2468
@ McClay and van den Oord (2006) J Theor Biol 240:149-159; Phillips (2008) Nat Rev Genet 9:855-867

Clayton DG (2009) PLoS Genet 5(7): €1000540; Wang, Elston and Zhu (2010) Hum Hered 70:269-277

@ Bottom line is, little direct correspondence between statistical
interaction and biological interaction
e In terms of whether, for example, gene products physically interact

@ However, existence of statistical interaction does imply both loci are
“involved” in disease in some way
e Good starting point for further investigation of their (joint) action
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Gene-environment (GXE) interactions Testing association and/or interaction

@ The same regression model

@ Go back to binary coding of genetic (and/or environmental) factors

P p
loj = Bo + Bex1 + Prxe + Beuxix:
1 o + e - Jerae log £ Bix1 + Baxe + Braxixe
. . . 1-p
can be used to model interaction between a genetic factor G and an
environmental factor H @ 3df test of 81 = B2 = [12 = 0 tests for association at both loci
e With the environmental variable x» coded in binary fashion (e.g. (or both variables), allowing for their possible interaction

smoking) or quantitatively (e.g. age)

@ Focus of analysis is often risk estimation
e Estimating genetic risks in particular environments
e Estimating effect of environmental factor on particular genetic
background
@ Important for treatment/screening strategies and public health
interventions

@ For GxG, focus of interest is more related to
o Increasing power to detect an effect (by taking into account the effects
of other genetic loci)
e Modelling the biology, especially related to the joint action of the loci
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Testing association and/or interaction Testing association and/or interaction

@ Go back to binary coding of genetic (and/or environmental) factors @ Go back to binary coding of genetic (and/or environmental) factors
P P
log 1-p_ Bo + Pix1 + Baxa + Praxixe log 1-p_ Bo + Pix1 + Baxa + Praxixe
o 3df test of 81 = B2 = [12 = 0 tests for association at both loci o 3df test of 81 = B2 = S12 = 0 tests for association at both loci
(or both variables), allowing for their possible interaction (or both variables), allowing for their possible interaction
e 2df test of 8, = 12 = 0 tests for association at locus 2, e 2df test of 5, = B12 = 0 tests for association at locus 2,
while allowing for possible interaction with locus (or variable) 1 while allowing for possible interaction with locus (or variable) 1
e 1df test of 8o = 0 tests the interaction term alone
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Testing association and/or interaction Testing association and/or interaction

@ Go back to binary coding of genetic (and/or environmental) factors @ Go back to binary coding of genetic (and/or environmental) factors
P P
log 1-p_ Bo + Brx + Baxa + Braxixe log e Bo + Bix1 + Boxo + Broxixe
e 3df test of 81 = B2 = S12 = 0 tests for association at both loci @ 3df test of 81 = B2 = [12 = 0 tests for association at both loci
(or both variables), allowing for their possible interaction (or both variables), allowing for their possible interaction
e 2df test of By = 12 = 0 tests for association at locus 2, e 2df test of By = 12 = 0 tests for association at locus 2,
while allowing for possible interaction with locus (or variable) 1 while allowing for possible interaction with locus (or variable) 1
o 1df test of 315 = 0 tests the interaction term alone e 1df test of 315 = 0 tests the interaction term alone
@ Depending on circumstances, any of these tests may be a sensible option @ Depending on circumstances, any of these tests may be a sensible option

@ Most tests of interaction/joint action can be thought of as a version of one
or other of these tests
e Although different tests vary in their precise details
e And their relationship to the logistic regression formulation not always
clearly described
@ See Howey and Cordell (2017)
https://pubmed.ncbi.nlm.nih.gov/28852712/
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GxG versus GXE in the context of GWAS GxG in the context of GWAS

@ Many recent publications have focussed on finding clever
computational tricks to speed up exhaustive search procedure

BOOST (Wan et al. (2010) AJHG 87:325-340
@ Typically GWAS measure thousands if not millions of genetic variants : (Wan et al. ( ) )

e SIXPAC (Prabhu and Pe’er (2012) Genome Res 22:2230-2240)
e But only a few (tens or at most 100s) of environmental factors o Kam-Thong et al. (2012) Hum Hered 73:220-236 (GPUs)
. ] o e Fraanberg et al. (2015) PLOS Genetics 11(9):e1005502
@ Feasible to consider all GXE combinations “Discovering genetic interactions in large-scale association studies by

L A . . stage-wise likelihood ratio tests”
@ All pairwise GXG combinations possible, but much more time &

consuming
e And leads to greater multiplicity of tests
e Also, why stop at 2-way interactions?

@ Could look at all 3 way, 4 way etc. combinations
@ Scale of problem quickly gets out of hand
@ Less obvious reason to do this for GXE...
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GxG in the context of GWAS GxG in the context of GWAS

@ Many recent publications have focussed on finding clever @ Many recent publications have focussed on finding clever
computational tricks to speed up exhaustive search procedure computational tricks to speed up exhaustive search procedure
e BOOST (Wan et al. (2010) AJHG 87:325-340) BOOST (Wan et al. (2010) AJHG 87:325-340)
SIXPAC (Prabhu and Pe'er (2012) Genome Res 22:2230-2240)

e SIXPAC (Prabhu and Pe’er (2012) Genome Res 22:2230-2240) °

o Kam-Thong et al. (2012) Hum Hered 73:220-236 (GPUs) e Kam-Thong et al. (2012) Hum Hered 73:220-236 (GPUs)

o Fraanberg et al. (2015) PLOS Genetics 11(9):e1005502 e Fraanberg et al. (2015) PLOS Genetics 11(9):e1005502
“Discovering genetic interactions in large-scale association studies by “Discovering genetic interactions in large-scale association studies by
stage-wise likelihood ratio tests” stage-wise likelihood ratio tests”

@ Or have proposed filtering based on single-locus significance or other @ Or have proposed filtering based on single-locus significance or other
(biological or statistical) considerations (biological or statistical) considerations
e Reduces multiple testing burden, improves interpretability @ Reduces multiple testing burden, improves interpretability

@ Or have proposed testing at the gene level rather than the SNP level
e Ma et al. (2013) PLoS Genet 9(2): 1003321
@ Compared 4 different tests that combine P values from pairwise
(SNP x SNP) interaction tests
@ Showed that the truncated tests did best
@ Presented an application only considering gene pairs known to exhibit
protein-protein interactions
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Case-only analysis Testing correlation between loci

@ Piergorsh et al. 1994; Yang et al. 1999; Weinberg and Umbach 2000 @ A similar idea is implemented in EPIBLASTER

@ Several authors have shown that, for binary predictor variables, a test (Kam-Thong et al. 2011; EJHG 19:465-571)

of the interaction term 15 in the logistic regresssion model @ Wu et al. (2010) (PLoS Genet 6:€1001131) also proposed a similar
approach — though needs adjustment to give correct type | error rates
log —P— = Bo + Bux1 + Boxo + Proxix . -
€1_ p O PRI PR T PI2RLR2 e See also Joint Effects (JE) statistics

(Ueki and Cordell 2012; PLoS Genetics 8(4):e1002625)

can be obtained by testing for correlation (association) between the o All these methods test whether correlation exists (case-only) or is

genotypes at two separate loci, within the sample of cases different in cases and controls (case/control)
e Gains power from making. assumption that genotypes (alleles) at the o Via testing a log OR for association between two loci
two loci are uncorrelated in the population @ However, the log OR for association (A) encapsulates a slightly
@ So only really suitable for unlinked or loosely linked loci (since closely different quantity between the different methods

linked loci are likely to be in LD) . . . . .
] o ] @ All implemented (along with standard logistic and linear regression)
@ Alternatively contrast the genotype correlations in cases with those in CASSI

seen in controls (--fast-epistasis in PLINK) e http://www.staff.ncl.ac.uk/richard.howey/cassi/
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Empirical evidence for Gx G interactions Empirical evidence for GxG interactions

o Epistasis among HLA-DRBI, HLA-DQA1, and HLA-DQBI in

multiple sclerosis (Lincoln et al. 2009 PNAS 106:7542-7547) ® Hemani et al. 2014 (Nature 508:249-253) found 501 instances of
epistatic effects on gene expression, of which 30 could be replicated in
@ HLA-C and ERAPI in psoriasis (Strange et al. 2010) two independent samples
e HLA-B27 and ERAPI in ankylosing spondylitis (Evans et al. 2011) e Many SNPs are close together, could represent haplotype effects?
e BANKI and BLK in SLE (Castillejo-Lopez et al. 2012) ® Or the effect of a single untyped variant?

. . @ See caveats in
@ Gusareva et al. (2014) found a reasonably convincing (partially

replicating) interaction between SNPs on chromosome 6 (KHDRBS2)
and 13 (CRYLI) in Alzheimer's disease

@ Daj et al. (2016) [AJHG 99:352-365] identified 3 loci simultaneously
interacting with established risk factors gastresophageal reflux, obesity
and tobacco smoking, with respect to risk for Barrett's esophagus

@ Wood et al. (2014) Nature 514(7520):E3-5. PMID:25279928
@ Fish et al. (2016) Am J Hum Genet 99(4):817830. PMID:27640306

@ The Hemani et al. paper was subsequently retracted
(https://www.nature.com/articles/s41586-021-03766-y)
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Empirical evidence for GXE interactions Empirical evidence for GXE interactions

@ Myers et al. (2014) Hum Mol Genet 23(19): 5251-9 “Genome-wide @ Favé et al. (2018) Nat Commun 9(1): 827 “Gene-by-environment
Interaction Studies Reveal Sex-Specific Asthma Risk Alleles” Interactions in Urban Populations Modulate Risk Phenotypes”
@ Small et al. (2018) Nat Genet 50(4): 572-580 “Regulatory Variants at
KLF14 Influence Type 2 Diabetes Risk via a Female-Specific Effect on ARTICLE
Adipocyte Size and Body Composition” a S
@ Sung et al. (2019) Hum Molec Genet 28(15): 2615-2633 “A I 0, sion
multi-ancestry genome-wide study incorporating gene-smoking interactions
identifies multiple new loci for pulse pressure and mean arterial pressure.” § .
E sl -
H
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Power Analysis for Single and Rare
Variant Aggregate Association
Analyses

© 2022 Suzanne M. Leal, suzannemleal@gmail.com|

Why Estimate Sample Sizes and/or Power?

* To avoid wasting time and money
— Does not make sense to perform an inadequately powered study for which it
is unlikely to to correctly reject the null hypothesis due to inadequate sample
size
* Collaborations can aid in increasing sample sizes
— Caveats
» Disease definition may not be the same between studies
» Study subjects may be drawn for different populations
» Processing of genetic material maybe not be consistent
* Almost always necessary for grant proposals
— Can be denied funding if unable to demonstrate planned study has adequate
power
* Realistic disease models are necessary when performing power calculations
e Correctly adjust alpha for multiple testing which will be performed
— e.g., use genome-wide significant level of 5 x 10¢ for GWAS studies

2
Power and Sample Size Estimation for Case- Power and Sample Size Estimation for Case-
Control Data Control Data
e The correct a must be use for sample size estimation/power ¢ GWAS of common variants where each variant is test separately
analysis — a=5X10 (Bonferroni Correction for testing 1,000,000 variant sites)
e Type | (a) the probability of rejecting the null hypothesis of no — Shown to be a good approximation for the effective number of tests
association when it is true * Valid even when more than 1,000,000 variant sites tested
. . . . — Effecti f i f the link i ilibri LD
e Due to multiple testing a more stringent value than a=0.05 is Strzga’fenumbero tests is dependent of the linkage disequilibrium (LD)
used in order to control the Family Wise Error Rate X i X
¢ Single variant tests using whole genome sequence data
— Many more rare variants than common variants
* Lower levels of LD between rare variants than between common variants
— The number of effective tests for rare variants is higher than for analysis
limited to common variants
— ais yet to be determined for association analysis of whole genome
sequence data
4
An Example of Determining Genome-wide Power and Sample Size Estimation for Aggregate
Significance Levels for Common Variants Rare Variant Tests
* Using genotypes from the Wellcome Trust Case-Control e For gene-based rare variant aggregate methods a Bonferroni
Consortium correction for the number of genes/regions tested is used
e Dudbridge and Gusnato, Genet Epidemiol 2008 - e.g., 20,000 genes significance level a=2.5x 10
* Estimated a genome-wide significance threshold for the UK * Canuse a less stringent criteria
. — Not all genes have two or more variants
European population » Divide 0.05 by number of genes tested
e By sub-sampling genotypes at increasing densities and using « If units other than genes are used
permutation to estimate the nominal p-value for a 5% family- — Amore stringent criteria may be necessary
wise error e Forrare variants — very low levels of LD between variants in
o Then extrapolating to infinite density separate genes
« The genome wide significance threshold estimate ~7.2X10°8 — Therefore, a Bonferroni correc.:tlon is not overly stringent
« The number of tests = effective number tests
e Estimate is based on LD structure for Europeans ~ This would not be the case for variants in LD
— Not sufficiently stringent for populations of African Ancestry
6
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Power and Sample Size Estimation for Replication

Studies

e For replication studies can base the significance level (a)

e On the number of genes/variants being brought from the
discovery (stage 1) study

e To replication (stage Il)

For example, if it is hypothesized that 20 genes and 80

independent variants will be brought to stage Il (replication)

— A Bonferroni correct can be made for performing 100 tests

« Ana=5.0x103can be used for a family wise error rate of 0.05

Estimating Power/Sample Sizes For Single
Variant Tests

¢ Can be obtained analytically
¢ Information necessary
— Prevalence
— Risk allele frequency
— Effect size (odds ratio-for case control data)
— Genetic model for the susceptibility variant
* Recessive (y1=1)
* Dominant (y2=y1)
* Additive (y2=2y1-1)
* Multiplicative (VZ:VIZ)

7 8
Estimating Power/Sample Sizes For Individual .
g 'p Armitage Trend Test
Variants
e Usually, information on disease prevalence is known from e Power and Sample size
epidemiological data - Calculated under different models
¢ Arange of risk allele allele frequencies and effect sizes are used « Where y is the relative risk
* Avariety of genetic models can also used = Multiplicative
* Dominant _ Ad:_fvz:v‘z
« Additive »' ‘v";w_l
* Multiplicative — Dominant
» vy
— Recessive
» yi=l
9 10

Gamma is the Relative Risk not the Odd Ratio

Most software for power calculations/sample size estimation use
the relative risk (y) and not the odds ratio

e The relative risk only approximates the odds ratio when disease is

rare (Prevalence ~< 0.1%)

— The relative risk is not appropriate for common traits when a case-control
design is used

Correspondence Between the Odds Ratio and Relative Risk

Dominant Model

1/2* RR=1.5 | 2/2" RR=1.5

0.01 1.51 1.51
0.10 1.59 1.59
0.20 1.71 1.71
Multii licative Model
Disease Prevalence
0.01 1.51 2.28
0.10 1.59 2.61
0.20 1.71 3.25

Marker minor allele and disease allele frequency 0.01

D’ and r’=1

*1/2 genotype — heterozygous (one copy of the alternative allele)
**2/2 genotype - homozygous for the alternative allele

11
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Armitage Trend Test - Power Calculations

¢ Information need
— Population prevalence
— Genetic Model
— Risk allele frequency
e Tools
— http://ihg.gsf.de/cgi-bin/hw/power2.pl
— Reference Slager and Schaid 2001

Armitage Test for Trend

Sampie $iz¢ approXimauons 10r ATMIAEE'S ST 10T Urena:

Discase prevalence 001

High risk allele frequency 005

Type 1 error (alpha) 000000005
Power (1- beta) 08
Gamma | 2
Gamma 2 2

Cases / (cases + controls) 0s
Cases necessary = 1502
Controls necessary = 1502

Cases and controls necessary = 3004

submit | Reset
Gamma (genotypic relative risk):

Under a multiplicative model, gamma2 = gammalA2; under  additive model, gamma2 =2 * gammal - 1;
under a dominant model, gamma2 = gammal; under a recessive model, gammal = 1.

Adapted from:

Slager SL, Schaid DJ: Case-control studies of genetic markers:
Power and sample size approximations for Armitage's est for trend.
Hum Hered 52, 149-153 (2001).

an
Freidlin B, Zheng G, Li Z, Gastwirth JL:

Trend tests for case-control studies of genetic markers:
Power, sample size and robustness.

Hum Hered 53, 146-152 (2002).

Tim M. Strom
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Genetic Association Study (GAS) Power Calculator

e http://csg.sph.umich.edu/abecasis/cats/gas _power calculator/i

ndex.html
e A one-stage study power calculator
— Which was derived from CaTs
* Which is to perform two-stage genome wide association studies
— Skol et al. 2006

e Cochran Armitage Trend Test

Displays graphs of the results

GAS Power Calculator

15
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Genetic Power Calculator

e http://zzz.bwh.harvard.edu/gpc/

e SPurcell & P Sham

e Uses the methods described in Sham PC et al. (2000) Am J Hum
Genet 66:1616-1630
— VCQTL linkage for sibships
— VCQTL association for sibships

— VCQTL linkage for sibships conditional on the trait
— TDT for discrete traits
- Case-Control for discrete traits
— TDT for quantitative traits
— Case-Control quantitative traits
e Although input is the relative risk
— Displays odds ratios

Genetic Power Calculator

Case - control for discrete traits

High risk allele frequency (A) : 001 | (0 - 1)

Prevalence : 02 | (0.0001 - 0.9999)
Genotype relative risk Aa $15 (21

Genotype relative risk AA 215 (>1)

D-prime s (0 -1)

Marker allele frequency (B) 001 (0-1)

Number of cases + 10000 (0 - 10000000)
Control : case ratio B (>0)

( 1 = equal number of cases and controls)

Unselected controls? (* see below)

User-defined type I error rate : 000000005 (0.00000001 - 0.5)
User-defined power: determine N : 080 (0 - 1)
(1 - type II error rate)

Process  Reset

Created by Shaun Purcell 24.0ct.2008

17
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http://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/index.html
http://zzz.bwh.harvard.edu/gpc/

er Calculator

Power Association With Errors (PAWE)

http://compgen.rutgers.edu/pawe/
Implements the linear trend test

Four different error models can be used
— See online documentation for complete explanation
Can either perform:
— Power calculations for a fixed sample size
— Sample size calculations for a fixed power
The genotype frequencies can be generated either using a:

— Genetic model free method or
— Genetic model-based method

19 20
Quanto . . -
) ) ) Linkage Disequilibrium (LD)
¢ Provides sample size and power calculations for
* Genetic and environmental main effects « Power will be reduced if causal variant is not in perfect LD (r2=1)
¢ Interactions with the tag SNP
- Genexgene e Can adjust sample size when r2<1 to increase power to the
— Gene x environment
. ) same level as when r2=1
e Sample & power calculations can be carried for:
— Case-control
* Unmatched e Can estimate sample size when r2z1
¢ Matched — N/r=N’
- Casessibling - Valid only for multiplicative model
- Case»pare.nt .(tI‘IOS) — (Pritchard and Przeworski, 2001)
¢ Quantitative i
* Qualitative e Power calculation almost always assume that r2=1
= Independent sample of individuals * For whole genome sequence data this should be the case since
* Quantitative traits ) usually the causal variant would be included in the data
— Assumption sampled from a random population
e Can only be run under windows
— https://pphs.usc.edu/download-quanto/
21 22
Power Analysis for Rare Variant Aggregate Simplistic Analytical Power Calculation for Rare-
Association Tests variant Aggregate Association Analysis
e Assumption
e Many unknown parameters must be modeled P . .
— Allelic architecture within a genetic region — All rare variants are causal and have the same effect size
* Varied across genes and populations . Although usual not be correct
~ Effects of variants within a region — Provides a gestalt of the power for a given samples or sample size
* Fixed or varied effect sizes of causal variants f .
« Bidirectional effect of variants oragiven power
« Proportion of non-causal variants o Use aggregate of allele frequencies
e Power estimated empirically — For example, assume a cumulative allele frequency of 0.025
¢ Simplified assumptions can be made to obtain analytical — Use an exome-wide significant level e.g., 2.5x10
estimates . .
A ) ¢ Provide disease prevalence and penetrance model
— Allvariants have the same effect size . . X
— No non-causal variants within a region that is analyzed in aggregate e Perform calculations in the same manner as was described
for single variants
23 24
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https://urldefense.proofpoint.com/v2/url?u=http-3A__compgen.rutgers.edu_pawe_&d=DwMFAg&c=G2MiLlal7SXE3PeSnG8W6_JBU6FcdVjSsBSbw6gcR0U&r=kQ1dicU9QIx3lqhSii74HsZDNTBu2WQ6MsDpiC2xsMo&m=0dt8Q9U07VjL49DGy7UM-oI_eWM6TAtkjEX_QYuU-DA&s=l_G1Sg6A4Hpfq9fq9FVV3PxqaVYlBsFdG9aE8fOPM58&e=

Empirical Power Calculations

¢ Avariety of methods can be used to generate variant
data to empirically estimate power
¢ Variant data is generated

- Based upon a penetrance model samples of cases and
controls are generated

— Or a quantitative trait is generated based upon the genetic
variance
¢ Multiple replicates are generated and analyzed
— To determine the power

Empirical Power Calculations

e Examples

— 5,000 replicates are generated each with 20,000 cases and

20,000 controls
¢ The power is the proportion of replicates with p-value less than the
specified threshold, e.g., 5x10%

— For rare-variant aggregate tests all autosomal genes are
generated and those genes with more than two rare variants
(e.g., predicted loss of function) are analyzed

* The power is the proportion of genes that were tested with p-value
which is below a specified threshold, e.g., 2.5x10®

25
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Simulation Methods

Other
Coalescent
22.2%
1KGP/GAW
36.1%
Forward-time

11.1%

Note: Not all methods give a realistic distribution of variants & in particular for rare variants

Generating Exome Sequence Data Sets
Forward-time Simulation

Data Haplotype Demographics

Counts

Boyko 105,814*
Kyrukov | 1,800,000*

Generation

>5,000

Gazave | 1,308,000*

576

|-370

*Selection coefficients used to define “variant type”

—"Missense” (1.0 x 105~ 1.8 x 102

nlice site and fr; hift” (>1 8 ¥ 10-2)
SKAT Power Calculator SEQPower
' http://www.bioinformatics.org/spower/
e RLibrary
* Provides a haplotype matrix
— 10,000 haplotypes over 200kb region
N . . R Generation of Phenotype Models
— Simulated using a calibrated coalescent model (cosi) genetic d‘n'hlnr S Power analysis
samples
— Mimicking linkage disequilibrium structure of European ancestry p oo Fraq\wnu::";a;:;uoml TR
— User can also provide haplotype data oot sooum | Poplation atiributabie risk L Qovesanol s
* Power and sample size calculations for binary and quantitative Lngar oame Rare variant ~———
: Real world site quantiative rait ssscctation mathods, association methods
traits froquency specirum power benchmaris
. . . . N Quantitative trait data E:'mnml power
e User specify proportion of variants that increase or lower risk Linear Caselcontrol status or et |
+ Random sample quantitative trait values - S
* Extrome cuantiatvo s
Wang et al. 2014 Bioinformatics
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Generating Variants: Using a European
Demographic Model and Exome Sequence Data

Generation

>1,000

Variant data generated on 18,397 genes

Variant data simulated using a European
population demographic model
— Gazave et al. 2013

10,000

5,633

« Variants generated using exome
sequence data

— 4332 Exomes obtained from European
American

Which method performs better and why?

Does Generating Variant Data Using the European
Population Demographic Model Perform Well?

Distribution of number of variants per gene

B simulated Data
B ESP Data

300 500 o > o 100

. Simulated variant counts based « Simulated variant counts based on

on the entire simulated population h.aplotype pool down-sampled to ESP

31
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Simulating Data Using Sequence Data (ESP)

0

- S gold sta = Singleton
= ESP from allle frequency - Doubleto
@4 ESP: samplo with replacement - Trplot

Number of variants

> WIS,
ENNNNNNNINNNINANNY
AARARARARRNRNRNNANY

S WISIIIIII NI IO I
[N\ N NNRNRNRNNNNNNNY
VIIIIIIIII NI IIIN T
AN NNNRRRRRRRRNRSRSNN

By 7 7 T2
[NNNNNANANRNANANNNN NN
AN NNRRRARANARRRRRRRNANN
NN NN

AXNANNANNRNNY

§
s%
M

. M

100

201
Sample size

Proportion of Variant Sites that are
Singletons, Doubletons and Tripletons

Sample size

Number of Variant Sites

Simulating Data: Using Population
Demographic Models (PDM)

£
- ESP: gold st
W PDM: from allle freque
" POM: sample

Number of variants.
Proportion of variants

By 7777777774
ANARNRANNNY

Bl 77777777772
RS
[r777777777777777777772)
SRS

B 7777777777777777777777777
RS

B 7777777777777
ARARAAAAARRANNNNSS

B 7777777777777
R

B rrrrrrzzzzz77zz77774
RS

Bl r777777777777777772
ALIAALALARARANARARNNNS Y

|77 7rrrrrrrrzzz7777773
RS

N ]
S v
AN

3000

Sample size

Proportion of Variant Sites that are

Sample siz

Number of Variant Sites Singletons, Doubletons and Tripletons
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Simulation Studies to Evaluate Power for Rare Variant
Association Studies

It is unknown which genes are important in disease etiology
— Correct allelic architecture is unknown
Can get a better understanding of power to detect
associations by generating variants for the entire exome
Use a variety of disease models

— 0dds ratios

— Proportion of pathogenic variants

Analyze of all genes

— e.g., those with 2 or more variant sites

Determine power as the proportion of genes that meet
exome-wide significance (e.g., alpha=2.5x10%)

Power Analysis

e For tests of individual variants

— Power depended on sample size, disease prevalence, minor
allele frequency, genetic model and variant effect size

¢ For rare variants (aggregate association tests)

— Also dependent on the allelic architecture
* Cumulative variant frequency within analyzed region
* Proportion of causal variants
— How much contamination from non-causal variants
* Effect sizes the same the same or different across gene regions
- Effects of variants in the same or different directions
» Protective and detrimental for binary traits

» Increase and decrease quantitative trait values

35
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Power Analysis Rare Variants
(Aggregate Association Tests)

¢ Power will not only vary between traits greatly
¢ The power to detect an association will also vary
drastically between genes for the same complex trait
— For some causal genes even with hundreds of thousands of
samples power will be low
— While for other causal genes a few thousand samples may be
sufficient

How Large of a Sample Size is Necessary to
Detect Rare Variant Associations?

Generation

* Data generated on 18,397 genes >1,000
* Variant data simulated using a 10,000
European population demographic 620

model 5,633

— Gazave etal. 2013

141

¢ Every missense, nonsense and splice with a MAF< 1% assigned an
odds ratio of 1.5
e Sample sizes to detect X number of genes determined for
- a=25x10°%
— power=0.8

37
Sample Sizes Necessary to Detect an Association
(Case-Control Data)
39

38

132




Genotype Pattern Mining For
Digenic Traits

Advanced Gene Mapping Course, November 2022

Jurg Ott, Ph.D., Professor Emeritus

- SNE 1o,
Rockefeller University, New York é/ Wl

THE

<,

https://lab.rockefeller.edu/ott, 3 \R°§§§§&§f¥y B
ott@rockefeller.edu O
'Mltmrﬁ‘

PH +1 646 321 1013

Topics

O Science develops independently in different fields:
B Human gene mapping
B Frequent Pattern Mining

O Case-control association analysis
B Main effects in genetic association studies

B Interaction effects in case-control data
O Mining consumer databases

B The Apriori algorithm

B Newer algorithms: eclat, fpgrowth

B Analysis of AMD dataset

Ott "Genotype Patterns"
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Jurg Ott, PhD

Professor Emeritus and Director
Laboratory of Statistical Genetics
Rockefeller University

New York, NY 10065

https:

EM: ott@rockefeller.edu
PH: +1 646 321 1013

Research Interests

ion in on website

Collaboration with researchers world-wide on their data

Recent publications: [1-5] (#1 now freely available from
https://www. jurgott.org/linkage/LinkageHandbook.pdf')

1994.

Development of analysis methods for genetic data, genetic linkage and association analysis

1. Terwilliger DJ, Ott J. Handbook of human genetic linkage. Johns Hopkins University Press.

2. Imai-Okazaki A, Li Y, Horpaopan S, Riazalhosseini Y, Garshasbi M, Mosse YP, et al.

Heterozygosity mapping for human dominant trait variants. Hum Mutat. 2019 Apr

24;40(7):996-1004.

testing. Genet Epidemiol. 2020 Oct;44(7):741-47.

4. Okazaki A, Yamazaki S, Inoue I, Ott J. Population genetics: past, present, and future. Human

lab.rockefeller.edu/ott, genetics. 2020:1-10.

interacting variants underlying digenic traits. Genes. 2021;12(8):1160.

3. Horpaopan S, Fann CSJ, Lathrop M, Ott J. Shared genomic segment analysis with equivalence

5. Okazaki A, Horpaopan S, Zhang Q, Randesi M, Ott J. Genotype pattern mining for pairs of

Ott "Genotype Patterns"

Main association effects

O Consider two DNA variants with minor alleles A and T. Even when on the same
chromosome, the frequency of A-T chromosomes (haplotypes) is the product of
allele frequencies, P(A-T) = P(A) P(T) — linkage equilibrium. Variants very close

together: P(A-T) # P(A) P(T) — LD,

linkage disequilibrium. r ALSPAC

O Disease variant vs marker variant: o cailalt;,aicrl';rDZfZ,
Different genotype fre.:quencifzs m cases 03 42,800 SNPs
and controls — genetlc association. with MAF >

O Recessive traits: Variants close to disease 020

tend to be homozygous (homozygosity 01
mapping; Lander & Botstein, Science
36: s 0
LIB7 23656770 02 03 04 07 12 20 33 54 89
O Dominant traits: Variants close to disease

tend to be heterozygous (Imai-Okazaki et AA | AG | GG
al, Hum Mutat 2019;40:996-1004): affe?fted < 8(1]3 g;g 85
P(het) > 1 - £, P(het, popul.) = 2/(1 - f), f = MAF unaffecte : E :

(het) >1 - £, P(het, popul.) = 2f(1 - /), f o T

Ott "Genotype Patterns" 4



Multiple Hits ... Digenic Diseases

Ming & Muenke (2002) Am | Hum Genet 71, 1017 (review)

Schaffer A (2013) ] Med Genet 50, 641-52 (review)
I

- GENE 1 GENE 2
EFFECT AND
PHENOTYPE Mutation Phenotype Mutation Phenotype
Synergistic:
RP Normal RDg§*1E Normal
RP Normal RDS™"%" Normal
Bardet-Bied! Normal BBS6MX Normal
Deafness Normal GJB6*"~ Normal
Deafness Normal GJB6™~ Normal
Hirschsprung Normal EDNRB*®30N Normal
Severe insulin resistance Normal PPPIR3A™C181AG Normal
Modifier:
Juvenile-onset glaucoma Adult-onset glaucoma CYP1B*/e! Normal

Usher 1 Usher 3 Normal

Congenital nonlethal JEB COLI7ATM2%555% Juyenile JEB LAMB3 ™" Normal
More severe ADPKD PRD1 ¥ Less severe ADPKD ~ PKD2 /2152is Less severe ADPKD
More severe hearing loss DFNAT Mild hearing loss DFNA2 Mild hearing loss
WS2/0A MITE /44 ?WS2 TYR 402 Normal
More severe WS2/OA MITR %l 2WS2 TYRMOZQEAZQ Normal

Ott "Genotype Patterns" 5

Different Levels of Genetic Interactions
Okazaki & Ott (2022) Trends in Genetics 38 (10):1013-1018

1. Traditionally, disease association has been carried out on the level of
alleles or genotypes. The total number of pairs can be prohibitively large.
While this level of analysis generally requires the most effort, it also entails
the highest level of precision in the sense that disease-causing elements can
be directly traced down to nucleotides.

2. Working with pairs of variants provides some economy of computational
effort but may ‘dilute’ a signal from a single genotype pair when all nine
genotype pairs in a pair of variants are analyzed jointly.

3. Finally, focusing on pairs of genes represents the most economical
approach but is also the most imprecise among the three strategies. Also,
focusing on genes disregards susceptibility elements outside of genes.
Distant-acting transcriptional enhancers have been known for over 10 years
to affect susceptibility to human disease and noncoding RNAs have been
shown to be associated with many diseases, for example, cardiac
hypertrophy.

Ott "Genotype Patterns" 7
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How to analyze interaction effects?

O Hyperlipidemia data: 5 relevant genes, ~200 variants in each gene, look for
interactions in each pair of variants. Work with LR chi-square!

CASES Variant 1 CONTROLS Variant 1 Data chi-sq df
Var2 |GG |GT |[TT Var 2 GG |GT |TT cases 3.3591| 4
AA AA controls 3.6658| 4
AC AC both 1.4255| 4
cc [. |.. . cC . |heterogeneity | 5.5994| 4
2 =2 2
X Heterogeneity — % Cases T X Controls ~ X both
Var 1 -> GG GT TT Source chi-sq df
Var2->| AA|AC|[CC|AA|AC|CC| AA| AC|CC/| |Var 1 main 0.4196| 2
cases Var 2 main 48.1979| 2
controls Interaction 5.5994| 4
5 -, - - Total table | 54.2169] 8
K Interaction ~ A Total — A Varl — X Var2
O  More sophisticated analysis by logistic regression (Cordell, Nat Rev Genet
2009;10:392-404).
Ott "Genotype Patterns" 6

Finding disease-associated pairs of
genotypes

1. Multifactor Dimensionality Reduction (MDR)
Ritchie MD, Hahn LW, Moore JH. Power of multifactor dimensionality reduction
for detecting gene-gene interactions ... Genet Epidemiol 2003;24:150-157

2. Exhaustive evaluation of all pairs of genotypes at all pairs of
variants

3. Applying off-the-shelf pattern search algorithms
Chee C-H, Jaafar ], Aziz IA, Hasan MH, Yeoh W. Algorithms for frequent itemset
mining: a literature review. Artificial Intelligence Review. 2019;52(4):2603-21

4. Construction of Bayesian network
Guo Y, Zhong Z, et al. Epi-GTBN: An approach of epistasis mining based on
genetic Tabu algorithm and Bayesian network. BMC Bioinform 2019;20:444
5. Sophisticated computational approaches

Titarenko SS, Titarenko VN, Aivaliotis G, Palczewski J. Fast implementation of
pattern mining algorithms ... . Journal of Big Data. 2019; 13(6):37

Ott "Genotype Patterns" 8



1. MDR

Ritchie MD, Hahn LW, Moore
JH. Power of multifactor
dimensionality reduction for
detecting gene-gene
interactions ... Genet
Epidemiol 2003;24:150-157
Classify each of the 9 cells as
high risk or low risk.

STEP2

Factor

12

B:ma
ST
STEPS | —

Locus 6

LocusN

STEP 4 |
Evaluate prediction error

(case vs. control) by cross-
validation.

Locus 3
Aa

AA an

Find model that maximizes
cross-validation consistency
and minimizes prediction
error.

Ott "Genotype Patterns" 9

All pairs of SNPs

Ueki & Cordell (2012) PLoS Genet 8(4): €1002625

Interaction statistic, x> (1 df). Implemented in plink with option
--fast-epistatisis joint-effects

Applied to schizophrenia data: 2,164 males, 853,934 SNPs
Trend genotype test (plink), permutation testing with 10,000
replicates: 5 SNPs with p < 0.05 by permutation and Bonferroni.
Interaction tests for all pairs of SNPs, disregarding the 5 SNPs
significant in trend test.

Much stronger results
even thoughng Pgon < | #SNPs | same chr.
obtained as 853,929 x p. 0.01 259 41
General result? 0.05 452 63
Ott "Genotype Patterns" 11
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2. Exhaustive search for interacting SNPs

O

“Discovering Genetic Factors for psoriasis through
exhaustively searching for significant second order SNP-
SNP interactions”

Kwan-Yeung Lee, Kwong-Sak Leung, Nelson L. S. Tang & Man-Hon Wong.
Sci Rep 2018;8:15186

Abstract: To deal with the enormous search space, our search algorithm is
accelerated with eight biological plausible interaction patterns and a pre-
computed look-up table. After our search, we have discovered several
SNPs having a stronger association to psoriasis when they are in
combination with another SNP...

Ott "Genotype Patterns" 10

3. Frequent Pattern Mining

O

Thirty years ago, supermarkets started collecting huge amounts of consumer data
at their cashiers. Consumer habits - if someone buys bread, how likely will they
also buy milk and wine?

Apriori algorithm (Agrawal et al, ACM SIGMOD Conference on Management of
Data 1993; 207-216): Efficient search for frequent sets of items (“itemsets”)
purchased by one consumer (“transaction”). Development of association rules,
that is, conditional probabilities P(Y | X), with Y and X being items or itemsets.
Research published in conference proceedings, rarely in traditional journals.

In the absence of strong main effects, we need to directly search for genotype
patterns (at two or more variants) with different frequencies in cases and
controls, without consulting main effects.

Zhang Q, Long Q, Ott J. AprioriGWAS, a new pattern mining strategy for
detecting genetic variants associated with disease through interaction effects.
PLoS Comput Biol. 2014 Jun;10(6):e1003627

Other implementations of search algorithms, e.g. fpgrowth
(https://borgelt.net/software. html). Huge memory demands: Using Linux
desktop with 512 GB of memory.

Ott "Genotype Patterns" 12



4. Bayesian networks

O

Guo Y et al. Epi-GTBN: An approach of epistasis mining based on ...
Bayesian network. BMC Bioinform. 2019;20:444

Like many other approaches, Epi-GTBN employs a Bayesian network,
that is, a probabilistic model to represent actions and interactions
among variants and phenotypes.

Authors analyzed a well-known dataset on age-related macular
degeneration (AMD), which has been investigated by various other
researchers. For analysis by Epi-GTBN, to reduce the computational
burden, only the 1,039 SNPs with smallest p-values (p < 0.01) out of
the original 103,611 SNPs were retained.

Results were comparable to those obtained elsewhere.

Focusing on variants with strong main effects is fallacious! Frequencies
of genotype patterns depend on main and interaction effects: Strong
main effects are likely to lead to strong (significant) genotype patterns.

Ott "Genotype Patterns" 13

AMD data: Genotype pattern analysis

Klein et al (2005) Science 308 (5720:385-389

s Sgarch fof patterns (genotype pairs) supp| conf chisq pPerm | OR |chl| ch2
with minimum support of 40. 40| 90.0] 47.2604] 0015 185 3| 4
Perform 1000 random permutations 20l 900 272602 0015 185 3| 2
for p-value estimation (corrected for s3] 811l azs124] 0098 95 1| 5
multiple testing). 56| 786] 39481 0315 81 6| 7

O  Find m = 18,044,794 patterns. 56| 78.6] 39.481] 0315 81| 6 7

O Two patterns are significant, p = 0.015,
compared with the best p = 0.60 in single- alpha | Perm | Bonf | FDR-BY
variant analysis by trend test. 0.001 0 2 2

O  Expect many more significant genotype 0.01 0 9 3
patterns than single-variant results. 0.02 2 11 11

O Different ways of establishing significance: 0-03 2 6 3
Bonferroni correction; FDR depends on .
large number m of “null” results. 0.04 2 18 61

O  Compare confidence of 90% with 43% of 0.05 2 19] 11905
cases (“null” confidence) in data.

Ott "Genotype Patterns" 15
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5. Newer Algorithms

1) http:

www.philippe-fournier-viger.com/spmf

2) Titarenko SS et al. Fast implementation of pattern mining algorithms ... . Journal of
Big Data. 2019; 13(6):37

O

(]

1) Superb documentation, freely downloadable. Large memory
requirements although not as large as for fpgrowth (Borgelt).

2) Apriori principle vs. evaluating all genotype pairs.
Schizophrenia data: 853,934 SNPs vs 344,831,940,768 pairs (diff. chrom)

For a given pattern (pair) of genotypes, X, its relation with phenotype
Y is specified by a 2 x 2 table.

Phenotype X present X absent
Support, s=atc Y =2, cases a b
Confidence, c=a/(a+c) Y = 1, controls c d

Current computer approaches: Work with bitwise operations
(1 word = 4 bytes = 32 bits) and with multiple threads in a single
machine.

Ott "Genotype Patterns" 14



Why are we doing genetics?

Genetics

GENOTYPE —> i} PHENOTYPE

Functional Biology

Genotype-Phenotype Map

00
2.0
)
10 1.0
01
P
11 91 o

Sailer & Harms, Genetics 2017

2

Simple and complex phenotypes

Simple phenotype

Complex phenotype

The Battle between Mendelians and Biometricians

4
Mendel phenotypes segregate in pedigrees Statistical properties of quantitative traits
Dominant Recessive
6
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Complex traits are heritable but not in Mendelian fashion

NATURE [4

lies with
r towards
1e hinder
3 are fully | oby
s on the

extremi-

ny things as
s truths at all, but

he problem to
s one of these.

present problems of much inter
which I am about to direct atte;

Observations

* Progeny of smaller plants are, on average, smaller
* Progeny of larger plants are, on average, larger

* ALL HAVE THE SAME VARIANCE!
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Complex traits are heritable but not in Mendelian fashion
Introduce properties of the plot
RATE OF RﬁéﬁssmNFle P\iﬁEDITARY STATURE.
HEIGHT e IDEVIATE
“ | « Children of tall parents are taller than average, and children of short
" “ parents are shorter than average.
70 2
“ + « Children of tall parents are not as tall as their parents and children are
L 0 not as short as their parents (regression to mediocrity).
&7 H o
6 2
® o et e 1
6 K W
9 10
RATE OF REGRESSION IN HEREDITARY STATURE.
e fpevire Properties of the Galton plot
\u?c?he> | mc‘:es
L +3 * E(Y|X) — conditional expectation (regression)
70 % H
H * Regression is linear: E(Y[X) = biX
® /'\ E(YIX)‘ g (YIX) = by,
68 " £ l—o o
o | I * E(X]Y) = byY (both regressions are linear)
—.; -1
66 H ‘»{ -2
& When Mid Pasents ar shorte than mediosrity. »i 3
heir Children tend o be aler andoey ||
64 _“ 24
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RATE OF REGRESSION IN HEREDITARY STATURE.
Fig.(3)

HEIGHT |DEVIATE
in | i
inches inches

72

7
70
69

68

67 H 1 H

o | { 2
65 |
When Mid Parents aréshorte than mediocrity, H -3
heir Children tend o be taller than they. }
& |

H 4

Properties of the Galton plot

« Var(Y|X) is independent of X !
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This distribution is bi-variate normal !

- 1 sidot g ety
f(m)fm‘-\l’{ GAE=B) BT\ #J}

Mis mean

2’ is covariance matrix

RATE OF REGRESSION IN HEREDITARY STATURE.
Fig.(a)
HEIGHT |DEVIATE
n in Marginal distributions are normal
inches inches
72 R "
5 - ey
70 .2
:
69 i 1
b 0 {
H
67 -1
68 2
L When Mid Pasents aré shores? than mediocrity. »1 3
their Children tend t be taller than they |
“ H .

15

Infinitesimal model: multivariate normal
distribution in pedigrees

O
L

f@)= —a— .,~-xv{f.1(z—mr>: ‘tz—m}
(2m)"% |Z|1/2 2

The pedigree defines the covariance matrix !

XV.—The Correlation between Relatives on the Supposition of Mendslian Inherit-
ance.” By R. A Fisher, BA. Communicated by Professor J. ARTHUR
TromsoN. (With Four Figures in Text.)

(MS. received June 15, 1918, Read July 6, 1918, Tsaueil separately Octaber 1, 1918.)
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Quantitative Trait Loci (QTLs)

/T
Inheritance at each locus
is Mendelian. Loci are \
independen
e

Phenotype is additive over locus
effects -> normal distribution

Locus 1 Locus 2 Locus 3 Locus 4

Locus 5 Locus 6 Locus 7

Binary (dichotomous) traits

/N Liability distribution

Liability threshold

Locus 1 Locus 2 Locus 3 Locus 4

Locus 5 Locus 6 Locus 7

19
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Allelic effects — change in phenotypic mean
per one allele a

E(Y|aa)

AA Aa aa

The model more formally
X — genotype represented as dosage of allele a

AA Aa aa

X 0 1 2

Xjj— genotype of individual i at locus j
Y;—phenotype of individual i (we will assume E(Y)=0)

f;—allelic effect at locus j

21
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The model more formally

i =E/31Xz:i+8 s~

J

S

Genetic factors Non-genetic factors

The model more formally

Y=XB+8

23
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This model explains

* Normal distribution in the population (why?)
* Bi-variate normal distribution on the Galton plot (why?)

* Regression to mediocrity (why?)

Questions about allelic architecture

* How much of the phenotypic variation is due to genes?

* How many loci are involved?

* Are alleles involved in the phenotype common or rare in the population?
* What about dominance?

* Do alleles interact?

* Do alleles have different effects in different environment?

* And BTW, what is biology behind the story?

25
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We start from the effect of selection on
guantitative traits

« Historically, observations on selection gave first clue about polygenicity of
quantitative traits

* We will look at the same questions from a different perspective a little later

Selection experiment

Phenotype
Phenotype

Time (generations) Time (generations)

A of QTLs

Time (generations)

Phenotype

27

28

Evidence in favor of the highly polygenic model

0 llinois Long Term Selection Experiment Oil
——iHo  Selection Response from 1896 through 2008

% Grain oil concentration

Evidence in favor of the highly polygenic model

A Selection relaxed

0 10 20 3 40 5 6 70 8 90 100
Generations

Weber, Genetics 1996; Barton & Keightley, Nature Reviews Genetics 2002
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Evidence in favor of the highly polygenic model

g
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_ | igh line
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£ g .
g 27
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g 8
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2
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0 10 2 30 40 50
Generation

Johansson et al., PLOS Genetics 2010

Breeder’s equation

Mean of Parental Population __, _ Intensity of Selection

Parental Population Mean of Selected Population

20 21 22 23 24
R, Mean of Progeny Population (e.g. body length)

Progeny Population

31
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Breeder’s equation

R=1h’S
* Response to selection is proportional to selection differential
« Coefficient of proportionality is called “heritability”.

* Long-term linear response to selection means that heritability stays
constant for a long time.

Similarly, heritability is the slope on the
Galton’s plot

RATE OF REGRESSION IN HEREDITARY STATURE.

HEIGHT

[oeviaTe]

7z

\hz

_ Cov(x,y)
T Var(x)

2

33
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Everything is about variance

TobinDusheck, Asking About Life, 20
Figure 166

Number of individuals

Height in inches

Copyright ©2001 by Harcour, Inc. All ights reserved.

Law of total variance

Normal distribution has only two parameters.
If we are interested in the population variation, we are only interested in variance.

How can we explain reasons for variation in phenotypes?

Var(Y) = E[Var(Y|X)] + Var[E(Y|X)

Var(Y|X)

Fraction of variance due to factor X: —————
f f Var(Y)

35
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Variance decomposition

The distribution of male and female heights B

V S - e
Overall variance
: « : / At
X 1—,w f— ¢ L N
. x \\ / . \/ariygnrce due to sex
’ \ \ = Sl = 4 =
Variance of
37 38
Variance due to parental height Population variation is fully described by variance
RATE OF REEEE'SS|0NF|“NM{+EEE’D|TARY STATURE.
u 3 V = Vet VE
@, } A Genetic contribution Everything else
o ‘,{
39 40
Components of genetic variance Regression
v - -
VG = Vat Vpt+ Vi+ Vi ' X
/ \
Main (additive) effects Genetic interactions.

Dominant effects New mutations

AA Aa aa

41
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Regression

Additive model

E(Y) 0 B 2B

43
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Additive variance

Additive variance Va is genetic variance explained by the additive model

Vo= By +e
Var(y) = Var (Z {3’1le> +Var(e)
Var(v) = ) var(x,) + &
Var(y) = Z B2var(X,) + &%

Var(y) = Z ZB]ZpJqJ +g2

Additive variance
Var(Y) = Z 2pq; + €2

Additive genetic variance (variance due to independent effects of alleles)

“Environmental” variance

V= 26700,

45

46

Heritability

Broad sense

Narrow sense

p=ta
\4

Now, we can bring together epidemiological (or
experimental) observations and molecular data

RATE OF REGRESSION IN HEREDITARY STATURE.
Figa)

HEIGHT loEVIATE|

inches
7z

i w2 Z2B7pjdy
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Just to recap

VG = Vat+ Vp+ Vi+ Vi

/ 7 \
\
\

Main (additive) effects Genetic interactions

Dominant effects

New mutations

Dominance and dominance variance

Recessive allele

Dominant allele

AA

Aa

AA

49
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Dominance and dominance variance

Over-dominant allele

Dominance variance

Additive allele
N . * Dominance variance — variance unexplained by the additive model but
v x . explained by introducing dominance effects
x
x * x
x - " * Vpis zero for the additive model
X X x
_L _ * Vpis usually large for the over-dominant model
X
X x x * Vpis surprisingly smaller than V4 for the dominant (or recessive) model
x x
AR Aa 2 AA A2 e Note that human medical genetics frequently uses a different definition of dominance
Variance component due to epistasis (genetic
interactions)
N x
x
Y x X Epistatic variance Vi is genetic variance that is not captured by the

AA Aa aa

additive model but explained by interactions between alleles

Additive by additive pairwise epistasis

Y, = Z»B]Xij +zBlkX£lXik +e
7 Tk

53
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Epistasis
* Dependency of allelic effects on genetic background
* You can think of it as of interaction of allelic effects (usually denoted GxG)
* For example, consider two loci with alleles A / a and B/ b

« Epistasis means that the effect of allele a is not the same for individuals with
genotypes BB, Bb and bb

* In other words, effects of alleles a and b are not independent

For genotype BB

AA Aa aa

For genotype bb

x x
x
x x x
x x
——
x x
x x
x x x
x
AA Aa aa

55

Sign epistasis

For genotype BB For genotype Bb For genotype bb
Y Y x
M Y
x x x x M x
* x x
x
. x M x
x
x
——
x N M x
x
x x
x x x
M x
x
x
x
AR Aa aa AA Aa 2a AR Aa

Epistatic variance

* For two loci, V, is usually small even in the presence of epistatic

interactions (physiological epistasis).

* Frequencies of all four haplotypes have to be substantial for V, to play a

role

* V,can be large in case of sign epistasis. Sign epistasis is not biologically

infeasible

* For multiple alleles, number of interacting terms is very large, so
theoretically total V, can be large even if individual pairwise terms are small

57

Estimating heritability

RATE OF REGRESSION IN HEREDITARY STATURE.

HEIGHT DEVIATE

Cov(MP,0) = %V

Children inherit half of parental alleles
but only quarter of interactions!

More generally, for relatives A and B of degree r

1 1
Covlty, Yy) = =V, + 5V,

Assuming no dominance

The long-term selection response suggests
that the role of Viis limited

A recent study of social networks says that humans are not the exception




Other variance components

Epistasis can be additive by dominant
and dominant by dominant

Epistasis can be due to higher order
interactions

Mutational variance Vy — additional
variance due to de novo mutations

The case of the missing heritability

For GWAS significant loci

Cov(MP,0) - ¥ 287p;q;
V(MP) V

61

62

Likely reasons for missing heritability

1. Common variants of weak effect
2. Rare variants of larger effect

3. Epistatic interactions

Cov(MP,0) = %V

Multiple sclerosis GWAS

15,000 47 new hits @
Immunochip
200,000 SNPs
10000 Bnew hits @ (targeted)
wrccez
8000 650,000 SNPs
MS  cooo
Subjects Meta-Analysis @ 3new hits
4000 _| 2.6 million SNPs Metav2.5
IMSGC GWAS : f::uwv :::S 2.6 million SNPs
2000 {345,000 SNPs
® 2hits ANZ GWAS
550,000 SNPs
2007 2008 2009 2010 2011 2012

Date of completion

63
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15,000 —f

10,000

8000 _|

... and that’s not all!

25new hits @

Meta-Analysis v3.0
16K MS cases / 26K controls

Replication
18K MS cases / 18K controls
100 new hits °

47 new hits @

Immunochip

200,000 SNPs
(targeted)
wrcccz

650,000 SNPs

Date of completion

Ms 6000
Subjects Meta-Analysis @ 3new hits

4000 _| 2.6 million SNPs Metav2.5

IMSGC GWAS : 5,'.'53 :::s 2.6 million SNPs
2000 345,000 SNPs

® 2hits ANZ GWAS

550,000 SNPs
2007 2008 2009 2010 2011 2012

Evidence in favor of the highly polygenic model

» Ilinois Long Term Selection Experiment Oil
{ ——io  Selection Response from 1896 through 2008

65

66
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Evidence in favor of the highly polygenic model

i ANALYSIS
genetics

Common SNPs explain a large proportion of the heritability
for human height

AA Aa aa
Genotypes o 1 2
Normalized 0-E(X) 1-E(X) 2-E(X)
genotypes WVar(x) Var(X) Jar(X)
Normalized 29 p-q 2p
genotypes 2pq rd rd

In these notations, Vi = Z 8

67 68
Y=XBX;+e If we assume that genetic effects are random
J
Xiji— Normalized genotype of individual i at SNP j
1 the matrix form: We assume that all SNPs have effects on the trait
drawn from a normal distribution
y=Xf+¢
YVi=p+u+e
GRM=%XXT 1
Cov(u;,u,) =NGZEXU.X”(
Now, assume that allelic effects are random ’
BN©.0D) V=M u~MVN(0,0°GRM )
69 70
Another way to think about it: extending the .
o For the whole population
infinitesimal model
* Assume that the distribution of the trait is multivariate
normal.
1@ = e (- e w2 - ]
* Covariance matrix is given by the observed covariance
The pedigree defines the covariance matrix | of genotypes (rather than pedigree, IBS instead or IBD)
* This covariance matrix is scaled by additive genetic
variance
71
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This model explains a large fraction
(although not all) of heritability

Challenges of the polygenic model

* The model literally assumes that all of the genome is important for the trait
* What can be the biological effect of so many loci?

* Natural selection is expected to rapidly eliminate variants and reduce allele
frequency of remaining variants

* Variants must be either very rare or of very small effect sizes

73 74

Heritability by allele frequency

Effective

N=10,000

Rare coding alleles have larger effect sizes

2| o< sTC2 1514883559, MAF =0.1%

Minor allele effect size (cm)

o IHH 142086701, MAF = 0.08%
2| §%—crispL2 s1aas0aarz, MAF = 0.08% 5~ 0%
~ MAF - 021% Soog

o
o
Rocess

MAF (%)

75
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Effect size distributions

a Median of the

10t effect-size distribution

BMI

L]
[ d
L]

>

10° (4
® lisD

107 {07 105
Median effect size

No. loci > median

Evidence in favor of the highly polygenic model

B ~N(0,[2p;1 = pp o) m+ p(1 — )

77
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Evidence in favor of the highly polygenic model Evidence in favor of the highly polygenic model

79 80

Evidence in favor of the highly polygenic model

GxG interactions

81 82

Variance component due to epistasis Epistasis
(genetic interactions)

+ Dependency of allelic effects on genetic background
Epistatic variance Viis genetic variance that is not captured by the

ddit del but explained by interactions bet llel . . . . .
additive model but explained by interactions between alleles * You can think of it as of interaction of allelic effects (usually denoted GxG)

+ For example, consider two loci with alleles A / a and B/ b

Y= Y By + ) BuKiu e ‘ , N
- = * Epistasis means that the effect of allele a is not the same for individuals with
J genotypes BB, Bb and bb

+ In other words, effects of alleles a and b are not independent

83 84
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For genotype BB

For genotype Bb For genotype bb

|

An a2 a an na 2 An a2 a

Sign epistasis

For genotype BB

For genotype Bb For genotype bb

v R v vl x
—— x
an a2 a an s 2 an aa

85

86

Epistatic variance

* For two loci, V; is usually small even in the presence of epistatic
interactions (physiological epistasis).

* Frequencies of all four haplotypes have to be substantial for V, to play a
role

* V,can be large in case of sign epistasis. Sign epistasis is not biologically
infeasible

* For multiple alleles, number of interacting terms is very large, so
theoretically total V, can be large even if individual pairwise terms are small

Estimating heritability

[ FATE OF REGRESSION IN HEREDITARY STATURE. |

Cov(MP,0) = %V

Children inherit half of parental alleles
but only quarter of interactions!

87
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Why is epistatic variance commonly disregarded?

* In human genetics, epistatic interactions between common variants have
not been observed.

* In a model with two (or several) loci, contribution of epistatic variance is
relatively small.

* Long term response to selection in model organisms seems to contradict
the importance of epistasis.

Evidence

15

against epistasis

Frequency
3

Mean = 0.003
SD=0.20
N=86

01 02 03 >35

ruz = 2oz

04 03 02 01 0

89
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Why might epistatic variance be of importance? Multiple pathway model

* A non-linear model involving many loci would generate a large epistatic

variance.
« Interactions would be statistically undetectable. Ax By C
* The model would not generate significant deviations from the observations. A B C
2 2 2

* As an example, we may consider a model with multiple pathways involved.

91 92

Genotype-phenotype map What is biology behind this?

* The map seems to be highly dimensional

« It is surprisingly linear, as far as we know at the time

93 94
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Forces responsible for genetic change

Mutation

. Sie
Population structure RS.)) Fsr

2.5x108 (Nachman & Crowell) 1.8x108 (Kondrashov)

NGS estimates ~1.2X108 per nt changes genome
~70 per nt changes genome

Other events: indels (10-9)

repeat extensions/contractions (10-°)

3
Mutation rate is variable along the genome
» = RARRRRRRRRY
0503z 1y

DNA damage

DNA repair

CpG deamination

Regional variation of mutation rate

Context dependence of mutation rate

153

Mutations

Number of de novo mutations per
individual

204

.i"l il -,

40 80 120 160
Number of de novo mutations per proband

od 1

Jonsson et al., Nature 2017

Genetic drift




Drift is a random change of allele
frequencies

Genetic Drift in 100 Diploids

! L R
100 120 140 180 180 200
Generation

L L L L
1) 20 40 B0 80

Effective population size

* In an idealized model, the intensity of
genetic drift depends on population size
(mean squared change in allele frequency is
proportional to 1/Ne)

* In more realistic situations, effective
population size (Ne) is a parameter
characterizing intensity of drift

Past Population Size
51] OQAsplitandbottleneck _ __ _______M____.
=
<
o
£
a 23 European second bottleneck, . _ |
growth begins
5.1} Accelerated growth begins _ _ _ _ _ _ _ _
Today
Africans (N_=424,000] Europeans (N_=512,000)
(N, ) 80%\ 7 20% peans (N, )
Tennessen et al. Science 2012

154

Drift depends on population size

0.4 4

o+ R4
a0l Ny ANy
S 10 15 20 25 30 35 40 45 S0

Allele frequency

Generations

8
Demographic history
10
Selection
12




Most functional mutations are deleterious

Selective effect of mutation

|
r 1
Deleterious Neutral Advantageous

Functional
New
mutation

Nonfunctional

Selection indicates functional mutations, whether or
not the tested trait is under selection

13

Basic facts about human genetic variation

* Nucleotide diversity (density of nucleotide
differences between two randomly chosen
chromosomes) is about 0.001

* Most common SNPs are very old (~300-400K
years old)

* Protein coding regions are showing clear signs
of selection (reduced diversity and excess of
rare alleles)

15

Dynamic of allelic substitution

Mathematically, allele frequency change in a population
follows a one-dimensional random walk

time

17
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Selection coefficient

+ Selection coefficient (s) is the expected
relative loss of fitness due to the
sequence variant

« Variants with selection coefficients less
than ~1/Ne are insensitive to selection.
This is the drift barrier

14

Methods of mathematical
population genetics

16

Diffusion approximation

Random walk that does not jump long distances can be
approximated by a diffusion process

a¢(x,p.t) . OM¢(x,p,t) . 132V¢(x,p,t)
ot ox 2 X’

18



Coalescent theory

Instead of modeling a population, we can model our sample

Time goes backwards !

t
19
Signatures of purifying selection

Reduced variation

Excess of rare alleles

Diversity and allele frequency

® 01—
g . . |y
= foe . .
0 -; ———————————————————————————————————————— [ i e ARt R R
¢+
o0 N N TR RS S
& Q%i\o:é@;’\oeq\\o&(\e ‘(@;\«\ ’@2\ FOINRNT Vozb\ N
& R & S
& S0
QFRE
Al variants PolyPhen Missense  Nonsense
CADD CADD
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Natural selection in protein

coding regions

20

Site Frequency Spectrum

Proportion

0.64

054

0.4+

B Non-synonymous
B Synonymous

123 456 7 8 9 10111213 14151617 18 19 20 21 22 23 24
SNP Frequency class

22

Am J Hum Genet 26:669-673, 1974

MAILON V. I FRLEMAN, M. D,

The Age of a Rare Mutant Gene in a Large Population

TakEO MARUYAMA!

24




At a given frequency deleterious and

advantageous alleles are younger than
neutral

Maruyama effect (1974): at any frequency advantageous ,
or deleterious alleles are younger than neutral alleles

Frequency x /"\ »

\/\/\r"

Intuition: shorter trajectories require

fewer lucky jumps

Frequency 0%
Time }
2
A s
S Selection coefficient (2Ns)
— 0 (neutral)
Py -2 (weakly deleterious)
5§ w —— -10 (deleterious)
£ 5
8
g
g2
£ 37
S
g
H )
£ 84
S
8 |
S T T T T T
0 5 10 15 20
Intermediate allele frequency (%)
Kiezun et al. PLOS Genetics 2013
45000
=
@
€
Feo0o

leriinl Lertinl lerinl

e .
bcde hovog abcd

580
Genome pasiticn

29

Frequency x
Frequency 0%
Shorter trajectory: 4 jumps
Longer trajectory: 6 jumps ]
Time }

@ Neighborhood clock
(fuzzy clock)

& \ 4

° ° Py

\ 4 \ L

\d \ 4

° ° °

\ 4 ® \ 4
Closest variant beyond Closest rarer
recombination event Variant linked variant

28

Selection inference using frequencies of

individual SNPs

Change in allele _
frequency

= M fon + Selection + Drift

N

Of the order Demographic Population
of 108 history structure

30



Focusing on rare deleterious PTVs Selection inference using combined
frequency of PTVs

PTV — protein truncating variant Change in allele
(a.k.a. nonsense) frequency

Combine all PTVs per gene — we assume that
they have identical effects = Mutation + Selection +

Consider each gene as a bi-allelic locus —

PTV /no PTV Assuming string selection and a very large population,
combined frequency of rare deleterious PTVs is expected to be
Poisson distributed with A=U/hs

31 32

Distribution of selection coefficients What happens if we incorporate drift?

1) The approach fails if selection is weak

P(shetl&.8)

2) The approach fails if mutational target is small

3) These considerations are important for regional
constraint scores

4) Overall, the approach is non-informative in case of

‘ ‘ ‘ recessivity
104 0.001 0.010 0.100 1
Heterozygous selection coefficient, She;
Cassa, Weghorn, Balick, Jordan et al. Nature Genetics
AD and AR Mendelian genes Age of onset, penetrance and severity
[a] Age of Onset [b] Fraction De Novo [e] Penetrance [d] Phenotypic Severity
Ao Orest doron Pensiance Sovary
[c] Mode of Inheritance in Molecular Diagnoses [Baylor] [d] Baylor [e] UCLA .
s_hetbin s_het bins s_hetbins 05 T os I 05 3 os I
100 Mode of Inheritance I i I ES I I 1 I 1 N
o 118% 0 0 J BB om BB o H
[ o B ! B . B B - H 3
50 (IR | o 8 o o -
N ' 8 . H .
[ 1 .l , o b ol
3 4
£
H oot oot oot oot
20 38
ous aes ous oes
0 6
>=03 0.1 0.03 0.01 0.003 0.001 s_het< s het> 0.002 0002 0,002 0.002
004 004 -
§ cos : 5 s
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Concordance with mouse knockout data

[a] Or mouse by p Ly p!

100%
144
80% 19 102
60%
0%
215
20% [RHA s
0%
=0.3 01 0.03

s_het bin

1
1
105

Phenotype
H Lethal
M subviable

W viable

Percentage of genes in each bin, by phenotype

7
308

0.01 0003  0.001  0.0003
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PTV; | Z; = ¢ ~ Pois(NA)

Pois(PTV; | NA)m,
Zi=c | 7o, PTV,) = e b0 €
Pl = clme PTV) = S0 o TV I Nagm,

Lek et al. Nature 2016
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Heritability enrichment

100 o .
50 -| +

w
B
o104
5 5x
B Proportion of variants (common / low-freq)
& 5,,,bin 1 (strongest selection)  (0.02% / 0.04%)
© Sy bin2 (0.08% /0.06%)
4 S, bin3 (0.04% /0.08%)
14 1x © Sy bins 445 (weakest selection)  (0.11% /0.17%)
T T T T T T
1 2 5 10 20 5 100
CVE

Gazal et al. Nature Genetics 2018
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RVIS

2 cuvase

Sum of all common (>0.1% MAF) functional variants in a gene (Y)
60

muctze

Grrage

oniEc

600

Sum of al variant sites in a gene (X)

Petrovski et al. PLOS Genetics 2013
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De novo mutations in ASD

P o0
E o1s
£
3
E 0104
x
3
3
k005
L]
200 — - - - v
s 7 100 125 150
Fulkscale 10
[095% confidence limits —— Class 1 PTVs in pLI 20.9 genes (n = 137), P= 7 x 10
0 95% confidence limits —— Remaining PTVs (n = 256), P = 0.76

8.02x (P <10%) W 10/0D fomale (7 = 639)
531x (P <109 : :’s’g‘? "“": "’;D‘fﬁ )
L] female w/1D (0=
GBSO g ASD female wol D (n = 20
B ASD male w/ID (1 = 521)
0 ASD male wo/ 1D (n = 1,50
B Unaffected ASD siblings
(n=2,078)
5.16% (P <10°%)
[yl NS

Class 1pLI209  Class 1 pLi <09 and Class 2
De novo protein-truncating variants

Kosmicki et al. Nature Genetics 2017
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Surprisingly, the estimates of historic
selection seem relevant now

S
Reooid

T
R

Gardner et al. Nature 2022

42




Evidence from modern populations Stabilizing selection is the most common
type of selection on a quantitative trait

The overall mutation burden correlates with risk of mental illness

The overall mutation burden correlates with measures of P
mortality and morbidity

Stabilizing selection

Selection may be related or unrelated to the trait

43

44
Technically, non-neutral gfanetlc variation Possible theoretical models
should not exist!
]

Forces to maintain variation:
Selection
Mutation
Koch & Sunyaev Front. Genet. 202
45 46
Shades of pleiotropy A highly pleiotropic model
A
A Hyperspherein B
n-dimensions (n-2)-dimensional P~ 0.4
cross-section (7’
503
g a
% 2o2
(omima) B o
Q
e
& 007 -2 0 2 4
Effect size (in units ofy/ (W?/n)s
Koch & Sunyaev Front. Genet. 202 Simons et al, PLOS Biology 2018
47 48
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Genetic risk prediction

Genotype of an individual

(Common SNPs)

» Life-time risk of genetic disorders

(Common complex genetic disorders)

Effect sizes of individual variants are very
small

* Genotype at a single locus carries very little
information about phenotype.

* It does not mean that one cannot predict phenotype
from genotype.

* Accuracy (r?) of an ideal genetic predictor equals
heritability.

Measuring risk of myocardial infarction

Coronary Risk Prediction in Adults
(The Framingham Heart Study)

PETER WF. WILSON, MD, WILLAM P. CASTELLI, MD,
and WILLIAM B. KANNEL, MO

‘The Framingham Heart Study, an ongoing prospec-  functon that allows calculation of the conditional

v sty of adut men and women, has shown that  probabilty of cardovas Gotormi-
3 5,208 men and
velopment of coronary artery dls0aso. These faclors  Women particpating n the Framingham study. esti-
Include age. gender, lolal cholestero evel, high  mate coronary artery disease rsk over variabie pe-
y blood  riods o folow.up.
prossure. cigarete smoking, gucose infolerance ffom <1% 0 >80% over an arbiarly selected 6-
yper they are typically <10%

phy h and 25%

chost x.ray). Colculators and compulers can bo  women.

easily programmed using a multivariae logitic (Am J Cardiol 1987:59:91G-84G)

LDL levels and risk of disease

Annals of Internal Medicine ‘ ARTICLE

Nonoptimal Lipids Commonly Present in Young Adults and Coronary
Calcium Later in Life: The CARDIA (Coronary Artery Risk Development
in Young Adults) Study

i inghlt, 0. a4 Stan . e, D, P

~3500 subjects < 35 years old

LDL levels and risk of disease

P <0.001

Prevalence of Coronary Calcification

White Men

<181 mmol/L (<70 mg/dL)
[011.81-2.56 mmol/L (70-99 mg/dL)
[012.59-3.34 mmol/L (100-129 mg/dL)
[013.37-4.12 mmol/L (130-160 mg/dL)
124,14 mmol/L (2160 mg/dL)

LDL levels and risk of disease

<181 mmol/L (<70 mg/dL)
[01.81-2.56 mmol/L (70-99 mg/dL)

[13.37-4.12 mmol/L (130-160 mg/dL)
124,14 mmol/L (2160 mg/dL)

S
Average LDL United
States

White Men Pltcher et ol Ann Itern Med 2010
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Selecting populations for treatment

Why estimate genetic risk?

* An estimate of the long-term risk at birth

* Genetic risk can be combined with biomarkers and clinical
features

* Genetics explains about 50% of risk. One cannot predict
risk any better than that but 50% is a non-trivial
proportion of risk

BLUP — Best Linear Unbiased
Predictor

* Infinitesimal model

* Genetic effects are random

+ Predict the expected genetic
effect

Accuracy of polygenic prediction in
cattle

Poor transferability between breeds!

10

* LD-prune

Applications in humans

LETTERS

Common polygenic variation contributes to risk of
i i ipolar disorder

* Exclude SNPs of very small effect

Extensions of BLUP — multiple variance scales
and binary phenotypes

MultiBLUP: Speed and Balding. Genome Research 2014
Bayesian analysis: MaclLeod et al. Genetics 2014

BSLMM: Zhou et al. PLOS Genetics 2013

GeRSl: Golan and Rossett. AJHG 2014

11
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Methods that work with summary statistics

* Summary statistics are easily available

* Most methods require a separate small individual level dataset to
tune parameters

LDPred — a Bayesian method using summary

statistics

n
N 0,—% | with probability
ﬁ,w{ ( Mp) P i Viimsan 1. 2015

0 with probability (1 - p),

Also, check BayesR

13

14

Extreme tails in the distributions of genetic risk scores are
highly predictive

b 13
100 Highest 1% —»e
%0 10
. 8
R g 84 Highest 5%
2 g
2 60 H .
2 S o <3
50 H -
© H *
20 g 4 Average risk Seal
& X
® A "
10 A
3 04
T T N A s e e e
Gontrol Case 0 10 20 30 40 50 60 70 80 90 100
Coronary Artery Disease Percentile of polygenic score

Khera et al. 2018

With some caveats

15

16

Linear models for genetic risk prediction

5= Dy
s

Genotype of SNP j and individual i
Genetic risk of

individual i
Effect size of SNP

“Polygenic scores” can leverage summary statistics from a large

™1

Estimated effect size
Predicted genetic risk

17
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“Polygenic scores” can leverage summary statistics from a large
GWAS study

Vi = ZE/XU'
"

‘ Estimated effect size
Predicted genetic risk

sampling error

Non-causal SNPs

Estimated effect sizes (f;)

“Polygenic scores” can leverage summary statistics from a large
GWAS study

‘ P-value Thresholding ‘

Vi = ZE,‘XU
j

Non-causal SNPs

Y R

al SNPs

Estimated effect sizes (f;)

P-value thresholding can be reformulated as “shrinking” The optimal polygenic score can be constructed with
estimated effect sizes “conditional mean effects”
‘ p-value Thresholding ‘ 9 = ZE[ﬁJ ”?J]Xij
9= 10| < @)y ’
J
§ é Conditional mean effect
Estimated effect sizes (£;) Estimated effect sizes (£)
Goddard et al. 2009

Accounting for LD in summary data is a major challenge

« Correlation between apparent true genetic effects

Estimated effects: A A
True effects: By B2
@ sne

——— LD effect

LD block

Accounting for LD in summary data is a major challenge

« Correlation between apparent true genetic effects

Estimated effects:

B, b2

True effects: By

« Correlation between sampling errors

. S e

e e e e

—O0—0— 00—

—0—-0—~ —O0 0 —
GWAS Controls GWAS Cases

23
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Our approach (“Non-Parametric Shrinkage” or NPS)
* No explicit specification of genetic architecture prior, thus “non-

parametric”

* Learn conditional mean effects directly from training data

« Fully account for correlation in summary statistics

Our approach (“Non-Parametric Shrinkage” or NPS)

* No explicit specification of genetic architecture prior, thus “non-
parametric”

* Learn conditional mean effects directly from training data

1. How to estimate E[Bj | Bj] without a Bayesian prior on 8

* Fully account for correlation in summary statistics

—'{ 2. How to deal with LD

Partitioned risk scores Piecewise linear interpolation on shrinkage curve
Estimates of genetic effects in GWAS data (4))
Individual i "
u Partition SNPs into K subgroups: i
] B cwassignificant Se={j:ber <|B| < b} g
[ Gua = Byl (an < 1B1) H
" = i Partitioned risk scores: Gy, = z Bixij »
S I =
[ | B sub-threshold l cases
cases -
| | Gir= Z/?,x”l(nz <IBjl<a) controls COHUO‘SE Estimated effect sizes ()
n ' LA |
[ [ Noise Partition 1 Partition K
= Gis = Bl (] < @)
7
How to deal with LD? Decorrelating linear projection P
AB/ab
T is a local LD matrix and £ = Q A Q" by eigenvalue decomposition
I =QA7 Q" = (QAT*) (472 Q")
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Other shrinkage methods: PRS-CS Other shrinkage methods: PRS-CS

P
ﬂj"’N<0’ﬁ¢‘ﬂ’j)v ¥i~8

Prior density of ;; central region Lassosum — extension of LASSO

32

Accuracy of the 5% tail Summary

« NPS accounts for the correlation of sampling errors in GWAS summary statistics.

B « NPS provides an extensible framework to estimate the shrinkage curve from
Method training data.
e
I3 1 oo
= e * NPS is best-suited to take advantage of the high density of markers and
2 imputation accuracy in latest GWAS datasets.
The preprint is available in BioRxiv:
' Chun et al. AJHG 2020 “Non-parametric polygenic risk
o prediction via partitioned GWAS summary statistics.”

uksca ukiep UKT2D UkcaD usaca usteD usT2D Uscap Software is available at: https://github.com/sgchun/nps
Phenotype

34
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Identifying functionally
significant variants

Segregation data Functional data

Frequency Animal

in i models
controls Interpretation

Bioinformatics

Map variants onto genomic annotation

Watch for multiple transcripts!

Watch for conflicting annotations!

Nonsense variants

One of most significant types of variants usually leading to the
complete loss of function.

Nonsense variants are enriched in sequencing artifacts

Important considerations: i) location along the gene, ii) does the
variant cause NMD? iii) is the variant in a commonly skipped exon?

Tool: LOFTEE

Variants involved in splicing

DG G *@@ @0

[ H#ynyuray—pyn—ad [0 [E59 AGpurage——-——m{ |
T T T ISE  ISEISS
3" Splice site Exonic substitutions 5" Splice site  Deep intronic
mutations mutations mutations

1) Variants in canonic splice sites
2) Variants in exonic or intronic splicing enhancers
3) Gain of splicing variants

Experimental Methods: Minigene Assay and
Massively Parallel Splicing Assay (MPSA)

5 Donor Site cceptor Site
Nt % 4542 an

A

Splice Signals A G

£&dd

Tntron Exen ntron Exen ntron

Normal mRNA S— —_—
B s 3
Minigene Construct
CVPromotsr  Exon  tron  Exen bacade Ezey
B —
™
C spiice-Attering Variants

X Danor Loss - No Spicing, nron Included

x

or Atemate Acceptor St Used

/ Donor Gain - Inappropriate ' Spice e
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Computational Predictions: SpliceAl,
MMSplice and other methods

SpliceAl training

pre-mRNA g % > GENCODE

sequences

Identify cryptic splice mutations

SplicoAl | > —m— -
wildtype

* .
A SpliceAl |+ ——m— ——
mutant

De novo pathogenic mutations
cryptic splice: 10%

SpliceAl

protein coding: 90%

Missense variants: computational predictions

His66Arg

P23946: Chymase precursor v
TSNGESKFCGCRLIRRNFVLT STTVILGANNITEEEDTWOLT
Sequence alignment

===

Feature annotation
Key Begin End Description

Structure

PREDICTION

Does the mutation fit the pattern of past
evolution?

dog
B

FLSTSELGVPSTLKVNEK

Statistical issues:
-sequences are related by phylogeny
-generally, we have too few sequences

Does the mutation fit the pattern of past
evolution?

We assume a constant fitness landscape: what is good for
fish is good for human!

We can estimate whether the mutation fits the pattern of
amino acid changes.

We can also estimate rate of evolution at the amino acid site

9

10

Protein structure view
) /% h"
eyt ¥

* Most of pathogenic mutations are important for stability (good news?).

* AAG s difficult to estimate.

« Unfolded protein response pathway has to be taken into account.

* Heuristic structural parameters help but less than comparative genomics.

PolyPhen2

Analysi:
ly P P

Sequence

MSA creation profile based scores.
s
e,
e s
e —
e

Pmnquu-ac

ROC confidence

"} /
3 —il |
E Structure a—m-ﬁ
2o amino acidvolume 30 visualization
G Z mp sceshisutucesea
52 f oy
@
s 1
< \ Annotation
Annotation

P acr_SITE 65, 110, 203

www.genetics.bwh.harvard.edu/pph2 Adzhubei, et al. Nature Methods 2010

11
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Weakly deleterious mutations

« Multiple independent lines of evidence suggest abundance of weakly
deleterious alleles in humans

» Weakly deleterious variants may occur in highly conserved positions

» Weakly deleterious alleles probably contribute to complex phenotypes but
not to simple Mendelian phenotypes

Conservation can be due to very weak selection!
E . Lly will be either fixed or |
5 s— selecti_on coefﬁcie_nt )
K=K,2N, (1 _i:.\ )r N, - effective population size
(1=e77) l For humans estimated to be ~ 10 000 ]
Kiko
i N
\\
A E— e
behavior \
\
\
: AN
10° 10° 10 10°  Selection coefficient, s

13 14
Constant fitness landscape Epistatic interactions
A A A A
b B b B
A A
B B
15 16
Compensatory mutations Ridges on the fitness landscape
17 18
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Dobzhansky-Muller incompatibility

Fixation of

New mutation new mutation
MENNE—— ENNER N
( ] '} Ti-——— \
Ancsstral v (i | —— }
genotype / G 5= / \V’ 5/ Hybrid
///j\ SN / i //8/7;\\
A B
=) - )
== ( \:&E/’
A J— — &__ o

Nature Reviews | Genetics

Looking at vertebrate species

& e

Dinosaurs.
& hirds

P Ray-finned Roderts
Sharks  fish  Amphbians Primstes  &rabhis Crocodies

Pre-orbital
fenestra

Amiotic egg

Bony skeleton

19

20

Many human pathogenic mutations are found in
vertebrates

HumVar "Disease”
(22,207 variants)  ClinVar "Pathogenic”
(10,596 variants)

5.5-6.5% of presumably
pathogenic human
mutations are detected in
mammals

24,304,185

Zebrafish model

Model of Bardet-Bied| Normal
Syndrome (obesity, renal
failure, vision loss)

Caused by defects in primary
cilium Class |
L4 Embryonic convergence /

extension phenotype in

zebrafish

Class Il

Found in MultiZ 100-Way alignment ® Easily scorable phenotype
(24,307,128 variants) o
Images: Phoebe
Testing double mutants A newly identified gene
i I fe
Global developmental delay
D——O microcephaly
feeding issues
. - - failure to thrive
L Human gene with 00f 06
No injection N S| O — abnormal muscle tone
disease mutant thA e T | [Ehh e Tt low immunoglobulins

Double mutant
(no suppression)

Rescue with Double mutant
human gene (full suppression)

Images: Phoebe

Knockdown

frequent respiratory infections

RS LAT L ST

Clinical testing

= normal female microarray
metabolic testing - negative
extensive genetic testing —
negative

- - BTG2 ‘ TTN ‘
e I Compound het
. B—
AN NOS2 LAMAT
VAVAVVAYAVA\ I ATATAYA A mpound h

Stephan Frangakis
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The mutation is a reversal to the mammalian o
New methods directions
ancestral state
BTG2
H. sapiens IR L Q Y L « Machine learning techniques have the potential to solve the epistasis problem
P. troglodytes . . . . .
G. gorilla . . . . .
M. musculus | K % . M M « Measures of population level constraint have the potential to solve the
R n‘i_?’z%z‘f, ¢ ¥ : m m problem of distinguishing between strongly and weakly deleterious mutations.
S. domesticus = K Vv . M M
B. primigenius | K \ . M M
E. ferus caballus = K \ . M M
F.catus | K \ . M M
C. lupus familiaris = K V . M M
D. novemcinctus | K Vv . M M
G. gallus | K P . \Y M
25 26
Language models Methods
A Autoregressive B Bidirectional language model C Masked language model
language model X i PolyPhen2
P U»(A\n.x‘,x) »m—[;[umx PR = U»m.‘ -
peee ] SIFT
0o0vo000 0ODROWIO0 43iWenn T
DDD DDD MutationTaster
ge0RE000 BODUAOOEE DOOBORE FatHIM
B0E06000E 0OBEOEEEE BEEGOGGEA SNPs3D
—) —) ¢ * DeepSequence
PO Al - xy) PO = Al - X )P( = AlXigy - Xe) PO = Al Xy Xy 7). .
Bepler & Berger, Cell Systems, 2021 Note, that state of the art is far from perfect
27 28
New developments Umbrella methods
Condel
REVEL
EVE — addresses the issue of epistatic interactions
VARITY — addresses the issue of slightly deleterious mutations VEST
CADD
M-CAP
29 30




Incorporating regional constraint

CCR
M-CAP

PrimateAl

Applications

* Mendelian genetics — obvious

* Rare variant studies in search of drug targets

31 32
Rare variant collapsing study Rare variant collapsing study
Disease Control Disease Control
40 ) +-0 4 -
\ ™~
Functional variants Neutral variants
33 34
Predicting functional consequences increases UK Biobank results (Wang et al.)
power
* Inclusion of neutral variants reduces power of the test
* Combining variants with vastly different effect sizes reduces power of the
test
* Most groups limit the tests to nonsense, splicing and missense variants that
are predicted functional
* Assigning quantitative weights is probably a better approach, but nobody y ) EYS— B
uses it in practice Oddsratio geta
Variant grouping: nonsense, splicing, missense predicted by REVEL and MTR
35 36
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Count of associations

UK Biobank results (Backman et al.)

Burden Association
I pLOFs only

I PLOF and deleterious missense variants only
M shared

1000

Singletons <0.001% _ =001% _ <01%

Allele frequency bin

Deleterious missense variants:
SIFT

PolyPhen2

LRT

Mutation Taster

Non-coding variants

37

38

Regulatory variants

* Regulation: variants in promoters, enhancers,
silencers, insulators

)

=l «—

’j

5nn'§.}“c='r' ~—. chromatin remodelers

i
istones promoter

core promoter

Chromatin accessibility

nucleosome-free
enhancer region

i 1

|

Ac
DNase | hypersensitive sites
nucleosome-free n:::l:f:n“:;’:lm transcription

promoter region

39

40

Chromatin modifications

Kdme1 K4me3

/A7)

¢§# if@

Enhancers

K9127ac

Repressed

Promoters

Epigenomics

R scenntre gurn s

T i of s tcr 5o Ta”
o a3 i OV 3 i
nea oA

41
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Non-disease alleles of large effect

ocazgens

Jr—
Eye color
ocaz gune

v

Light
pigmentation

Dark
pigmentation

g S o
sy
N s
<
Lactase tolerance P o 2000+

19910 NCMG et

Ultraconserved elements

oren Bacesss PLOS sotocr

Deletion of Ultraconserved Elements

addition,

‘These resits,

43

44

Enrichment of GWAS signals in regulatory elements

A Crohn's disease QRS duration

T P e ¢ o
o (B 6T

GWAS P-valus threshold

CRPL YO O S S S S Y

RIS R
R R I
GWAS P-value threshold

Mutiple scierosis

Enrichment of GWAS signals in regulatory elements

o

45
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Partitioning heritability

1000 Genomes Imputed SNPs.

nnnnnnnn aze-17

180-03 14-07 200-01

B[nslest==

Promoter  DHS o Inergenic
28 G 01 (0%

Codng  UTR
(1380 (84x)

Translating GWAS findings into mechanistic
models

GWAS peak

!

Controlled model system

!

Biochemistry

47
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Human Genetics all the way Causality
GWAS peak Mediation
/ \ G E P
Endophenotype Endophenotype
P K P ve Independent effects
E
) G _—
Gene expression (eQTL) s p
l Reverse causation
Molecular phenotype (molecular_QTL) G P E
49 50
Co-localization Co-localization problem
M4
Same causal variant 4 Lomsaiswes
G E p § i G e
Distinct variants ég —
G ——> E ; 4
LD I S
G — 5P
51 52
Methods Genetic variants differ between Mendelian
and complex traits
* Complex trait variants * Mendelian & somatic cancer
variants
Coloc
eCAVIAR « Small effect size « Large effect sizes
JLIM « Extremely large number of loci Small number of loci
« Mostly non-coding (regulatory) ~ * Mostly coding
* Are in “putatively causative”
genes
53 54
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The basic model

U
Vé,&;
@
 — ‘ﬁé@_’ ”
€ *

o

hitps:/ fcommons wikimedia.org /wiki/File-Myoglobin pr.
i

By now we know that most complex trait loci never harbor mutations of large effect

Hypothesis

* Most genes involved in Mendelian components of complex traits are
also causative for cognate common forms.

* Variants involved in common forms alter regulatory sequence of
these genes.

* This in turn induces changes in gene expression; regulatory variants
are eQTLs.

55

56

Genes and phenotypes
(for complex traits, GWAS is restricted to non-coding variants)

Mend. trait GWAS trait Tissue Overall, 139 genes

Breast cancer Breast cancer | breast mammary tissue

89 (64%) fall under a GWAS peak
of a cognate complex trait

Small ntestine terminal fleum

Crohn disease Crohw's diease | colon sigm
colon ta

Dysipidera Toer

Hyperipidemia oL adipose Examples include:

Tangers disease whle blood

Duwarfism Height sheletal muscle

LDL Receptor under
a GWAS peak for LDL Cholesterol

Teart Ul appendage
Blood pressure Blood pressure | kidney
heart lft ventricle
Trver
oL adipose tissue

whole blood

Dystipidemia
Hyperlpidemia Estrogen receptor under
pancress a GWAS peak for breast cancer
scltal musclo

ipose

Mnogenic diabetes | Type Il diabetes
whole blood

<l intesting tarminal fleum
colon sigmoid

colon transverse

These genes are highly likely to

Ulcarative colitis Ulcarative coltis

mediate the effects of regulatory variants

Statistical methods to locate the causative
gene under GWAS peak

* Closest gene to peak

* Colocalization methods
- Jum
* Coloc
* eCAVIAR

« Transcriptome-wide association
* FUSION

* Chromatin marks
* Fine-mapping using SuSiE
* Locate fine-mapped variants under chromatin modification peaks

57

58

Distance of fine-mapped SNPs (by SuSiE) to the
closest gene

ol o
® e % .' .

~ . .
T ® . c.

4 « ° had . o .
2 » .

T . .

o .
. ° . °

Gene A '—‘} Qene B GeneC

_—

Colocalization of GWAS and eQTLs

GeneAeQTL  GeneBeQTL  Gene CeQTL
Methods effectively compare the shape of two peaks.

Colocalization often returns multiple hits per locus.

59
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Transcriptome-wide association (TWAS)

TWAS often returns multiple hits per locus.

Results

][
[ ]
Il coneunterpeak
I cene uncer ek witheamt.
o & e

Method

Mendelian

#F

5

Genes

Connally et al., medRxiv, 2021

61
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Results

Colocalization results are almost random

TWAS results are almost random

There is a significant enrichment of fine-mapped SNPs in regulatory elements marked by
modified chromatin, but still in a minority of loci

A simple strategy to link peaks to genes using the chromatin signal (ABD) does not link
most of the genes successfully

Possible reasons for the negative result

* Perhaps expression of putatively causative genes
* Matters only in a certain environmental context
* Matters only at a specific developmental stage
* Matters only as a stimulus response

63

64

| find it highly surprising that

* A context independent large change in expression of LDLR due to a
nonsense mutation leads to a large phenotypic change

* A smaller change in expression does not affect LDL levels, while non-
coding effect on LDLR does

Modeling eQTL effects at
single cell resolution

‘Article

Single-cell eQTL models reveal dynamic
Teell d d fdi loci

of

Or continuous state

(e.g., activation) 8

@

o

s

2
- w
S AA AB BB
@ Genotype
3
w

AA AB BB
Genotype

Nathan et al., Nature 2022

Nathan et al Nature 2022
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