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Genome-wide association studies (GWAS) - Part 1
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Genome-wide association studies(GWAS)

Popular (and highly successful) approach over past ∼  18 years

Enabled by advances in high-throughput (microarray-based)  
genotyping technologies

Idea is to measure the genotype at a set of single nucleotide  
polymorphisms (SNPs) across the genome, in a large set of unrelated  
individuals

Cases and controls
Or population cohort measured for relevant quantitative phenotypes  
(height, weight, blood pressure etc)
Or related individuals (family data) –but need to analysedifferently
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Genome-wide association studies(GWAS)

Two individuals

Person 1 ACCTGTGTGCCCAATGGCGTCCCATACTATCGG  
ACCTGTGCGCCCAATGGCGTCCCATACTATCGG

Person 2 ACCTGTGCGCCCAGTGGCGTCCCATACTATCGG  
ACCTGTGCGCCCAGTGGCGTCCCATAGTATCGG

Test each SNP for association/correlation with disease or quantitative  
phenotype
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Association testing: case/control studies

Collect sample of affected individuals (cases) and unaffected  
individuals (controls)

Or a  else  a  sample  of random “population” controls
Most of whom  will not have  the disease of interest

Examine the association (correlation) between alleles present at a  
genetic locus and presence/absence of disease

By comparing the distribution of genotypes in affected individuals  
with that seen in controls
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Case/control studies

Each person can have one of 3 possible genotypes at a diallelic  
genetic locus

Genotype Cases Controls  
2|2 500 (= a) 200 (= b)
1|2 1100 (= c) 820 (= d )
1|1 400 (= e) 980 (= f )

Total 2000 2000
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Case/control studies

Each person can have one of 3 possible genotypes at a diallelic  
genetic locus

Genotype Cases Controls  
2|2 500 (= a) 200 (= b)
1|2 1100 (= c) 820 (= d )
1|1 400 (= e) 980 (= f )

Total 2000 2000

Test for association (correlation) between genotype and presence/  
absence of disease using standard χ2 test for independence on 2df
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Case/control studies

Each person can have one of 3 possible genotypes at a diallelic  
genetic locus

Genotype Cases Controls  
2|2 500 (= a) 200 (= b)
1|2 1100 (= c) 820 (= d )
1|1 400 (= e) 980 (= f )

Total 2000 2000

Test for association (correlation) between genotype and presence/  
absence of disease using standard χ2 test for independence on 2df

Defined as i i(O − E ) 2

i =1 ,6 Ei i iwhere O and E are observed andexpected
counts (calculated from the row and column totals) respectively
Generates a p value indicating how significant the association/  
correlation appearsto be
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Case/control studies

Each person can have one of 3 possible genotypes at a diallelic  
genetic locus

Genotype Cases Controls  
2|2 500 (= a) 200 (= b)
1|2 1100 (= c) 820 (= d )
1|1 400 (= e) 980 (= f )

Total 2000 2000

Test for association (correlation) between genotype and presence/  
absence of disease using standard χ2 test for independence on 2df

Defined as i i(O − E ) 2

i =1 ,6 Ei i iwhere O and E are observed andexpected
counts (calculated from the row and column totals) respectively
Generates a p value indicating how significant the association/  
correlation appearsto be

OR (2|2 : 1|1)=
Two odds ratios can be estimated

af

OR(1|2 : 1|1)=
be
cf
de
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Odds ratios

Odds of disease are defined as P(diseased)/P(not diseased)
Odds ratio OR (2|2 : 1|1) repesents the factor by which your odds of  
disease must be multiplied, if you have genotype 2|2 as opposed to 1|1

i.e. the ‘effect’ of genotype 2|2
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Odds ratios

Odds of disease are defined as P(diseased)/P(not diseased)
Odds ratio OR (2|2 : 1|1) repesents the factor by which your odds of  
disease must be multiplied, if you have genotype 2|2 as opposed to 1|1

i.e. the ‘effect’ of genotype 2|2

Similarly, we can define the OR for 1|2 vs1|1
As the factor by which your odds of disease must be multiplied, if you  
have genotype 1|2 asopposed to1|1

i.e. the ‘effect’ of genotype 1|2
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Odds ratios

Odds of disease are defined as P(diseased)/P(not diseased)
Odds ratio OR (2|2 : 1|1) repesents the factor by which your odds of  
disease must be multiplied, if you have genotype 2|2 as opposed to 1|1

i.e. the ‘effect’ of genotype 2|2

Similarly, we can define the OR for 1|2 vs1|1
As the factor by which your odds of disease must be multiplied, if you  
have genotype 1|2 asopposed to1|1

i.e. the ‘effect’ of genotype 1|2

ORs are closely related (often ≈ )  genotype relative risks
The factor by which your probability of disease must be multiplied, if  
you have genotype 1|2 as opposed to 1|1(say)

If your genotype has no effect on your probability (and therefore on  
your odds) of disease, then theORs=1.

So the association test can be thought of as a test of the null  
hypothess that the ORs=1
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Genotype relative risks

If a disease is reasonably rare, the odds ratio approximates the  
genotype relative risk (GRR, RR)

Genotype Penetrance GRR Odds OR
1/1 0.01 1.0 0.01/0.99 = 0.0101 1.00
1/2 0.02 2.0 0.02/0.98 = 0.0204 2.02
2/2 0.05 5.0 0.05/0.95 = 0.0526 5.21

If your genotype has no effect on your probability (and therefore your  
RR) of disease, then both the ORs and the GRRs=1.
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Dominant/recessive effects

Dominant:

Genotype Cases Controls Total
2|2 and 1|2 500+1100 200+820 700+1920

1|1 400 980 1380
Total 2000 2000 4000

Recessive:

Genotype Cases Controls Total
2|2 500 200 700

1|2 and 1|1 1100+400 820+980 1920+1380
Total 2000 2000 4000

Can also rearrange table to examine effects of alleles (1 df tests):
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Counting alleles

Counts in
Allele Cases Controls

2 2100 (=a) 1220 (=b)
1 1900 (=c) 2780 (=d )

Total 4000 4000

Allelic OR = ad/bc

2
i i

2χ  test  statistic on  1df = (O −  E ) /Ei i where Oi and Eiare the
observed and expected values in cell i .

Assumes HWE under null and multiplicative allelic effects under  
alternative: considers chromosomes asindependent units

Better approach: use counts in previous genotype table to perform a  
Cochran-Armitage trendtest
Even better approach: use linear or logistic regression
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Testing for association: quantitative traits

Linear regression provides a natural test for quantitative traits
Testing the null hypothesis that the slope = 0
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Logistic regression

Used in case/control studies
Outcome is affected or unaffected
Model probability (and thus odds) of disease p as function of variable x
coding forgenotype:

pln = β0  + β1x ≡ c + mx 1 − p

Use observed genotypes in cases and controls to estimate the values of  
regressioncoefficients β0 and β1

And to test whether β1 = 0
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Logistic regression

Standard method used in standard epidemiological studies e.g. of risk  
factors such as smoking in lung cancer
Main advantage is you can include more than one predictor in the  
regression equation e.g.

pln = β0 + β1x1 + β2x2 + β3x3
1 − p

where x1, x2, x3 code for
genotypes at 3 loci
measured environmental covariates (e.g. age, sex, smoking etc),  
geneticprincipal component scores (to adjust for population  
substructure),
interactions between loci etc. etc.
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Testing for association

All methods produce a test statistic and a p value at each SNP,  
indicating how significant the association/correlation observed  
appears to be

i.e. how likely it was to have occurred by chance
The threshold to declare ‘genome-widesignificance’ is usually around
p =  5 × 10−8

To account for multiple testing of many SNPs across the genome
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Testing for association

All methods produce a test statistic and a p value at each SNP,  
indicating how significant the association/correlation observed  
appears to be

i.e. how likely it was to have occurred by chance
The threshold to declare ‘genome-widesignificance’ is usually around
p =  5 × 10−8

To account for multiple testing of many SNPs across the genome

Alternative (Bayesian) methods produce a Bayes Factor  Indicates 
how likely the data is under the alternative hypothesis  (of 
association between genotype andphenotype)

Compared to under the null hypothesis (of no association between  
genotype and phenotype)

Requires you to make some prior assumptions regarding the likely  
strength of associations (i.e. the value of the β’s)
Choosinga sensiblethreshold (e.g. log10 BF> 4) requires you to make  
some prior assumptions regarding what proportion of SNPs in the  
genome are likely to be associated with thephenotype
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Manhattan Plots

At any location showing ‘significant’ association, we expect to see  
several SNPs in the same region showing association/correlation with  
phenotype

Due to the correlation or linkage disequilibrium (LD) between  
neighbouring SNPs

Heather Cordell (Newcastle) GWAS (Part 1) 14 / 40

20

Close-up of hit region
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Historical Perspective: Complement Factor H in AMD

First (?) GWAS was by Klein et al. (2005) Science 308:385-389

Typed 116,204 SNPs in 96 cases (with age-related macular  
degeneration, AMD) and 50controls

Very small sample size –they were very lucky to find anything!  Luck 
was due to the fact the polymorphism has a very large effect  
(recessive OR=7.4)

Klein et al. followed up on two SNPs passing threshold  
(p < 4.8×10−7)

Plus a third SNP that just failed to pass significance threshold, but lay  in 
sameregionasfirst SNP
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Complement Factor H in AMD

Of the 3 SNPs followed up:
One appeared to be due to genotyping errors: significance disappeared  on 
filling in some missing genotypes
First and third SNP lie in intron of Complement Factor H (CFH) gene

Lies in region previously implicated by family-based linkage studies

Resequencing of the region identified a polymorphism of plausible  
functional effect

Immunofluorescence experiments in the eyes of AMD patients  
supported the involvement of CFH in diseasepathogenesis.
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GWAS

GWAS really got going in around2007
Visscher et al. (2012) AJHG 90:7-24 “Five Years of GWAS Discovery”  
Visscher et al. (2017) AJHG 101:5-22 “10 Years of GWAS Discovery:  
Biology, Function and Translation”
Abdellaoui et al. (2023) AJHG 110:179-194 “15 Years of GWAS Discovery:  
Realizing the promise”

2007/2008 saw a slew of high-profile GWAS publications
Breast cancer (Easton et al. 2007)  
RheumatoidArthritis (Plengeet al. 2007)
Type 1 and Type 2 diabetes (Todd et al. 2007; Zeggini et al. 2008)

Arguably the most influential was the Wellcome Trust Case Control  
Consortium (WTCCC) study of 7 different diseases

http://www.wtccc.org.uk/

Heather Cordell (Newcastle) GWAS (Part 1) 18 / 40

24

4

http://www.wtccc.org.uk/


WTCCC

Nature 447: 661-678(2007)

Considered 2000 cases for each of the following diseases:
Bipolar disorder, coronary artery disease, Crohn’s disease, hypertension,  
rheumatoid arthritis, type 1 diabetes, type 2 diabetes

Compared each disease cohort to common controlpanel
3000 population-basedcontrols
From1958 birth cohort and National BloodService

Highly successful
WTCCC found 24 separate association signals
Including highly convincingsignals in 5 out of the 7 diseases studied  
All were replicated in subsequent independent follow-upstudies
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Manhattan plots for 7 diseases
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Lessons from WTCCC (and others)

Typically used rather standard statistical/epidemiological methods  
(χ2 tests, t tests, logistic regression etc.)

Success largely dueto:

An appreciation of the importance of large sample size (> 2000 cases,  
similar or greater numberof controls)
Stringent quality control procedures for discarding low-quality SNPs  
and/or samples
Stringent significance thresholds (p =  5×10−8) to account for multiple
testing and/or low prior prob of true effect  
Importance of replication in an independent dataset
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Short break
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Quality Control

Stringent QC checks are required for GWAS data

Discard samples (people) deemedunreliable
Low genotype call rates, excess heterozygosity etc.  
X chromosomal markersuseful for checkinggender

Males should ‘appear’ homozygous at all X markers
Genome-wide SNP data useful for checking relationships andethnicity

Discard data from SNPs deemed unreliable
On basis of genotype call rates, Mendelian misinheritances,  
Hardy-Weinberg disequilibrium
Exclude SNPs with low minor allele frequency (MAF)

See tutorials at:
https://pubmed.ncbi.nlm.nih.gov/21085122/  
https://pubmed.ncbi.nlm.nih.gov/29484742/

Heather Cordell (Newcastle) GWAS (Part 1) 23 / 40

29

QC: call rates andheterozygosity

61 sample exclusions (low call-rate); 23 exclusions (heterozygosity)  
SNP exclusions also made based on call-rates, MAF and
Hardy-Weinburg equilibrium (HWE)
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QC: ethnicity tests

Multidimensional scaling (with 210 HapMap individuals) identifies 33  
samples with non-Caucasian ancestry
MDS or similar multivariate methods can also be used to model more  
subtle population differences betweensamples...
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Multivariate Analysis

Several related multivariate analysis techniques have been proposed for
detecting population structure in genome-wide association studies

Principal components analysis (PCA)
Principal coordinates analysis (PCoA)
Multidimensional scaling (MDS)
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Multivariate Analysis

Several related multivariate analysis techniques have been proposed for
detecting population structure in genome-wide association studies

Principal components analysis (PCA)
Principal coordinates analysis (PCoA)
Multidimensional scaling (MDS)

If population differences can be detected (and adjusted for) in  
association analysis, this offers a way to deal with the problem of  
population stratification

Population sampled actually consists of several ‘sub-populations’ that  
do not really intermix
Canleadto spurious false positives (type 1 errors) in case/control  
studies
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Multivariate Analysis

Several related multivariate analysis techniques have been proposed for
detecting population structure in genome-wide association studies

Principal components analysis (PCA)
Principal coordinates analysis (PCoA)
Multidimensional scaling (MDS)

If population differences can be detected (and adjusted for) in  
association analysis, this offers a way to deal with the problem of  
population stratification

Population sampled actually consists of several ‘sub-populations’ that  
do not really intermix
Canleadto spurious false positives (type 1 errors) in case/control  
studies

These techniques can also be used in quality control (QC) procedures,  
to check for (and discard) gross population outliers
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Principal components analysis (PCA)
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Principal Components Analysis

Price et al. (2006) Nature Genetics 38:904-909; Patterson et al.  
(2006) PLoS Genetics 2(12):e190

Based on popn genetics ideas from Cavalli-Sforza(1978)

Idea is to form a large matrix M of SNP counts (0,1,2) corresponding  to 
the genotype at a L loci (=rows) for n individuals (=columns)

M =
�

��

.
g21 . g2n

� g11 g12 
g22

g31 g32 . g3n
. . . .
. . . .

.gL1 gL2 gLn

g1n
�

�

��
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Principal Components Analysis

Subtract row means and normalise by function of row allele frequency
✓ fl (1 − fl ) to give matrix X

X =
�

��

.
x21 . x2n

� x11 x12 
x22

x31 x32 . x3n
. . . .
. . . .

.xL1 xL2 xLn

x1n
�

�

��

This matrix will be used as starting point for PCA
In principal we could start with a different matrix –in particular not all 
PCA approaches would normalise by ✓f l  (1 − fl )
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Multivariate Analysis

Estimate covariance matrix Ψ =  XT X between all pairs of individuals,  
with entries ψij defined as the covariance (summing over SNPs)  
between column i and j ofX

Represents average genome-wide identity by descent (IBD) (estimated  
from identity by state, IBS)
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Multivariate Analysis

Estimate covariance matrix Ψ =  XT X between all pairs of individuals,  
with entries ψij defined as the covariance (summing over SNPs)  
between column i and j ofX

Represents average genome-wide identity by descent (IBD) (estimated  
from identity by state, IBS)
Computethe eigenvectors --vj  and eigenvalues λj  of matrixΨ

Co-ordinate j of the kth eigenvector represents the ancestry of  
individual j along ‘axis’ k
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Multivariate Analysis

Estimate covariance matrix Ψ =  XT X between all pairs of individuals,  
with entries ψij defined as the covariance (summing over SNPs)  
between column i and j ofX

Represents average genome-wide identity by descent (IBD) (estimated  
from identity by state, IBS)
Computethe eigenvectors --vj  and eigenvalues λj  of matrixΨ

Co-ordinate j of the kth eigenvector represents the ancestry of  
individual j along ‘axis’ k

For technical details, see McVean (2009) PLoS Genetics 5;10:e1000686
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Multivariate Analysis

Estimate covariance matrix Ψ =  XT X between all pairs of individuals,  
with entries ψij defined as the covariance (summing over SNPs)  
between column i and j ofX

Represents average genome-wide identity by descent (IBD) (estimated  
from identity by state, IBS)
Computethe eigenvectors --vj  and eigenvalues λj  of matrixΨ

Co-ordinate j of the kth eigenvector represents the ancestry of  
individual j along ‘axis’ k

For technical details, see McVean (2009) PLoS Genetics 5;10:e1000686
Many genetics packages e.g. (PLINK) will allow you to calculate the  
top 10 (or more) PCs

Different geographic populations can often be well separated by just  
the first two or threePCs

Useful for outlier detection
For more subtle differences, you may need to calculate more PCs

And include them as covariates in the regression equation
Post-GWAS QC can determine whether you have included ‘enough’

Heather Cordell (Newcastle) GWAS (Part 1) 30 / 40

41

Post GWAS QC: Q-Q Plots (good)

Plot ordered test statistics (y axis) against their expected values under the  
null hypothesis (x axis)
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Q-Q Plots (bad)
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Population stratification

A QQ plot showing constant inflation (straight line with slope >  1)  
can indicate population stratification/population substructure

Simple solution: Genomic Control (Devlin and Roeder1999)
Use your observed test statistics to estimate the slope (=inflation  
factor λ)
Divide each test statistic by λ to get an adjusted (deflated) test  
statistic

More complicated solution: use PCA/MDS or similar  Even 

more complicated solution: use linear mixed models
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Relatedness

With genome-wide data, can also infer relationships based on average  
identity by descent (IBD) Ψ =  XT X or identity by state(IBS)

Using ‘thinned’ subset of markers with high minor allele frequency  
(MAF) and in approximate linkageequilibrium
Simple relationships (PO, FS, MZ/duplicates) can identified with only  a 
few hundredmarkers
More complicated relationships require 10,000-50,000SNPs

Various software packages, including PLINK, KING and TRUFFLE
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Expected IBD sharing

Assuming no inbreeding, the IBD state probabilities are:

Number of alleles shared IBD
Relationship 2 1 0
MZ twins 1 0 0
Parent–Offspring 0 1 0
Full siblings 1/4 1/2 1/4
Half siblings 0 1/2 1/2
Grandchild–grandparent 0 1/2 1/2
Uncle/aunt–nephew/niece 0 1/2 1/2
First cousins 0 1/4 3/4
Second cousins 0 1/16 15/16
Double 1stcousins 1/16 6/16 9/16

A useful visualisation tool is to plot SE(IBD) vs mean(IBD)  
(as estimated across the genome)

2
1 1

4Or kinship coefficient { P(IBD=2)+ P(IBD=1) } againstP(IBD=0)

Heather Cordell (Newcastle) GWAS (Part 1) 35 / 40

46

Full/half sibs and parent-offspring
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CHD GWAS results (low QC)
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CHD GWAS results (better QC)
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CHD GWAS results (final QC)
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Genome-wide meta-analysis

Puts together data (or results) from a number of different studies
Could analyse as one big study
But preferable to analyse using meta-analytic techniques

At each SNP construct an overall test based on the results  
(log ORs and standard errors) from the individual studies
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Genome-wide meta-analysis

Puts together data (or results) from a number of different studies
Could analyse as one big study
But preferable to analyse using meta-analytic techniques

At each SNP construct an overall test based on the results  
(log ORs and standard errors) from the individual studies

Meta-analysis is often made easier by using imputation
Inferring (probabilistically) the genotypes at SNPs which have not  
actually been genotyped

On the basis of their known correlations with nearby SNPs that have  
been genotyped
Using a reference panel of people (e.g. 1000 Genomes) who have been  
genotyped at all SNPs
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Genome-wide meta-analysis

Puts together data (or results) from a number of different studies
Could analyse as one big study
But preferable to analyse using meta-analytic techniques

At each SNP construct an overall test based on the results  
(log ORs and standard errors) from the individual studies

Meta-analysis is often made easier by using imputation
Inferring (probabilistically) the genotypes at SNPs which have not  
actually been genotyped

On the basis of their known correlations with nearby SNPs that have  
been genotyped
Using a reference panel of people (e.g. 1000 Genomes) who have been  
genotyped at all SNPs

Enables meta-analysis of studies that used different genotyping  
platforms

By imputing to generate data at a common set of SNPs
Ideally while accounting for the imputation uncertainty in the  
downstream statistical analysis
In practice often don’t bother - use post-imputation QC to remove  
poorly-imputed SNPS
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Data Quality Control
NGS and Genotype Array Data

Suzanne M. Leal, Ph.D.
sml3@cumc.columbia.edu

1

• Blood samples
– For unlimited supply of DNA

• Transformed cell lines
– Is expensive

• Whole genome amplification
– Allows for the creation of large amounts of DNA from initial small DNA sample

» Perform WGA on each sample three or more times and use pooled samples

– Can experience lower call rates and higher genotyping error rates
– Not recommend for whole genome sequencing or copy number variant (CNV) analysis

• Buccal Swabs
• Small amounts of DNA
• DNA not stable

• Saliva (Origene collection kit)

• Nanodrop
• Picogreen

DNA Collection

Measurement of DNA Concentrations

2

• For family-based association studies - Trios
– Can  increase both type I and II error

• Population based studies
– Increases type II error only

Effect of Genotyping Error – Same Error Rates for 
Cases and Controls

Quantitative Traits 
If genotyping error is not correlated with 
trait values type II errors will be 
increased

3

• Cases and controls are sequenced/genotyped
– At different times
– Different institutions
– Or one group, e.g., case or control, is predominately 

sequenced/genotyped in the same batch
• Can lead to different genotyping error rates in cases and controls

– In this situation both type I and II error can be increased
• If sequencing/genotyping cases and controls

– Randomize cases and controls so they are spread evenly across batches

Effects of Genotyping Error – Different Error 
Rates for Cases and Controls

Quantitative Traits 
If genotyping error is correlated with trait values, it will 
also increase type I and II errors, e.g., individuals with 
elevated systolic blood pressure are genotyped in one 
batch and those with systolic blood pressure within the 
normotensive range in another batch 

4

• Genotype markers which can be used as DNA fingerprint

• Allows for Assessment of DNA quality
• Aids in determining the the genetic sex of study subjects

– To aid in identification of potential sample swaps
• Detects cryptic duplicates

• For family data
– Aids in determining close familial relationships

• Non-paternity
• Sample swaps
• Cryptic relationships

Genotype SNPs (~20-96) before Exome or Whole 
Genome Sequencing

5

• Duplicate samples genotyped using arrays to detect
inconsistencies 
– Can use duplicate samples  that are inconsistent to adjust clusters to 

improve allele calls
• Will not detect systematic errors

• Usually generated only for genotype array data
– Due to expense, duplicate samples are usually not generated for exome or 

whole genome sequencing studies 

Detecting Genotyping Errors

6
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Variant Calling Pipeline -Step 1 Preprocessing 

FastQ or uBAM files 

Map to Reference Burrows-Wheeler Aligner

Mark Duplicates Picard

Recalibrate Bases
Base quality score recalibration (BQSR)

GATK

BAM

BAM

7

Variant Calling Pipeline-Step 2 Variant Discovery 

Call Variants 

Merge

Joint Calling

Optional - Can be used 
for large datasets

Variant quality score recalibration (VQSR)

GATK

gVCF

VCF

gVCF

Flags  variant 
sites which are 

likely to be false 
positives

GATK

Recommend HaplotypeCaller
UnifiedGenotyper - outdated

8

Variant Calling Pipeline - Step 3 Call Set Refinement 

CalculateGenotypePosteriors

VariantFiltration Flags genotypes with GQ<20

VariantAnnotator

Functional annotation

GATK

VCF

VCF

VCF

Refines genotype calls & 
GQ scores using info on 
variant MAFs. For families 
uses info on each trio pair 
within a family

Flags possible de novo events 
(trio data)

Not performed by GATK

9

A Short List of  Additional Software to Detect 
Genetic Variation

• Exome data copy number variation
– CoNIFER  (Copy Number Inference From Exome Reads)

• Krumm et al. 2012

– XHMM
• Fromer et al. 2014

• WGS data structural variation
– MetaSV

• Mohiyuddin et al. 2015

– LUMPY
• Layer et al. 2014

10

Variant Calling

• BAM files are large and take considerable resources
– Storage is expensive 
– One 30x whole genome is ~80-90 gigabytes

– A small study of 1,000 samples will consume 80 terabytes of 
disk space

• The cost of cloud computing to call variants 
– (Souilmi et al. 2015)

– $5 per exome
– $50 per genome 

• For 1,000 samples
– $5,000 exome
– $50,000 genome 

11

Working with gVCF Files

• Instead of obtaining VCF files  
• Can obtain gVCF files to perform joint calling and 

complete the GATK pipeline
– A whole genome gVCF 

• ~1 Gigabyte
– 1/100th the size of a BAM file for one individual

12
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Influences on Sequence Quality

• DNA quality
– Age of sample
– Extraction method

– Source of sample
• e.g., blood, skin punch, buccal

• Sequencing machines (read length)
• Median sequencing depth
• Alignment
• Variant calling method used

– Single nucleotide variants and insertion/deletions
– Structural variants

13

NGS Data Quality Control

• Extremely important to perform before data analysis
– Poor data quality can increase type I and II errors
– Due to inclusion of false positive variant sites or incorrect

genotype calls 

• Protocols for data QC are still in their infancy
– No set protocols for QC

• QC is data specific
– Dependent on read depth

– Batch effects
– Availability of duplicate samples

– etc.

14

NGS Data Quality – Removal of Genotype Calls 
and Samples 

• Sequence depth of coverage
– DP_variant

• High DP could be an indication of copy number variants 
– Which can introduce false positive variant calls

» Due to down sampling in GATK maximum DP is 250
– DP_genotype

• Concerned if depth is too low or too high
– Low insufficient reads to call a variant site

• Remove genotypes with low read depth, e.g., DP<8 

• Genotype quality (GQ) score
– Removal genotypes with a low genotype quality core, e.g., GQ< 20

• Bcftools
– Can be used to remove variants sites and genotypes which do not

meet quality control criteria

15

VCF Example

16

• Genetic analysis tools are usually developed to analyze
variant sites that are diallelic

• Some sites may have >2 alleles
• The alleles at these sites need to be split

– New loci are made each multi-allelic site each with only 2
alleles

• bcftools

• Multiallelic sites can have higher error rates compared
to diallelic sites

Variants with more than 2 Alleles

17

• Removal of sites with missing data
– e.g., missing > 10% of genotypes

• Removal of “novel” variant sites which only occur in 
one batch and the alternative allele is observed 
multiple times or the minor allele frequency (MAF) is
high in overall sample 

• Removal of sites that deviate from Hardy-Weinberg
Equilibrium (HWE)
– Must be performed by population, e.g., African American

and European American
– Related individuals should be removed from the sample 

before testing for deviations from HWE

NGS Data Quality – Removal of Genotype Calls 
and Samples 

18
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NGS Data Quality Control

• GATK - Variant Quality Score Recalibration (VQSR)
– Used to determine variant sites of bad quality

• Variant site is a false positive call

• However even after this step
– Concordance of duplicates (when available) and

– and Ti/Tv ratios are often low

• Additional QC steps needs to be performed

19

NGS Data Quality Control

• Values which are used for DP (genotype), GQ, and
missing data cut offs are based upon 
– Concordance rates

• If there are duplicate samples are available
– Ti/Tv ratios

• By individual
• By batch
• Entire data set

– Amount of data removed
• QC can remove substantial amounts of data which should be 

avoided
– e.g., >15% of variant sites

20

Transition/Transversion (Ti/TV) Ratios

A C

GT

Transition
    Transversion

• Transition
• Purine Purine
• Pyrimidine Pyrimidine

• Transversion
• Purine Pyrimidine
• Pyrimidine Purine

AKA Ts/Tv ratios 

21

Transition/Transversion (Ti/TV) Ratios

A C

GT

Transition
Transversion

• Ti/Tv  Ratios
• Whole genome ~2.0
• Exome novel ~2.7
• Exome known ~3.5

• Ti/Tv ratios can be calculated by 
• Sample or
• Dataset

• Ti/Tv ratios can be evaluated for subsets of data
• e.g., by batch

22

Sequence Data QC Overview

• Variant and genotype call level
– Evaluation of batch effects

• Genotype call level – Removal of genotype calls
– Low or high depth of coverage DP< 8

– Low genotype quality score GQ< 20

• Removal of individual samples
– >20% missing data

• After taking the intersect of capture arrays

– Samples without phenotype information

23

Sequence Data QC Overview

• Variant level – removal of variant sites
– Low call rate

• i.e., missing call rate > 10%

– “Novel” variant sites observed >2 only in a single batch
– Deviation from Hardy-Weinberg-Equilibrium

• Population specific
• Unrelated individuals 

– e.g.,  p<5 x 10-8 , p<5x10-15

24

13



• When data is collected on study subjects they are 
asked about their gender/sex and not their genetic sex
– Differences in gender/sex and genetic sex can be due to

• Sample swaps
• Study subjects who are not cisgender

• Some study subjects may have neither a XX nor XY 
karyotype
– Turner syndrome X0

– Klinefelter syndrome XXY

QC – Assessing Sex Chromosomes

25

• Study subjects labeled as females with an excess of
homozygous genotypes on the X chromosome can 
denote
– That their genetic sex is male

– Turner Syndrome

QC – Assessing Sex Chromosomes

26

• Study subjects labeled as males with an excess of
heterozygous SNPs* on the X chromosome can 
denote
– That their genetic sex is female

– Klinefelter syndrome

• Note: Individuals who are XY will also be 
heterozygous for markers in the pseudoautosomal
regions

• Availability of Y chromosome data
– Can greatly aid in determining genetic sex and if an individual has 

Turner or Klinefelter syndrome

QC – Assessing Sex Chromosomes

*Both genetic males and females have two alleles for each locus on the X
chromosome in the datafile, although genetic males are hemizygous 

27

• Individuals whose labeled gender/sex does not match
their genetic sex are removed from the analysis

• This observation may be due to a sample swap
– When samples are swapped

• Phenotype data will be incorrect
– e.g., may be a case when labeled as a control

Data Clean – Assessing Sex Chromosomes

28

• Duplicate samples are sometimes included in a study as
part of quality control to detect inconsistencies
– Will not detect systematic errors
– Usually not included in exome and whole genome sequencing studies 
– Intentional duplicates can easily be removed before data quality control

• Cryptic duplicates (unintentional)
– DNA sample aliquoted  more than once
– Individual ascertained more than once for a study

• e.g.  The same individual undergoes the same operation more than once and is
ascertained each time

• Individuals who are related to each other may
participate in the same study
– Unknown to the investigator
– Or be part of the study design

Checking for Duplicate and Related Individuals

29

• For duplicate samples
– Only one can be retained

• For related individuals
– PCA is performed first with unrelated individuals and related individuals 

are then projected onto the PCs of unrelated individuals
– Mixed-models need to be used to analyze the data if related individuals 

are included*
• Case-Control

– Generalized linear mixed models (GLMM)
• Quantitative traits

– Linear mixed models (LMM)

• If related individuals are ignored in the analysis  type I error
rates can be inflated

Duplicate and Related Individuals Need to be 
Identified

*If only a few related individuals in sample, may wish to remove them or use LMM/GLMM
to control type I errors. Must use LMM/GLMM if related individuals are included in the
dataset. If possible, opt for LMM/GLMM since it can help to control type I error due to
other types of structure in the data, even when no closely related individuals are included 
in the analysis.

30
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• Duplicate and related individuals can be detected
– By examining Identity-by-State (IBS) adjusted for allele

frequencies (p-hat) between all pairs of individuals within a
sample

– Identify-by-descent (IBD) sharing can be estimated

Identifying Duplicate and Related Individuals

31

Identity by Descent (IBD)/Identity-by-State (IBS)

1/1 1/3

1/2 1/3

1/2 1/2

1/2 1/3

1/3 1/2

1/2 1/3

IBD=0  

IBS=1

IBD=1  

IBS=1

IBD=2  

IBS=2

32

• PLINK (Purcell et al. 2007)
• Uses sequence (or genotype array) data to check IBD

– Prune markers to remove those in linkage disequilibrium
(LD) 

• e.g., r2<0.1
• P-hat is calculated using the “population” allele frequency

• Used to approximates IBD sharing

• IBD is the number of alleles of alleles which are shared between
a pair of individuals
– Can either share 0, 1, and 2 alleles

IBD Sharing Estimated Pairwise for all Individuals 
in a Samples 

33

• Monozygote twins and duplicate samples will share
100% of their alleles IBD
– IBD=2 is 1.0 (can be lower due to genotyping error)

• Siblings and child-parent pairs will share 50% of their
alleles IBD
– For parent-child IBD=1 is 1.0 (IBD=0 is 0 & IBD=2 is 0)

– For sibs IBD=1 is ~0.50 (IBD=0 is ~0.25 & IBD=2 is ~0.25)
• For more distantly related individuals the IBD measure will be lower

Identifying Duplicate and Related Individuals

34

• KING [Kinship-based INference for Gwas 
(Manichaikul et al. 2010)] can also be used to identify
duplicate and related individuals
– KING is more robust to population substructure and

admixture

• Prune markers for LD (e.g., r2<0.1)
– Provides kinship coefficients

• Duplicate samples
– Kinship coefficient equals 0.5

• Siblings
– Kinship coefficient equals 0.25

Identifying Duplicate and Related Individuals

35

UK Biobank Related Individuals > Kinship Coefficient 0.0625

36
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King Graphical Output

37

• If individuals in sample come from different populations
– e.g., individuals from the same population within the sample will have 

inflated p-hat values due to incorrect allele frequencies
• Incorrectly appear to be related to each other

• “Relatedness” amongst many individuals can also be observed
when batches are combined if they have different error rates
– Individuals from the same batch appear to be related

• DNA contamination can cause “relatedness” between multiple
individuals 

Multiple Individuals Observed That are Distantly 
“Related” 

38

• Can be used to identify outliers
• Population substructure

– Individuals from different ancestry
• e.g., African American samples included in samples of European 

Americans

• Batch effects
• Use a subset of markers which have been LD pruned

– Only very low levels of LD between marker loci
• e.g., r2<0.1

– MAF cutoff dependent on sample size
• e.g MAF> 0.01 

– Can use lower MAF for large sample sizes

Principal Components Analysis (PCA) / 
Multidimensional Scaling (MDS)

39

• Unrelated individuals are used to generate PC plots
– Related individuals are projected onto to the PC plots

• Plot 1st component vs. 2nd component
– Additional PCs should also be plotted

• e.g.. PCs 1-10

• Mahalanobis  distance can be used to determine outliers
– e.g., <1

Principal Components Analysis (PCA) / 
Multidimensional Scaling (MDS)

40

• Individuals of different ancestry
– e.g., African American samples included  with European

Americans samples

– Can use samples from HapMap/1000 genomes to help to 
determine the ancestry for samples that are outliers

• Should not include HapMap/1000 genomes samples when calculating
components to control for population substructure/admixture

• Batch effects

PCA/MDS Can be Used to Identify Outliers

41

Principal Components Analysis Example

Exclusion of Outliers using Mahalanobis distance (0.997)

42

1616



Detecting Outliers Using PCA and HapMap 
Sample

YRI

Cases

Wellcome Trust
1958 Birth Cohort
Controls

CE
U

CHB/JPT

YRI

43

Detecting Outliers Using PCA and 
HapMap Sample

Wellome Trust 
1958 birth cohort
Controls

CEU

Cases

CHB/JPT

YRI

44

• Testing for deviations from HWE not very powerful to 
detect genotyping errors

• The power to detect deviations from HWE dependent on: 
– Error rates

– Underlying error model
• Random 
• Heterozygous genotypes  -> homozygous genotypes
• Homozygous genotypes ->Heterozygous genotype

– Minor allele frequencies (MAF)

Detecting Genotyping Error – Examining HWE 

45

• Controls and Cases are evaluated separately 
– Deviation found only in cases can be due to an association

• Test for deviation from HWE only in samples of the same 
ancestry
– Population substructure can introduce deviations from HWE

• Do not include related individuals when testing for 
deviations from HWE
– Can cause deviations from HWE

Detecting Genotyping Error – Examining HWE 

46

• What criterion is used to remove variants due to a 
deviation from HWE
– GWAS studies have used 5.0 x 10-7 to 5.0 x 10-15

• Quantitative Traits
– Caution should be used removing markers which deviate from 

HWE may be due to an association
• Remove markers with extreme deviations from HWE and Flag markers 

with less extreme deviations from HWE

• When performing imputation need to be more stringent in 
removing variants which deviate from HWE

Detecting Genotyping Error – Examining HWE 

47

Sequence Data QC Overview

• Remove variant sites that fail VQSR
• Remove genotypes with low DP, GQ scores, etc.
• Remove variant sites with large percent of missing data
• Remove samples with missing large percent of missing 

data
• Evaluate genetic sex of individuals based upon X and Y 

chromosomal data
– Sample mix-ups
– Individuals with Turner or Klinefelter Syndrome

48
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Sequence Data QC Overview

• Evaluate samples for cryptically related individuals and 
duplicates
– Use variants which have been pruned for LD

• e.g., r2<0.1

– King or Plink algorithm
• Always remove duplicate individuals

– Retaining only one in the sample
• If sample includes related samples use linear mix models 

(LMM)/Generalized LMM (GLMM) to control for relatedness
– Best to perform even for data without related individuals

• If only a few related individuals can retain only one individual of a 
relative group if not using LMM or GLMM

49

Sequence Data QC Overview
• Detection of sample outliers   

– Perform principal components analysis (PCA) or 
multidimensional scaling (MDS) to detect outliers

• Use variants pruned for LD
– e.g., r2<0.1

• Use unrelated individuals and then project related individuals 
onto the PCs

• Due to population substructure/admixture and batch effects
• Remove effects by 

– Additional QC
– Removal of outliers  (can be determined by Mahalanobis distance) 

and\or 
– Inclusion of MDS or PCA components in the association analysis

50

Sequence Data QC Overview
• Remove/flag variant sites that deviate from HWE in 

controls 
– HWE should be only be tested in unrelated individuals from the 

same population

• Post Analysis - Quantile-Quantile (QQ) plots
– To evaluate uncontrolled batch effects and population 

substructure/admixture

51

• Thousands of variants/genes are tested simultaneously
• The p-values of neutral markers follow the uniform 

distribution
• If there are systematic biases, e.g., population 

substructure, genotyping errors, there will be a 
deviation from the uniform distribution 

• QQ plots offers an intuitive way to visually detect 
biases

• Observed p-values are ordered from largest to 
smallest and their -log10(p) values are plotted on the y 
axis and the expected -log10(p) values under the null 
(uniform distribution) on the x axis

QQ Plots - Genome Wide Association Diagnosis

52

QQ Plot of Exome Wide P Values
UK Biobank 200K

𝝀  = 0.942

Hearing aid users

Case N= 6,436
Controls N= 96,601

𝝀  = 1.046

Cases N=65,660
Controls N= 96,601

Problem hearing 
with background noise

53

QQ Plots show extreme inflation 𝜆=1.32

Bulik-Sullivan et al. 2015

54
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• Genomic Inflation Factor (GIF): ratio of the median of 
the test statistics to expected median and is usually 
represented as λ
– No inflation of the test statistic λ=1
– Inflation λ>1

– Deflation λ<1
• Can be observed when a study is underpowered

• Problematic to examine the mean of the test statistic
– Can be large if many variants are associated

• Particularly if they have very small p-values
• Should not be used

Genomic Inflation Factor to Evaluate Inflation of 
the Test Statistic 

55

Phenotype Covariate Mean Chi-Square GIF (λ)

BP 1.23829 1.16932

BP Age 1.24119 1.18025
BP Age-EV1 1.09471 1

BP Age-EV2 1.0881 1
BP Age-EV4 1.08385 1

BP Age-EV10 1.09582 1.00402
BPI 1.14931 1.08921

BPI Age 1.15139 1.08113
BPI Age-EV1 1.05079 1.01148

BPI Age-EV2 1.0428 1
BPI Age-EV4 1.04204 1

BPI Age-EV10 1.05421 1.01724

BPII 1.17283 1.25664
BPII Age 1.17583 1.26996

BPII Age-EV1 1.09874 1.15065
BPII Age-EV2 1.09904 1.16425

BPII Age-EV4 1.09502 1.14609
BPII Age-EV10 1.10046 1.1418

BPII Sex,Age-EV1 1.05958 1.06424
BPII Sex,Age-EV4 1.05817 1.05323
BPII Sex,Age-EV10 1.06338 1.05581

56

• LD score regression (LDSC) can be used to determined 
if the observed 𝜆 is inflated due to 
– Problems in the data

• Population substructure/admixture
• Batch effects/genotyping errors

– Polygenicity
• Many associated loci each with a very small effect size

• LDSC is performed and the intercept is examined
– If intercept is >1 than inflation is due to population 

substructure, etc. 

– If intercept is ~1 than 𝜆<1 is due to polygenicity

Evaluating Reason for Inflated 𝜆

57

• Bulik-Sullivan et al. (2015) performed simulation studies using LDSC regression to 
evaluate polygenicity 

Panels a & c data were simulated 
with population substructure. The 
𝜆=1.32 (a) & LDSC intercept = 
1.30 (c)

Panels b & d data were simulated 
with polygenicity with 0.1% of 
variants having a causal effect  The 
𝜆=1.32 and LDSC intercept = 1.006

Panels c & d  is 
shown the LDSC 
regression line

Panels c & d is 
shown the LDSC 
regression line

58

Post Analysis QC

• Observe in Manhattan plots individual associated variants with 
no surrounding associated variants

59

Post Analysis QC
• Most variants are in LD with neighboring SNPs

• Genotyping error can cause a variant site not to be in 
LD with any of its neighbors

• Genotyping error can also cause a spurious associations

• A lone associated variant site can be due to genotyping 
error

60
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Post Analysis QC
• Imputation can be used to determine if for the variant 

site there is genotype error
• Variant site is imputed 

– Check how accurate variant is impute
• R2 or INFO score

– If imputation accuracy is high e.g. R2>0.8

– Check the correlation between the imputed variant and 
sequence or genotype array data 

• R2

– If r2 is low there is genotyping error 

– The variant site should be removed

61

Example Project Description

• 1,667 Samples
• Seven cohorts
• Two sequencing centers

– Center 1
• Two capture arrays

– NimbleGen V2Refseq 2010 (CA1): 1082
» Batch 1 and 3

– NimbleGen bigexome 2011 (CA2): 234
» Batch 2

– Center 2
• One capture array

– Agilent SureSelect
» Batch 4

• Four batches
• No intentional duplicate samples

62

Example Project Description

• Intersection of the three capture arrays used
– NimbleGen V2Refseq 2010

• Batch 1 and 3
– NimbleGen bigexome 2011

• Batch 2
– Agilent Sure Select 

• Batch 4

• Sequencing machine
– Illumina HiSeq

• Sequence alignment
– BWA

• Multi-sample variant calling
– GATK

63

MDS First 2 Components Before QC*
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Mean GP (genotype) by Batch
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Mean GQ by Batch
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Genotypes Removed by DP (genotype) Cut-off by Batch
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Genotypes Removed by GQ Cut-offs by Batch
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Genotypes Removed by DP (genotype) Cut-off by Batch 
(First removing genotypes with GQ < 20)
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Genotypes Removed by GQ Cut-offs by Batch 
(First removing genotypes with a DP<8)
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Missing Rate Criteria & Sites Removed

Variant sites 
removed if  

missing
>10% of their 

genotypes

Variant sites 
removed if 

missing
>5% of their 
genotypes

Percent of genotype data removed

Before QC* 2.5% 3.9%
After QC 12.9% 18.3%

Variant sites missing >10% of their data were removed

*After VQSR

71

Ti/Tv Ratios during QC Process 

Known Novel All

Before VQSR 2.95 ± 0.05 1.18 ± 0.29 2.86 ± 0.07

Before additional QC 3.12 ± 0.03 2.01 ± 0.32 3.11 ± 0.03

Genotype QC DP<8, GQ<20 3.18 ± 0.04 2.10 ±0.32 3.16 ± 0.03

Remove sites missing >10% genotypes 3.39 ± 0.04 2.42 ± 0.52 3.39 ± 0.04

Remove batch specific novel sites >2 
N=17,835 3.39 ± 0.04 2.41 ± 0.53 3.39 ± 0.04

Remove sites deviating from HWE p<5x10-8 
N=4,414 3.41 ± 0.04 2.39 ± 0.54 3.40 ± 0.04
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Ti/Tv Ratios by Individual Before and After QC

All                   Known                Novel All                  Known               
Novel  
         Before QC                                                              After QC

Ti/Tv Ratios

73

●●●
●●●

●

●
●●

●
● ●● ●
●●

●
●●

●
●

●

●● ●

●
●

●

●

●

●
●

●

● ●
●

●

●
●●

●●

●

●

●●
●

●●

●

●
●

●

●
●

●
●
●●
● ●

●

●
●

●
●

●

●

●

●

● ●
●

● ●
●
●

●

●
●

●●

●

●

●
●

●
●●

●
●

●
●

● ●

●

●

●

●● ●
●●

● ●

●●
●●● ●

●

●

●

●
● ●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

● ●

●

●
●

●
●●

●

●
●

●●

●
●

●
●

●●

●

●

●
●

●

●
●

●
●

● ●
● ●●

●

●
● ●

●
●●

● ●

●

●
●

●
●

● ●

●

●

●

●● ●

●
●

●

●
●

●

●

●

●●●

●

●●●

●

●

●

●
●

●
●

● ●
●

●
●

●
●● ●

● ●●
●●

●
●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●
● ●●●

●

●

● ●
● ●

●●

●● ●● ●●
●

●
●●

●●
●

●
●

●

●

●
●●●●

●

●
●●

●

● ●
●

●
●

●

●●
● ●

●
●

●

● ●
●

●
●

● ●
● ●

●●
●
●

●

●

●
●

●
●

●
● ●●

●

●
●

● ●
●

●

●

●●
●

●
● ●
●

●
●●

●

●
●

●

●
●●

●

●
●

●●●●
●

●
●

●
● ●

●● ●

●

●●

●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●●

● ●

●
●

●

●
●

●
●

●
●

●

●

●

●

●
●●

●

●
●

●

●
●

●● ●
●

●
●

● ●

●

●
●

●

●
●

●

●

●

●
●

●●

●●
●

●
●

●
●●

●

●

●

●
●

●
●

●
● ●●

●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
● ●
● ●● ●●

●●

●

●
●

● ●
●

●

●

●

●

●
●

●

● ●
●

●
●

●

● ●

●
●

●●
●

●
●

●
●

●●

●

●
●●

●
●●

● ● ●

●
●

●

● ●
●

● ●

●

●

●

●
●

●

●

● ●●
●

●
●

●●●
●●●

●●

●
●

●
●

●
●

●●

●

●● ●●

●
●

●
●

● ●●

●

●

●

●
●●

●● ●

●

●
●●

●●

●

● ●

● ●

● ●
●

●

●
●

●

●

●
●● ●

●

● ●●
●

●

●
●

●

●●
●● ●

●
●

●

●
●

●

● ●● ●
●●

●●
●

●

●

●

●

●

●

●
●

●●
●

●●

●

● ●
●

●
● ●

●
●

● ●

●

●

●●
●● ●●

●
●

●●
●●

●

●

● ●
●●● ●

●●
●

●

● ●●
●●

●

●
●

●
●

● ●● ●●
●

●

●

●

●

●

●

●
● ●

● ●

●
● ● ●

●

●
●●

●

●
●

●
●●

●

●

● ●

●
●

●

● ●

●

●

●

● ●●
●

●
●

●●

●

●●

●

●
●

●

● ● ●
●

●
●●

●
●

●
●

●

● ●
●

●

●
●

●

●

●
●

●●
●●

●
●

●

●
● ●

●
●

●

●

●●●
●
●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

● ●

●
●● ●

●

●
●

●
●

●
●

●

●

●● ●
●

●
● ●

● ●●

●●

●

●

●

●

●
●

●

●●
●

●

●

● ●●

●

●●
● ●

●

●

●●
●

●

●●●
●

● ●●
● ●

● ●

●

●
● ●

●
●

● ●

●

●

●

●

●

●●
●

●

●

●
●

●

● ●●
●

●

●

●
● ●

●

●

●● ●

●●

●●●
●●

●

●
●

●
●

● ●●

●

●
●

● ●
●●

●●
●

●
●

●

●

●
●●● ●

● ●

●
●

●

●

●

●

●
●

●

●●
●

●●

●

●
●

●●

●●

●
●

●
●

●

●

●

●

●

●●

●

●●

●

● ●●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●

●
● ●

● ●

●

●●
● ●

●●
●● ●

●
●

●
●

●
●●

●
●

●
●

●

●

●
●

●●
●
●
●

●
●

●

●●●
● ●

●●

●

●

●
●

● ●● ●
●

●
●●

●

●
● ●

●

●

● ●
● ●

●

●

●

●

●

●

●
●

●●
● ●

●●

● ●●

●

●

●●

●

●

●●

●
●

●

● ●●

●

●

●

●

●

●

● ●
●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●●

●

●

● ●
●

●
●●

●

● ●●
●

● ●

●

● ●
●

●

●
●

●

●

●

●
● ●

●
●

●
●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●
●
● ●

●●●
●

●

●
●
●

●
●

●

●●

●
●

●

●●

●

●●

●

●

●

●

●

● ●

●

●

●
●

●
●

● ●

●

●●●

●
●

●
●●

● ●

●
●

● ● ●
●●

●
●

●●

●

●●
●

●
●

●

●
●●

●
●

● ●
●

●
●

●●

●
●● ●

●

● ●
●

●
●

●

●
●

●

●● ● ●

●

●

●
● ● ●●●

●

●

● ● ● ●●

●

●
●

● ●

●

●

●

●

●●

●

●

● ●

●
●

●●●

● ●
●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●●
●

●
●

●

●

● ●

●
● ●

●

●
●●● ●

●●

●
●●

● ●

●●

●
●

●

●

●
●● ●●

●●

●
●

●
●

●

●

●

●

●
●
●●

●

● ●
●

●

● ●
●

●

●
●● ●

●

●● ●

●

●
●

●●

●

●●●

●

●
●

● ●●

●●

●
● ●●

●
●

●
●●

●
●

●●
● ●●

●

●
●

●
● ●

●

●

●

●
●

●
●●

●

●

●●
●

●
●

●

●
●

●●

●●
●

● ● ●

●

●
●

●

●

●
●

●
●

●

●●
●

●
●

●● ●
●

●

●
●

●●

●

●

●

● ●●
●

●
●

●

●

● ●●
● ●

●

●

● ●

●

●● ●● ●
●

●●

●

●

●

●
●

●

●
● ●●

●
●

●

●

●●
●

●

●

●
●

●

●

●
● ●● ● ●

●
●●●●

●
●

●●
●

●●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●● ●

●

●

●

●●●
●

●
●● ●

●

●

●
●

●
●

●

● ●

●

●
●

●●0.0

0.1

0.2

0.3

0.4

0.5

−0.05 0.00 0.05 0.10 0.15 0.20

king_VLQC_BMR10_MDS1

ki
ng
_V
LQ

C
_B
M
R
10
_M

D
S2

batch
●

●

●

●

1
2
3
4

MDS First 2 Components After QC

74

Sequence Data QC

• Batch effects can sometimes be removed with 
additional QC 

• Extreme outliers should be removed
• Additionally, MDS\PCA components can be included in 

the analysis to control for population 
substructure\admixture and batch effects
– Unless correlated with the outcome (phenotype)

– The MDS or PCA components should be recalculated after QC 
only including those samples included in the analysis

• Batch (dummy coding) may be included as a covariate 
in the analysis
– Unless correlated with the outcome (phenotype)

75

• Can reduce the cost of a study 
• Genotype data 
• Type I error can be increased

– Ascertainment from different population
– Differential genotyping error

• Even if performed at the same facility

• Proper QC can reduce or remove biases

Convenience Controls

76

• Obtain BAM files and recall cases and control together
– Can still have differential errors between cases and controls
– Check variant frequency by variant types in cases and control

• Synonymous variants should have the same frequencies 
• Would not expect large differences in numbers of variants between cases and 

controls

• For single variants can compare difference in frequencies with 
gnomAD but is problematic
– Differences in frequencies can be due to differences in ancestry and/or 

sequencing errors
– Cannot adjust for confounders

• e.g., sex, population substructure/admixture

• Don’t perform an aggregate test using frequency information 
obtained from databases,  e.g., gnomAD, TOPMed Bravo

Convenience Controls–Sequence Data

77

• Initially remove DNA samples from individuals who are missing 
>10% or their genotype data

• For variant sites with a minor allele frequency (MAF)>0.05
– Remove variants sites missing >5% of their genotype data

• For variant sites with a MAF<5% 
– Remove variant sites missing > 1% of their genotype data

• The genotypes for variant sites with missing data may have 
higher genotype error rates

Genotype Array Data 
Genotype Data QC – Population Based Studies

78
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• Remove samples missing >10% genotype data

• Remove SNPs with missing genotype data 
– If minor allele frequency >5% 

• Remove markers with >5% missing genotypes 
– If minor allele frequency <5% 

• Remove markers with >1% missing genotypes

• Remove samples missing >3% genotype calls 
• Check genetic sex of individuals based on X-chromosome 

markers & Y chromosome marker data (if available)
– Remove individual whose reported gender/sex is inconsistent with 

genetic data
• Could be due to a sample mix-up

• Check for cryptic duplicates and related individuals
– Used “trimmed data set of markers which are not in LD

• e.g. r2<0.1

– Remove duplicate samples

Order of Data Cleaning-Genotype Array Data

79

• Perform PCA or MDS to check for outliers
– Use trimmed data set of markers which are not in LD

• e.g., r2<0.1

– First with unrelated individuals and then project related 
individuals on the components

– Remove  outliers from data
• e.g., Mahalanobis distance

• Check for deviations from HWE
– Separately in cases and controls

– Only unrelated individuals

– If more than one ancestry group
• Separately for each ancestry group

– As determined via PCA or MDS

Order of Data Cleaning-Genotype Array

80

• Examine QQ plots 
– e.g., not controlling adequately for population admixture

• Inflated test statistics Deflated p-values 

• Examine Manhattan to detect associated variants 
which are not in LD with other variants
– Genotyping errors causing spurious associations

Order of Data Cleaning-Genotype Array

81
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1

Complex Diseases (Traits)

T.A. Manolio, et al. J clin Invest, 2001

D. Kenneth, et al. NCHS Date Brief No. 293, 2017

Genetic and environmental contribution to 
complex disorders

Top 10 leading causes of 
death in the United States

2

Heritability

• Broad-sense heritability 
– Considers all genetic factors

• Phenotype = Genetics + Environmental Noise
– Y = G + E

• Var (Y) = Var (G) + Var (E) 

– H2 = Var (G)/Var (Y)

• Narrow-sense heritability 
– Considers only additive contributions

• Phenotype = Additive Genetics + Environmental Noise
– Y = A + E

• Var (Y) = Var (A) + Var (E)
– h2 = Var (A)/Var (Y)

3

Height Heritability

• The variance of human height is about ~25 cm2 
– Adjusted for sex

• Total Variation

• ~20 cm2 due to genetics

• ~5 cm2 due to other factors (noise)

• The heritability of height is ~20/~25=~80%

• The heritability of height has been estimated using a variety of 
study types, e.g. twin, sibpairs

• Karolinska

4

Heritability for Common Traits 

Human height heritability is ~80% 

• Strongly associated common 
variation explain 21—29% 
• Those that statistically signficant

• All common variation explains 60% of 
height heritability (h2)

5

Heritability for Several Traits 

GWAS associated SNPs
(common variants)

Area in blue is the so called missing heritability

6

2424



Heritability for Several Traits

Other 
common 
variants for 
which an 
association 
has not yet 
been detected

GWAS associated SNPs
(common variants)

7

Allelic Architecture 

T. A . M anolio et al. N ature, 2009

8

• Disease susceptibility is conferred by variants which are 
common within populations
– Variants are old and widespread

• These variants have modest phenotypic effect

• This model is supported by many replicated examples
– Age Related Macular Degeneration (Klein et al. 2005)

• Complement factor H (CFH) gene

Complex Disease – Common Variant
Associations 

9

• Hundreds of thousands of Single nucleotide polymorphism 
(SNPs) genotyped and analyzed
– Indirect mapping

• Markers usually had a  minor allele frequency (MAF) > 0.05
• Usually not pathogenic – tag SNPs 
• In linkage disequilibrium with disease susceptibility variant

Studying Complex Traits – Common Variant 
Associations

10

Complex Trait – Common Variant Associations

• Although 
highly 
successful in 
identifying 
thousands of 
complex trait 
loci 

• Usually 
pathogenic 
susceptibility 
variant(s) not 
identified

11

• Complex traits are the result of multiple rare variants
– Although first thought to large effects, there effect sizes are usually small 

• Although these variants are rare, e.g., MAF<0.005
– Collectively they may be quite common

• Direct tests of this hypothesis where first reported >15 years ago 
– Dallas Heart Study

• Small sample ~1,200 individuals
– Multi-ancestry 
– Used “extreme” sampling 

• Plasma low density lipoprotein levels (Cohen et al. 2004)
– NPC1L1 

Complex Disease – Rare Variant Associations

12
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• Testing individual variants with low effect sizes and minor allele 
frequencies (MAFs)
– Underpowered to detect associations

• Testing variants in aggregate increases MAFs
– Improving the power to detect associations

Rationale for Rare Variant Aggregate 
Association Tests 

Gene 1 Gene 2 Gene 3

13

Caveats - Aggregate Rare Variant Association Tests

• Misclassification of variants can reduce power
– Inclusion of non-causal variants
– Exclusion of causal variants

• Analysis can be performed using region boundaries for 
– Genes 

– Genes within pathways
– Regulatory regions

• As determined for example by
– FANTOM5 CAGE profiles to identify promoter regions (Noguchi et al. 2017)
– STAAR pipeline that combines multiple in silico annotations (Li et al. 2020)

• Unlikely a sliding window approach will work
• Size of window unknown and will differ across the genome

14

Analysis of Rare Variants
• For biobank sized datasets higher frequency rare variants, 

e.g., 0.5% can be analyzed individually
– Using same same methods implemented for common 

variants

Example
α=5 x 10-8*
Disease prevalence 5%
1-β =0.80

*Note: a more stringent significance 
criterion may be necessary for genome-
wide sequence data. Due to a larger 
number of effective tests compared to 
analysis of common variant GWAS 
panels 

15

A Few Rare Variant Association Tests
• Combined Multivariate Collapsing (CMC)

– Li and Leal AJHG 2008
• Burden of Rare Variants (BRV)

– Auer, Wang, Leal  Genet Epidemiol 2013
• Weighted Sum Statistic (WSS)

– Madsen and Browning PloS Genet 2009
• Kernel based adaptive cluster  (KBAC)

– Liu and Leal PloS Genet 2010
• Variable Threshold (VT)

– Price et al. AJHG 2010
• Sequence Kernel Association Test (SKAT)

– Wu et al. AJHG 2011
• SKAT-0 

– Lee et al. AJHG 2012

Fixed Effect 
Tests

Random Effect
Test

Optimal  test

16

• Frequency cut offs used to determine which variants to include in 
the analysis 
– Rare Variants (e.g., MAF<0.05% frequency)
– Rare and low (MAF=0.05-5%) frequency variants 

• Maximization approaches

• Tests developed to detection associations when variants effects 
are bidirectional 
– e.g., protective and detrimental

• Incorporate weights based upon annotation
– Frequency 

• e.g., gnomAD
–  Functionality

• CADD c-scores

Types of Aggregate Analyses

17

• Combined multivariate & collapsing (CMC)
– Li & Leal, AJHG 2008

• Collapsing scheme which can be used in the regression 
framework
– Can use various criteria to determine which variants to collapse into 

subgroups
• Variant frequency
• Predicted functionality

Methods to Detect Rare Variant Associations
Using Variant Frequency Cut-offs

18
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• Define covariate Χj  for individual j as

• Compute Fisher exact test for 2x2 table

CMC 

X=1 X=0

cases

controls

Number of cases for 
which one or more rare 
variants are observed 
e.g., nonsynonymous  
variants freq. <1%

Number of  
controls without 
a rare variants

Number of controls 
for which one or more 
rare variants are 
observed

Number of cases 
without a rare 
variants

Can also use same coding in a regression framework

19

• Example of coding used in regression framework:
– Binary coding 

– Gene region with 5 variant sites 
–          

         
   

•  

CMC

1  1

2  1

3  0

Rare Variant Sites
Green bars: Major allele is observed in the study subject 
Red bars: Minor allele has been observed

Individual Coding  

20

• Gene-or Region-based Analysis of  Variants of Intermediate and 
Low frequency (GRANVIL)
– Aggregate number of rare variants used as regressors in a linear 

regression model
– Can be extended to case-control studies

• Morris & Zeggini 2010 Genet. Epidemiol

– Test also referred to as MZ

Methods to Detect Rare Variant Associations
Using Variant Frequency Cut-offs

21

• Example of coding used in regression framework
– Gene region with 5 variant sites – data available on all sites
–          

         
    

• Missing data for three of the five variant sites

 

GRANVIL

Coded 2/5 (0.4)  Note same 
coding for heterozygous and 
homozygous genotypes

Coded 2/5 (0.4)

Coded 1/2 (0.5)

Individual 1

Individual 2

Individual 3

Burden Rare Variant  (BRV) extension (Auer et al. 2013 Genet Epidemiol) 
Individual 1:  Coded 2
Individual 2: Coded 3
Individual 3: Coded 1

22

• Group-wise association test for rare variants using the 
Weighted Sum Statistic (WSS)
– Variants are weighted inversely by their frequency in controls (rare 

variants are up-weighted)
• Madsen & Browning, PLoS Genet 2009

• Kernel based adaptive cluster (KBAC)
– Adaptive weighting based on multilocus genotype 

• Liu & Leal, PLoS Genet 2010 

Methods to Detect Rare Variant Associations
Weighted Approaches

23

• Variable Threshold (VT) method 
– Uses variable allele frequency thresholds and maximizes the test statistic
– Can also incorporate weighting based on functional information

• Price et al. AJHG 2010

• RareCover
– Maximizes the test statistic over all variants with a region using a greedy 

heuristic algorithm
• Bhatia et al. 2010 PLoS Computational Biology

Methods to Detect Rare Variant Associations
Maximization Approaches

24
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• C-alpha
– Detects variants counts in cases and controls that deviate from the 

expected binomial distribution
• For qualitative traits only

– Neale et al. 2011 PLoS Genet

• Sequence Kernel Association Test (SKAT)
• Variance components score test performed in a regression framework

– Can also incorporate weighting
• Wu et al. 2011 AJHG

Methods to Detect Associations with Protective 
& Detrimental Variants within a Region

25

• SKAT-O
– Maximizes power by adaptively using the data to combine a burden test 

and the sequence kernel association tests
• Lee et al. 2012 AJHG

Optimal Test

26

• For exome data where individual genes are analyzed usually a 
Bonferroni correction for the number of genes tested is used
– There is very little to no linkage disequilibrium between genes

• Bonferroni correction used
– e.g., p<2.5 x 10-6 (Correction for testing 20,000 genes)

Significance Level for Rare Variant 
Association Tests

27

• MAF cut-offs are frequently used to determine which variants 
to analyze in aggregate rare variant association tests

• MAF from controls should not be used
– Increases in type I error rates 

• Determine variant frequency cut-offs from databases
– Using population frequencies for those understudy
– gnomAD

• http://gnomad.broadinstitute.org/

Determine MAF Cut-offs for Aggregate Rare 
Variant Association Tests

28

• Same frequency of missing variant calls in cases and controls
– Decrease in power

• More variant calls missing for either cases or controls
– Increase in Type I error 
– Decrease in power 

• Remove variant sites which are missing genotypes, e.g., >10%
• Can impute missing genotypes using observed allele frequencies

– For the entire sample
• Not based on case or control status

• Analyze imputed data using dosages

Problem of Missing Genotypes for Aggregate 
Rare Variant Association Tests

29

• Genotypes are no longer assigned 0 (1/1), 1 (1/2) or 2 (2/2)
– Due to uncertainty

• Each genotype is assigned a probability
– Probabilities sum to 1

• For example
– Probability of  0 (1/1) genotype is 0.98 and 1 (1/2) genotype is 0.015

• The dosage can be estimated for this example as follows

• Instead of using the most likely genotype the dosage is used

Dosages

0 x 0.98 = 0
1 x 0.015 =  0.015
2 x 0.005 = 0.01
Dosage = 0.025

30
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Results

31

• Ideally should be performed in a regression framework to adjust 
for covariates
– Logistic 
– Linear regression 

• Almost all rare variant aggregate methods have been extended 
to be implemented within a regression framework

• Some have also been implemented in a linear mixed model 
(LMM)/generalized LMM (GLMM)

Rare Variant Aggregate Methods  

32

• Most rare variant aggregate analysis methods can be performed 
on quantitative traits

• If phenotype data includes outliers or deviates from normality
– Can increase type I errors

Analyzing Quantitative Variants 

33

• For data that deviates from normality
– Quantile-quantile normalization 

• For data that includes outliers
– Winsorize

• Don’t winsorize and then normalize
• Instead of analyzing quantitative trait values

– Residual can be generated
• Adjusting for confounders

Analyzing Quantitative Variants 

34

Family-based Methods for Rare Variant 
Aggregate Association Analysis 

Fixed Effect  Tests

Variance-Component Tests

RV-TDT

Epstein’s ASP

GSKAT
FSKAT

FarVAT
FBAT

RV-GDT

FFBSKAT

famSKAT

Trios

Sib-Pairs

Nuclear and 
M ultiplex 
Families

Binary Traits

Quantitative Traits

famSKAT

gTDT

35

Linear Mixed Model (LMM) & generalized LMM (GLMM)
Analysis of Related & Unrelated Individuals 

• LMM is an extension of the linear model to allow for both 
fixed & random effects and also allows for non-
independence of samples
– Early implementations calculated the kinship matrix Φ on the 

basis of known relationships

– Amin et al. (2007) proposed to estimate kinships based on 
genome-wide variant data

• The generalized relationship matrix (GRM) can be estimated for all 
individuals using for example identical-by-descent (IBD) sharing 

• Extended to binary (case-control) traits  - GLMM

36
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LMM and GLMM:
Analysis of Related & Unrelated Individuals 

• Can be applied to analyze families, cryptically related, & unrelated 
individuals

– e.g., UK Biobank
• 500K study subjects of which 30.3% are < 3rd degree relatives & 4.5% sib-pairs

• More recent implementation for large scale data using a variety of 
methods
– BOLT-LMM (Loh et al. 2015) • REGENIE (Mbatchou et al. 2020) *
– FastGWA (Jiang et al. 2019)  • SMMAT (Chen et al. 2019)**
– SAIGE (Zhao et al. 2015)*

• *Can be used to analyze data where case to control ratio is very 
unbalanced
– e.g., 20 cases for every control

• **Cannot be used for UK Biobank Scale data

37

LMM and GLMM:
Analysis of Related & Unrelated Individuals 

• To allow for use with biobank sized datasets 
• REGENIE does not use the GRM

– It uses whole genome regression, i.e., the ridge regression 
• In essence, it includes all the SNVs as covariates in the null model

– Performed by blocks to avoid having to load the entire genome in memory
» Using different effect size differences per block

• This large-scale approximation may not control type I 
error for individuals that are closely related
– e.g., when only families are being analyzed
– Can use for example SMMAT

• Which uses the GRM
 

38

LMM and GLMM:
Analysis of Related & Unrelated Individuals 

• A few programs which can perform rare variant aggregate 
analysis
– REGENIE  -  Burden test, SKAT, & SKAT-O

– SMMAT - Burden, SKAT, & SKAT-O
– rvtests (Zhan 2020) implements BOLT-LMM to perform burden 

association analysis

39

• Control for covariates in the analysis which are potential 
confounders
– Age 
– Sex
– Batch
– Body Mass Index (BMI)
– Smoking pack years
– Population substructure

Rare Variant Association Analysis - Confounders  

40

Confounder -Population Substructure and Admixture  

41

• If proportion of cases and controls sampled from each 
population is different
– Can occur due to

• Disease frequency is different between populations 
• Sloppy sampling 

• Population substructure\admixture can cause 
detection of differences in variant frequencies within a 
gene which is due to sampling and not disease status
– False positive findings can be  increased  

Population Substructure and Admixture 

42
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Example River People

43

• Currently PCA or MDS are used 
to control for population 
substructure\admixture 
– Controls on the global level
– May not be sufficient

• For admixed populations
• Rare variation

Population Substructure and Admixture

44

• When analyzing different populations, e.g.,
– Africans 
– Europeans

• When analyzing data from different source
– Analyze each group separately 

• Meta-analysis can be used to combine the results from 
each group

Rare Variant Aggregate Association Analysis

45

• Best to obtain principal components to include in the 
regression model (including LMM and GLMM) 
– using variants which are not in LD e.g., r2<0.1  (pruned)
– covering a wide range of the allelic frequency spectrum e.g., >0.1% 
– Evaluate how many components need to be included

•  Don’t include a fix number of components
– e.g., 5 or 10 components

Rare Variant Aggregate Methods  

• Success of  PCA\MDS  in 
controlling for population 
substructure\admixture can be 
evaluated through lambda and 
examining Quantile-Quantile 
(QQ) plots

𝝀  = 0.942

46

© 2024  Suzanne M. Leal

Part II
Example of a Rare Variant Association 

Study

Analysis of UK Biobank Exome Data to 
Study the Etiology of Late-onset 

Hearing Loss

47

Age-related Hearing Loss (ARHL)
(aka Presbycusis)

• ARHL can impact quality of life and daily functioning

• ARHL is one of the most common adult conditions
– In the USA

• ARHL affects 50% of individuals >75 years of age
• It is estimated that 30-40 million will be affected with significant 

ARHL by 2030

48
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Goals of the Study
• Using data from the UK Biobank to detect 

associations between self-reported measures of 
ARHL and genetic variants
– H-aid self-reported hearing aid use (f.3393: “Do you use a 

hearing aid most of the time?”)
–  H-diff self-reported hearing difficulty (f.2247: “Do you have any 

difficulty with your hearing?”)
– H-noise self-reported hearing difficulty with background noise 

(f.2257: “Do you find it difficult to follow a conversation if there 
is background noise e.g., TV, radio, children playing)?

–  H-both individuals with both H-diff and H-noise

• With an emphasis of understanding the role that 
rare variation plays in ARHL
– Current analysis - exome sequence data

49

UK Biobank
• 500,000 individuals randomly sampled 

– Aged 40-69 at time of enrollment
• To be followed for at least 20 years 
• Predominantly white Europeans

– Also includes South Asians and individuals of African Ancestry and smaller number of 
individuals of a few other ancestries

• Extensive phenotype data
– Qualitative and quantitative traits

• ICD-10 and ICD-9 codes
• Self reports
• Cognitive test
• Brain MRIs
• NMR-metabolomics data

• Genetic Data
– Genotype and imputed data
– Exome sequence data
– Whole  genome sequence data 
– Telomere length data

*
*Data showcase can be used to examine phenotypes and sample sizes available 

50

pVCF Quality Control
Exome Data 

51

Principal Components Analysis and 
Exclusion of Outliers 

52

Exclusion Criteria 
Obtained from ICD10, ICD9, & Self Report

• Deafness
• Early-onset hearing impairment
• Otosclerosis
• Meniere’s
• Labyrinthitis
• Disorders of acoustic nerve
• Bell’s palsy 
• History of chronic suppurative and nonsuppurative otitis 

media
• Meningitis 
• Encephalitis, myelitis, and encephalomyelitis
• Etc.

53

• Based on answers obtained from a touch screen 
• Cases - self-reported hearing difficulty 

– f.2247: “Do you have any difficulty with your 
hearing?”

• Controls - did not have any self-reported HL or  
ID10/9 HL codes

Defining Cases and Controls

54
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Hearing difficulty/problems -Data field 2247

569,977* items of data are available, covering 498,704 participants

*Due to repeat visits

55

Repeat measures*

• Individuals with inconsistent answers removed

Problems 
Hearing 

Visit 1 Visit 2
No Hearing
Problems 

No Hearing
Problems 

No Hearing
Problems 

No Hearing
Problems 

Study subject A

Visit 3 Visit 4

No Hearing
Problems 

Study subject B Problems 
Hearing 

Inconsistent
Remove 

Problems 
Hearing 

Consistent
 (Case)

*Majority of study subjects currently have data from only one visit

No Hearing
Problems 

No Hearing
Problems 

No Hearing
Problems 

No Hearing
Problems 

Consistent
 (Control)Study subject C

56

Analysis of Exome Sequence Data 
for Age-related hearing loss 

57

UK Biobank Discovery and Replication 
Samples

58

Analysis of Exome Data
• Analysis performed using generalized linear mixed 

models (GLMM) (REGENIE)
– To control for inclusion of related individuals

• For the UK Biobank data 30.3% of participants are < 3rd degree relatives & 4.5% 
sib-pairs

– Genotype array data (~800K) were used for the ridge regression
• Data pruned to remove variants with a r2>0.1

– Using exome data for the ridge regression led to an an inflated lambda value

𝝀  = 1.044

QQ Plot using exome data for ridge regression QQ Plot using genotype data for ridge regression

𝝀  = 1.068

59

Analysis of Exome Data

• Analysis limited to individuals of White European 
Ancestry

• Sex, age, and two PCAs included as covariates
– Age

• cases first report of hearing difficulty
• Controls age at last visit

– The PCAs where recalculated for only individuals included in 
the analysis

• Using linkage disequilibrium (LD) pruned genotypes array data (r2<0.1)

60
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Analysis of Exome data – Single Variant

• Variants with four or more alternative alleles 
observed in the sample analyzed
– A very low MAF was used since it was hypothesized some 

of the variants may have a large effect sizes

61

Significance Levels-Single Variant Analysis
• Discovery sample

– A genome-wide significance level (single variant 
analysis) was used to reject the null hypothesis of 
no association

• p<5.0x10-8

• Replication sample
– Permutation was used to obtain empirical p-values

• Adjusting for the phenotypes and variants brought to 
replication

– p<0.05

62

Hearing Difficulty - Data Field 2247
Single Variant Analysis 

Cases N=45,502
Controls N= 96,601

Manhattan Plot QQ Plot

𝝀  = 1.044

Genome-wide significance level 5 x 10-8 (red line)

63

Analysis of the Discovery Sample & Replication
Single Variant Analysis

64

Rare Variant Aggregate Analysis

• Genes with at least two variants were analyzed, 
e.g., pLoF variants

• Max coding was used
• Two masks were used

– Mask 1 – pLoF variants
– Mask 2 – pLoF and missense variants

• Minor allele frequency cut-off of <0.01 was used
– The frequencies for each variant site were obtained 

from gnomAD (non-Finnish Europeans) 

65

REGENIE Rare Variant Aggregate Analysis

https://rgcgithub.github.io/regenie/options/ 

• Three different codes can be used
• Max 
• Sum
• Comphet

• This term is not correct because the phase is unknown
• Variants may be on the same haplotype

Note: At the time of the study REGENIE could only perform fixed effect tests it  
now implements SKAT and SKAT-O 

66
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Selection of Variants to Include in Rare 
Variant Aggregate Association Tests

Annotation File Mask File 

+
AAF file

1:55039839:T:C PCSK9 LoF 
1:55039842:G:A PCSK9 missense

1:55039839:T:C 1.53e-05
1:55039842:G:A 2.19e-06

Mask1 LoF 
Mask2 LoF,missense +

REGENIE will use information from the annotation and alternative allele 
frequency  (AAF) files to build the Masks (variants to be included in the 
association testing)

1:55039839:T:C PCSK9 CADD30 
1:55039842:G:A PCSK9 CADD20

Mask1 CADD score > 30
Mask2 CADD score > 20+ 1:55039839:T:C 1.53e-05

1:55039842:G:A 2.19e-06+

67

Rare Variant Aggregate Analysis

• Exome sample was split
– Second release of 150K exome were used as the discovery sample.
– First release of 50K exome were used as the replication sample

• Entire exome sample (200K) was also analyzed*

• Discovery sample significance level 
– p<2.5x10-6

• 0.05/20.000 Bonferroni correction for testing 20,000 genes

• Replication sample significant level
– p<0.05
– Empirical p-values generated

• Permutation used to adjust for the number of phenotypes and genes brought 
to replication (pLoF and pLOF & missense)

*No replication sample available for these findings
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Hearing Difficulty - Data Field 2247 
pLoF Variants

pLoF and missense variants

𝝀  = 1.038

𝝀  = 1.035

Exome-wide significance level
2.5 x 10-6 (blue line)

Cases N=45,502
Controls N= 96,601

Genes N=16,821

Genes N=18,010
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Rare Variant Aggregate Analysis – Discovery and 
Replication Samples
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Manhattan Plot Rare Variant Aggregate Analysis – 
Discovery Sample

A

C
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pLoF variants pLoF & missense variants

H-diff

H-noise

H-both
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Expression of Pdcd6 in the Mouse Inner Ear 
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• Replicated some previously reported ARHL genes
– Some which had not been previously replicated

• e.g., BAIAP2L2, CRIP3, KLHDC7B, MAST2, and SLC22A7

• Identified and replicated a new HL gene, PDCD6 which has not been 
previously reported
– Inner ear expression in humans and mice supports the involvement of gene in 

HL etiology
– PDCD6 is a cytoplasmic Ca2+ binding protein with an important role in 

apoptotic cell death
• Rare-variant aggregate analysis demonstrated the important contribution 

of Mendelian HL genes, i.e.  MYO6, TECTA, and EYA4  the genetics of ARHL 
• Rare variants for ARHL tend to have larger effect sizes than those for 

common variants 
– Rare variants should play an important role in risk prediction by increasing 

accuracy
• For additional information see 

– Cornejo-Sanchez et al. (2023) Eur J Hum Genet  PMID: 36788145 

Overview
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• The entire exome sequence data set of White Europeans has 
been analyzed
– Reveling many additional known Mendelian nonsyndromic HL genes

• Mendelian genes (although not necessarily the same variants) 
play an important role in ARHL

• Performing Mendelian Randomization and testing for pleiotropy 
(vertical & horizontal) to evaluate associations between ARHL 
and comorbidities
– e.g., dementia, depression 

• Analysis of UK Biobank and All of Us WGS data including 
structural variants and performing rare variant aggregate tests 
outside of the coding regions

Overview/Future Direction
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Genome-wide association studies (GWAS) - Part 2

More advancedtopics:
Linear Mixed Models and G×G or G×E interactions

Heather J. Cordell

Population Health Sciences Institute  
Faculty of Medical Sciences  

Newcastle University, UK
heather.cordell@ncl.ac.uk
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Linear Mixed Models (LMMs)

Linear Mixed Models have been used for many years in the plant and  
animal breeding communities
In the mid 1990s they became popular in the human genetics field,  
mostly for performing linkage analysis and estimating heritability

Using family (pedigree) data i.e. related individuals
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Linear Mixed Models (LMMs)

Linear Mixed Models have been used for many years in the plant and  
animal breeding communities
In the mid 1990s they became popular in the human genetics field,  
mostly for performing linkage analysis and estimating heritability

Using family (pedigree) data i.e. related individuals
In recent years they have become popular in the genetic association
studies field for:

Testing for association while accounting for varying degrees of  
relatedness

Close family relationships
Distant relationships and population stratification/substructure

Estimating the heritability accounted for various partitions of SNPs:
All SNPs typed on a GWAS panel
All typed SNPs and others in LD with them  
Partitions of SNPs in various functional categories

Investigating genetic correlations between different traits  
Predicting trait values in a new individual
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Population stratification and relatedness
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Linear Mixed Models (LMMs)

A linear mixed model is a statistical model in which the dependent
variable is a linear function of both fixed and random independent
variables

Known respectively asfixed and random effects
Fixed effects are considered ‘fixed’ at their measured values
Random effects areconsidered to besampled from adistribution
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Linear Mixed Models (LMMs)

A linear mixed model is a statistical model in which the dependent
variable is a linear function of both fixed and random independent
variables

Known respectively asfixed and random effects
Fixed effects are considered ‘fixed’ at their measured values
Random effects areconsidered to besampled from adistribution

y =  β0 + β1x

Recall the usual linear regression model

y = mx + c or  

This model may also be written

yi = β0 + β1xi + Ei

yi refers to the trait value of person i
xi refers to the measured value of person i ’s predictor variable
Ei refers to the displacement from the regression line

i.e. the discrepency between the observed and the predicted y value

Heather Cordell (Newcastle) GWAS (Part 2) 4 / 38
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Linear Regression
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Linear Mixed Models (LMMs)

.
yn

� � �
� � �� � �

y 1 x2 2
. = . .

. .
1 xn
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β0
β1

I l E2
+ .

.
En

In linear regression we have yi =  β0 +  β1xi + Ei

Here β0 and β1 are fixed effects while Ei is a randomerror
xi is the ‘loading’ of the fixed effect that someone has (based on their  
genotype)

In matrix notation we can write this model:
� y1   

� � 1 x1 
� � E1

�

� �
� �� �

or y =  Xβ + €
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In linear regression we have yi =  β0 +  β1xi + Ei

Here β0 and β1 are fixed effects while Ei is a randomerror
xi is the ‘loading’ of the fixed effect that someone has (based on their  
genotype)

In matrix notation we can write this model:
� y1   

� � 1 x1 
� � E1

�

� �
� �� �

or y =  Xβ + €

A LMM takes the form y =  Xβ +  Zu + €
where u corresponds to a vector of randomeffects

with loadings specified in Z
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Linear Mixed Models (LMMs)

E.g. suppose 2 fixed effects β1 and β2, and 3 random effects (plus n
random errors)

Then y =  Xβ +  Zu +  € corresponds to:

2

.
yn

� � �
� � �� � �

� y1 
� � x11

y x x21 22
. = . .

. .
xn1 xn2

�
��

β1
β2

I l �
��

13
z21

x12  
� � z11 z12  

z22

z  
z23

+ . . .
. . .

zn1 zn2 zn3

�

�
��

u1

2
u3

� �

� �u +
�
��

E
E
1

2
.
.

En

� �

�
��

or yi = β1xi 1 + β2xi 2 + u1zi1 + u2zi2 + u3zi3 + Ei
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LMMs in genetics

In genetics we generally work with two equivalent forms of LMM

One is: y =  Xβ +  Zu + €

The random effect ul corresponds to a scaled additive effect of  
causal variant (locus) l

We assume there are many (m ) such causal variants all across the  
genome
Considering i t  to be a random effect (within a population of interest)  
could be thought of as taking a Bayesian perspective
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In genetics we generally work with two equivalent forms of LMM

One is: y =  Xβ +  Zu + €

The random effect ul corresponds to a scaled additive effect of  
causal variant (locus) l

We assume there are many (m ) such causal variants all across the  
genome
Considering i t  to be a random effect (within a population of interest)  
could be thought of as taking a Bayesian perspective

Z is a standardized genotype matrix i.e. zil takes value

✓ , ✓
l l l l2f (1 − f ) 2f (1 − f )

l l−2f (1 − 2fl ) 2(1 − f )
, ✓

2fl (1 − fl )

if individual i has genotype (qq, Qq,QQ)
where f l is the frequency of allele Q at locus l
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LMMs in genetics

The other form is:
iWhere g =
L m

l = 1

y =  Xβ +  g + €
zil ul is the total genetic effect in individual i ,

summed over all the causal loci

In this form, gi can be considered as a random effect operating  in 
individual i

2
aThe vector of random effects g takes distribution g ∼ N(0, Gσ )

Where G is the genetic relationship matrix (GRM)
between individuals – i.e. their IBD sharing at the causal loci
σ2 =  mσ2 is the total additive genetic variancea u

G = Z Z l /m

Heather Cordell (Newcastle) GWAS (Part 2) 9 / 38
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LMMs in genetics

The other form is:
iWhere g =
L m

l = 1

y =  Xβ +  g + €
zil ul is the total genetic effect in individual i ,

summed over all the causal loci

In this form, gi can be considered as a random effect operating  in 
individual i

2
aThe vector of random effects g takes distribution g ∼ N(0, Gσ )

Where G is the genetic relationship matrix (GRM)
between individuals – i.e. their IBD sharing at the causal loci

a uσ2 =  mσ2 is the total additive genetic variance

G = Z Z l /m

For family data (close relatives), the expected values of the elements  
of G equal the expected IBD sharing

i.e. twice the kinshipcoefficients
Thus G is just equal to twice the kinship matrix

Models their expected relatedness at the causal loci (and elsewhere)

Heather Cordell (Newcastle) GWAS (Part 2) 9 / 38
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Use of LMMs in genetics

The formulation y =  Xβ +  g +  € is known as the Animal Model
and has been used extensively in plant and animal breeding

Mostly to predict the breeding values gi in order to inform breeding  
strategies

E.g. to increase milk yield, meat production etc. etc.

Similar approaches could be used for prediction of trait values given  
genotype data

In the mid 1990s it became popular in human genetics as the  
backbone of variance components linkage analysis

Now commonly used in association analysis (GWAS)

To correct for relatedness, when testing for association

Heather Cordell (Newcastle) GWAS (Part 2) 10 / 38
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Testing for association using LMMs

Idea is to test a fixed SNP effectβ1

While including a random effect γi that models relatedness

Fit regression model: yi = β0 + β1xi + γ i

y is the trait value
x is a variable coding for genotype at the test SNP
(e.g. an allele count, coded 0, 1, 2 for genotypes 1/1, 1/2, 2/2)
γi =  gi + Ei

Heather Cordell (Newcastle) GWAS (Part 2) 11 / 38
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Testing for association using LMMs

Idea is to test a fixed SNP effectβ1

While including a random effect γi that models relatedness

Fit regression model: yi = β0 + β1xi + γ i

y is the trait value
x is a variable coding for genotype at the test SNP
(e.g. an allele count, coded 0, 1, 2 for genotypes 1/1, 1/2, 2/2)
γi =  gi + Ei

We assume γ ∼ MVN(0, V) where variance/covariance matrix V
follows standard variance components model

Variance/covariance matrix structured as:

a e=  σ2 +  σ2 ( i = j )V ij  

V ij a=  2Φ ij σ2 ( i / = j)

a eσ2, σ2 represent the additive polygenic variance (due to all loci) and
the environmental (=error) variance, respectively

Heather Cordell (Newcastle) GWAS (Part 2) 11 / 38
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Testing for association using LMMs

LMMs were first (?) applied in human genetics by Boerwinkle et al.  
(1986) and Abney et al. (2002)

Chen and Abecasis (2007) implemented them via the ”FAmily based  
Score Test Approximation” (FASTA) in the MERLIN software  
package

Closely related to earlier QTDT method (Abecasis et al. 2000a;b)  
which implements a slightly more general/complex model
FASTA was also implemented in GenABEL, along with a similar test  
called GRAMMAR (Aulchenko et al. 2007)

Heather Cordell (Newcastle) GWAS (Part 2) 12 / 38
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Estimating the genetic relationship matrix

These early implementations calculated the kinship matrix Φ on the  
basis of known (theoretical) kinships constructed from known  
pedigree relationships

Amin et al. (2007) proposed instead estimating the kinships based on  
genome-wide SNP data

Ideally we want to use G=ZZ / /m, the genetic relationship matrix  
(GRM) between individuals at the causal loci
Since we don’t know the causal loci, we approximate G by A, the  
overall GRM between individuals

Various different ways to estimate this, usually based on scaled  
(by allele frequency) matrix of identity-by-state (IBS) sharing

Heather Cordell (Newcastle) GWAS (Part 2) 13 / 38
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Estimating the genetic relationship matrix

Once you move to estimating the GRM, you are no longer limited to
using family data
Kang et al. (2010) and Zhang et al. (2010) suggested applying the
approach to apparently unrelated individuals

As a way of accounting for population substructure/stratification
Also proposed applying to binary traits (case/control coded 1/0)
Implemented in EMMAX and TASSEL software,respectively
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Estimating the genetic relationship matrix

Once you move to estimating the GRM, you are no longer limited to
using family data
Kang et al. (2010) and Zhang et al. (2010) suggested applying the
approach to apparently unrelated individuals

As a way of accounting for population substructure/stratification
Also proposed applying to binary traits (case/control coded 1/0)
Implemented in EMMAX and TASSEL software,respectively

Subsequently a number of other publications/software packages have
implemented essentially the samemodel

FaST-LMM (Lippert et al. 2011)  
GEMMA (Zhou and Stephens2012)
GenABEL (GRAMMAR-Gamma) (Svishcheva et al. 2012)  
MMM (Pirinen et al. 2013)
MENDEL (Zhou et al. 2014)
RAREMETALWORKER  
GCTA
DISSECT
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Software implementations

Main difference between them is the precise computational tricks used  
to speed up the calculations

And the convenience/ease of use
See comparison in Eu-Ahsunthornwattana et al. (2014)  
PLoS Genetics 10(7):e1004445

Heather Cordell (Newcastle) GWAS (Part 2) 15 / 38

25

Software implementations

Main difference between them is the precise computational tricks used  
to speed up the calculations

And the convenience/ease of use
See comparison in Eu-Ahsunthornwattana et al. (2014)  
PLoS Genetics 10(7):e1004445

BOLT-LMM (Loh et al. 2016) uses a slightly different approach,  
based on a Bayesian implementation of LMM formulation 1:

y =  Xβ +  Zu + E

One of the first mixed model packages that worked for really large-scale  
(e.g. UK Biobank) datasets
Now potentially (?) superseded by fastGWA module in GCTA
And by REGENIE, which uses a slightly different formulation based on  
analysing the residuals following a whole-genome blockwise ridge  
regression

Again based  on  LM M formulation 1: y =  X β  +  Zu + E

See also LDAK-KVIK
Heather Cordell (Newcastle) GWAS (Part 2) 15 / 38
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Binary traits

For binary traits, coding cases and controls as a 1/0 quantitative trait  is 
not optimal

Though in practice it seems to work reasonably well

LTMLM (Hayeck et al. 2015) and LEAP (Weissbrod et al. 2015)  
instead use an underlying liability model to improve power

Assuming known disease prevalence
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Binary traits

For binary traits, coding cases and controls as a 1/0 quantitative trait  is 
not optimal

Though in practice it seems to work reasonably well

LTMLM (Hayeck et al. 2015) and LEAP (Weissbrod et al. 2015)  
instead use an underlying liability model to improve power

Assuming known disease prevalence

Chen et al. (2016) showed that high levels of population stratification  
can invalidate the analysis, when applied to a case/control sample

Resulting in a mixture of inflated and deflated test statistics  
Developed GMMAT software to address thisproblem
See also CARAT software (Jiang et al. 2016, AJHG98:243-55)

Heather Cordell (Newcastle) GWAS (Part 2) 16 / 38

28

Binary traits

SAIGE software (Zhou et al. 2018, AJHG 50(9):1335-1341)  
implements a mixed model test that deals with large case-control  
imbalance, as you might see (for example) in UK Biobank

REGENIE also implements this same saddle point approximation  
(SPA) test

Along with an approximate Firth penalized likelihood-ratio test

See also LDAK-KVIK
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Elucidating genetic architecture

Seminal paper by Yang et al. (2010) [Nat Genet 42(7):565-9]

Showed that by framing the relationship between height and genetic  
factors as an LMM, 45% of variance could be explained by  considering 
294,831 SNPs simultaneously

So-called ‘SNP heritability’ or ‘chip heritability’
Demonstrated that modelling effects at all genotyped SNPs explained
the ‘known’ heritability (≈ 80%) much better than just the top SNPs
from GWAS

Moreover, if you estimate effects of additional SNPs in LD with the  
genotyped SNPS, the variance explained goes up to 84% (s.e. 16%),  
consistent with ‘known’ value

Subsequently many papers have shown similar results for a variety of  
complex traits

Heather Cordell (Newcastle) GWAS (Part 2) 18 / 38
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Elucidating genetic architecture

Basic idea is to use formulation

y =  Xβ +  g + €
2 2
a ewith g ∼  N(0, Aσ ) and € ∼  N(0, Iσ ) so V =  Aσ2  + Iσ2

a e

A is the GRM between individuals, estimated using all genotyped SNPs
σ2 and σ2 estimated using REML (or MLE)

a e

Thus we can estimate heritability accounted for by the genotyped
a a eSNPs as σ2 /(σ2  + σ2)

Implemented in several software packages including GCTA and  
DISSECT

ALBI software (Schweiger et al. 2016, AJHG 98:1181-1192) can then  
be used to construct accurate confidence intervals for the heritability

Heather Cordell (Newcastle) GWAS (Part 2) 19 / 38
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Partitioning variance

The same formulation can be used to partition the variance explained  
by different subsets of SNPs

Yang et al. (2010) partitioned variance onto each of the 22 autosomes  
using formulation

y =  Xβ + 22
c= 1 gc + € with V =

L L 22
c= 1 c eAcσ2 + Iσ2,

where gc is a vector of effects attributed to the cth chromosome,
and Ac is the GRM estimated from SNPs on the cth chromosome

Slight adjustment is needed for estimating variance explained by SNPs  
on chromosome X

Similar partitioning can be used to examine subsets of SNPs defined  
in other ways e.g. according to MAF or functional annotation

Heather Cordell (Newcastle) GWAS (Part 2) 20 / 38
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Other approaches

Some recent work has focussed on achieving similar ends
i.e. estimating

heritability explained by sets of SNPs  
genetic correlations across traits

using summary statisticsonly

Bulik-Sullivan et al. (2015) [Nat Genet 47:291-295]  

Bulik-Sullivan et al. (2015) [Nat Genet 47:1236-1241]

Clever idea that allows the variance component parameters to be  
estimated via a simple regression on ‘LD Scores’

See LDSC software (https://github.com/bulik/ldsc)
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Short break
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Gene-gene (and gene-environment)interactions

GWAS have been extraordinarily successful at detecting genetic  
locations harboring genes associated with complex disease

But the SNPs identified do not account for the known (estimated)  
heritability for most disorders
Could G×G and G×E effects account for part of the ‘missing  
heritability’?

Zuk et al. (2012) PNAS 109:1193-1198
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Effects operating through interactions may not be visible unless you  
stratify by or take account of the interacting genetic (or  
environmental) factors

By modelling interactions, we hope to increase our power to detect loci  
with weak marginal effects
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Gene-gene (and gene-environment)interactions

GWAS have been extraordinarily successful at detecting genetic  
locations harboring genes associated with complex disease

But the SNPs identified do not account for the known (estimated)  
heritability for most disorders
Could G×G and G×E effects account for part of the ‘missing  
heritability’?

Zuk et al. (2012) PNAS 109:1193-1198

Effects operating through interactions may not be visible unless you  
stratify by or take account of the interacting genetic (or  
environmental) factors

By modelling interactions, we hope to increase our power to detect loci  
with weak marginal effects

Phenomenon of biological interest?
Identifying genes that interact to cause disease could help us  
understand the mechanisms and pathways in disease progression
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Definition of (pairwise) interaction

Statistical interaction most easily described in terms a of (logistic)  
regression framework

Supppose x1 and x2 are binary factors whose presence/absence  
(coded 1/0) may be associated with a diseaseoutcome

Logistic regression models their effect on the log odds of diseaseas:

log 0 1 1

Marginal effect of factor 1

log
p

1 − p
=  β +  β x + β x0 1  1 2 2

= β + β x log
p p

1 − p 1 − p
=  β + β x0 2 2

Marginal effect of factor 2

log
p

1 − p
=  β +  β x +  β x +  β x x0 1  1 2  2 12 1 2

Main effects  of factors  1 and 2 Main effects and interaction term

1− pFor quantitative traits, use linear regression (replace log p with y )
For modelling as an LMM, add in a random effectγ
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Interaction
Expected trait values (log odds of disease) take the form:

Factor 1
Factor 2

1 0
1 β0 + β1 + β2 + β12 β0 + β1
0 β0 + β2 β0

β0, β1, β2, β12 are regression coefficients (numbers) that can be  
estimated from real data
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Factor 2

1 0
1 β0 + β1 + β2 + β12 β0 + β1
0 β0 + β2 β0

β0, β1, β2, β12 are regression coefficients (numbers) that can be  
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Having factor 1 adds β1 to your tra it value
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Interaction
Expected trait values (log odds of disease) take the form:

Factor 1
Factor 2

1 0
1 β0 + β1 + β2 + β12 β0 + β1
0 β0 + β2 β0

β0, β1, β2, β12 are regression coefficients (numbers) that can be  
estimated from real data

Having factor 1 adds β1 to your tra it value  
Having factor 2 adds β2 to your tra it value
Having both factors adds an additional β12 to your tra it value
⇒  Implies that the overall effect of two variables is greater (or less)
than the ‘sum of the parts’
The ‘effect’ of factor 2 is different in the presence/absence of factor 1
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Interaction
Expected trait values (log odds of disease) take the form:

Factor 1
Factor 2

1 0
1 β0 + β1 + β2 + β12 β0 + β1
0 β0 + β2 β0

β0, β1, β2, β12 are regression coefficients (numbers) that can be  
estimated from real data

Having factor 1 adds β1 to your tra it value  
Having factor 2 adds β2 to your tra it value
Having both factors adds an additional β12 to your tra it value
⇒  Implies that the overall effect of two variables is greater (or less)
than the ‘sum of the parts’
The ‘effect’ of factor 2 is different in the presence/absence of factor 1

Suppose no main effects (β1 =  β2 = 0)

Factor 1
Factor 2

1 0
1 β0 + β12 β0
0 β0 β0

Trait value only differs from baseline if both factors present
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Gene-gene interaction (epistasis)

However SNPs are not binary, but rather take 3 levels according to  
the number of copies (0,1,2) of the susceptibility allele possessed

Most general ‘saturated’ (9 parameter) genotype model allows all 9  
penetrances to take differentvalues

Via modelling log odds in terms of:
A baseline effect (β0)
Main effects of locus G (βG1  , βG2 )
Main effects of locus H (βH1  , βH2  )   
4 interaction terms

Locus G 2
Locus H
1 0

2 β0+βG2 +βH2 +β22 β0+βG2 +βH1 +β21 β0+βG2

1 β0+βG1 +βH2 +β12 β0+βG1 +βH1 +β11 β0+βG1

0 β0+βH2 β0+βH1 β0

Corresponds in statistical analysis packages to coding x1, x2 (0,1,2)  
as a “factor”
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Gene-gene interaction

Alternatively we can assume additive effects of each allele at each locus:  
Corresponds to fitting

log
p

1 − p
=  β +  β x +  β x +  β x x0 G   1 H 2 GH 1 2

with x1, x2 coded (0,1,2)

Locus G 2
Locus H
1 0

2 β0 + 2βG + 2βH + 4βGH β0 + 2βG + βH + 2βGH β0 + 2βG

1 β0 + βG + 2βH + 2βGH β0 + βG + βH + βGH β0 + βG
0 β0 + 2βH β0 + βH β0
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Change of scale

Transformations of outcome variable y can change whether or not the  
predictor variables interact

Due to definition of interaction as departure from a linear model for
the effects of x1 and x2, for predicting y

Two SNPs that interact on the log odds scale may not interact on the  
penetrance scale (and vice versa)
Makes biological interpretation of resulting interaction model difficult

Heather Cordell (Newcastle) GWAS (Part 2) 28 / 38

46

Change of scale

Transformations of outcome variable y can change whether or not the  
predictor variables interact

Due to definition of interaction as departure from a linear model for
the effects of x1 and x2, for predicting y

Two SNPs that interact on the log odds scale may not interact on the  
penetrance scale (and vice versa)
Makes biological interpretation of resulting interaction model difficult

Much discussion in the literature
Siemiatycki and Thomas (1981) Int J Epidemiol 10:383-387; Thompson (1991) J Clin Epidemiol 44:221-232  

Phillips (1998) Genetics 149:1167-1171; Cordell (2002) Hum Molec Genet 11:2463-2468

McClay and van den Oord (2006) J Theor Biol 240:149-159; Phillips (2008) Nat Rev Genet 9:855-867

Clayton DG (2009) PLoS Genet 5(7): e1000540; Wang, Elston and Zhu (2010) Hum Hered 70:269-277
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Change of scale

Transformations of outcome variable y can change whether or not the  
predictor variables interact

Due to definition of interaction as departure from a linear model for
the effects of x1 and x2, for predicting y

Two SNPs that interact on the log odds scale may not interact on the  
penetrance scale (and vice versa)
Makes biological interpretation of resulting interaction model difficult

Much discussion in the literature
Siemiatycki and Thomas (1981) Int J Epidemiol 10:383-387; Thompson (1991) J Clin Epidemiol 44:221-232  

Phillips (1998) Genetics 149:1167-1171; Cordell (2002) Hum Molec Genet 11:2463-2468

McClay and van den Oord (2006) J Theor Biol 240:149-159; Phillips (2008) Nat Rev Genet 9:855-867

Clayton DG (2009) PLoS Genet 5(7): e1000540; Wang, Elston and Zhu (2010) Hum Hered 70:269-277

Bottom line is, little direct correspondence between statistical  
interaction and biological interaction

In terms of whether, for example, gene products physically interact
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Change of scale

Transformations of outcome variable y can change whether or not the  
predictor variables interact

Due to definition of interaction as departure from a linear model for
the effects of x1 and x2, for predicting y

Two SNPs that interact on the log odds scale may not interact on the  
penetrance scale (and vice versa)
Makes biological interpretation of resulting interaction model difficult

Much discussion in the literature
Siemiatycki and Thomas (1981) Int J Epidemiol 10:383-387; Thompson (1991) J Clin Epidemiol 44:221-232  

Phillips (1998) Genetics 149:1167-1171; Cordell (2002) Hum Molec Genet 11:2463-2468

McClay and van den Oord (2006) J Theor Biol 240:149-159; Phillips (2008) Nat Rev Genet 9:855-867

Clayton DG (2009) PLoS Genet 5(7): e1000540; Wang, Elston and Zhu (2010) Hum Hered 70:269-277

Bottom line is, little direct correspondence between statistical  
interaction and biological interaction

In terms of whether, for example, gene products physically interact
However, existence of statistical interaction does imply both loci are  
“involved” in disease in some way
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Change of scale

Transformations of outcome variable y can change whether or not the  
predictor variables interact

Due to definition of interaction as departure from a linear model for
the effects of x1 and x2, for predicting y

Two SNPs that interact on the log odds scale may not interact on the  
penetrance scale (and vice versa)
Makes biological interpretation of resulting interaction model difficult

Much discussion in the literature
Siemiatycki and Thomas (1981) Int J Epidemiol 10:383-387; Thompson (1991) J Clin Epidemiol 44:221-232  

Phillips (1998) Genetics 149:1167-1171; Cordell (2002) Hum Molec Genet 11:2463-2468

McClay and van den Oord (2006) J Theor Biol 240:149-159; Phillips (2008) Nat Rev Genet 9:855-867

Clayton DG (2009) PLoS Genet 5(7): e1000540; Wang, Elston and Zhu (2010) Hum Hered 70:269-277

Bottom line is, little direct correspondence between statistical  
interaction and biological interaction

In terms of whether, for example, gene products physically interact
However, existence of statistical interaction does imply both loci are  
“involved” in disease in some way

Good starting point for further investigation of their (joint) action
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Gene-environment (G×E) interactions

The same regression model

log
p

1 − p
=  β +  β x +  β x +  β x x0 G   1 H 2 GH 1 2

can be used to model interaction between a genetic factor G and an  
environmental factor H

With the environmental variable x2 coded in binary fashion (e.g.  
smoking) or quantitatively (e.g. age)
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Gene-environment (G×E) interactions

The same regression model

log
p

1 − p
=  β +  β x +  β x +  β x x0 G   1 H 2 GH 1 2

can be used to model interaction between a genetic factor G and an  
environmental factor H

With the environmental variable x2 coded in binary fashion (e.g.  
smoking) or quantitatively (e.g. age)

Focus of analysis is often risk estimation
Estimating genetic risks in particular environments
Estimating effect of environmental factor on particular genetic  
background

Important for treatment/screening strategies and public health  
interventions

For G×G, focus of interest is more related to
Increasing power to detect an effect (by taking into account the effects  of 
other genetic loci)
Modelling the biology, especially related to the joint action of the loci
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Testing association and/or interaction

Go back to binary coding of genetic (and/or environmental) factors
plog = β0 + β1x1 + β2x2 + β12x1x2

1 − p

3df test of β1 =  β2 =  β12 =  0 tests for association at both loci  
(or both variables), allowing for their possible interaction

Heather Cordell (Newcastle) GWAS (Part 2) 30 / 38

53

Testing association and/or interaction

Go back to binary coding of genetic (and/or environmental) factors
plog = β0 + β1x1 + β2x2 + β12x1x2

1 − p

3df test of β1 =  β2 =  β12 =  0 tests for association at both loci  
(or both variables), allowing for their possible interaction
2df test of β2 =  β12 =  0 tests for association at locus 2,
while allowing for possible interaction with locus (or variable) 1

Heather Cordell (Newcastle) GWAS (Part 2) 30 / 38

54

4545



Testing association and/or interaction

Go back to binary coding of genetic (and/or environmental) factors
plog = β0 + β1x1 + β2x2 + β12x1x2

1 − p

3df test of β1 =  β2 =  β12 =  0 tests for association at both loci  
(or both variables), allowing for their possible interaction
2df test of β2 =  β12 =  0 tests for association at locus 2,
while allowing for possible interaction with locus (or variable) 1  
1df test of β12 =  0 tests the interaction term alone
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Testing association and/or interaction

Go back to binary coding of genetic (and/or environmental) factors
plog = β0 + β1x1 + β2x2 + β12x1x2

1 − p

3df test of β1 =  β2 =  β12 =  0 tests for association at both loci  
(or both variables), allowing for their possible interaction
2df test of β2 =  β12 =  0 tests for association at locus 2,
while allowing for possible interaction with locus (or variable) 1  
1df test of β12 =  0 tests the interaction term alone

Depending on circumstances, any of these tests may be a sensible option
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Testing association and/or interaction

Go back to binary coding of genetic (and/or environmental) factors
plog = β0 + β1x1 + β2x2 + β12x1x2

1 − p

3df test of β1 =  β2 =  β12 =  0 tests for association at both loci  
(or both variables), allowing for their possible interaction
2df test of β2 =  β12 =  0 tests for association at locus 2,
while allowing for possible interaction with locus (or variable) 1  
1df test of β12 =  0 tests the interaction term alone

Depending on circumstances, any of these tests may be a sensible option
Most tests of interaction/joint action can be thought of as a version of one  or 
other of thesetests

Although different tests vary in their precise details
And their relationship to the logistic regression formulation not always  
clearly described

See Howey and Cordell (2017)  
https://pubmed.ncbi.nlm.nih.gov/28852712/
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G×G versus G×E in the context of GWAS

Typically GWAS measure thousands if not millions of genetic variants
But only a few (tens or at most 100s) of environmental factors

Feasible to consider all G×E combinations

All pairwise G×G combinations possible, but much more time 
consuming

And leads to greater multiplicity of tests  
Also, why stop at 2-way interactions?

Could look at all 3 way, 4 way etc. combinations  
Scale of problem quickly gets out of hand
Less  obvious reason  to do this for G×E...
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G×G in the context of GWAS

Many recent publications have focussed on finding clever  
computational tricks to speed up exhaustive search procedure

BOOST (Wan et al. (2010) AJHG 87:325-340)
SIXPAC (Prabhu and Pe’er (2012) Genome Res 22:2230-2240)  
Kam-Thong et al. (2012) Hum Hered 73:220-236 (GPUs)
Fr̊ aanberg et al. (2015) PLOS Genetics 11(9):e1005502
“Discovering genetic interactions in large-scale association studies by  
stage-wise likelihood ratio tests”

Heather Cordell (Newcastle) GWAS (Part 2) 32 / 38

59

G×G in the context of GWAS

Many recent publications have focussed on finding clever  
computational tricks to speed up exhaustive search procedure

BOOST (Wan et al. (2010) AJHG 87:325-340)
SIXPAC (Prabhu and Pe’er (2012) Genome Res 22:2230-2240)  
Kam-Thong et al. (2012) Hum Hered 73:220-236 (GPUs)
Fr̊ aanberg et al. (2015) PLOS Genetics 11(9):e1005502
“Discovering genetic interactions in large-scale association studies by  
stage-wise likelihood ratio tests”

Or have proposed filtering based on single-locus significance or other  
(biological or statistical) considerations

Reduces multiple testing burden, improves interpretability
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G×G in the context of GWAS

Many recent publications have focussed on finding clever  
computational tricks to speed up exhaustive search procedure

BOOST (Wan et al. (2010) AJHG 87:325-340)
SIXPAC (Prabhu and Pe’er (2012) Genome Res 22:2230-2240)  
Kam-Thong et al. (2012) Hum Hered 73:220-236 (GPUs)
Fr̊ aanberg et al. (2015) PLOS Genetics 11(9):e1005502
“Discovering genetic interactions in large-scale association studies by  
stage-wise likelihood ratio tests”

Or have proposed filtering based on single-locus significance or other  
(biological or statistical) considerations

Reduces multiple testing burden, improves interpretability

Or have proposed testing at the gene level rather than the SNP level
Ma et al. (2013) PLoS Genet 9(2): e1003321

Compared 4 different tests that combine P values from pairwise  
(SNP x SNP) interaction tests
Showed that the truncated tests did best
Presented an application only considering gene pairs known to exhibit  
protein-protein interactions
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Case-only analysis

Piergorsh et al. 1994; Yang et al. 1999; Weinberg and Umbach 2000
Several authors have shown that, for binary predictor variables, a test  of 
the interaction term β12 in the logistic regresssion model

plog = β0 + β1x1 + β2x2 + β12x1x2
1 − p

can be obtained by testing for correlation (association) between the  
genotypes at two separate loci, within the sample of cases
Gains power from making assumption that genotypes (alleles) at the  
two loci are uncorrelated in the population

So only really suitable for unlinked or loosely linked loci (since closely  
linked loci are likely to be in LD)

Alternatively contrast the genotype correlations in cases with those  
seen in controls (--fast-epistasis in PLINK)
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Testing correlation between loci

A similar idea is implemented in EPIBLASTER  
(Kam-Thong et al. 2011; EJHG 19:465-571)

Wu et al. (2010) (PLoS Genet 6:e1001131) also proposed a similar  
approach – though needs adjustment to give correct type I error rates

See also Joint Effects (JE) statistics
(Ueki and Cordell 2012; PLoS Genetics 8(4):e1002625)
All these methods test whether correlation exists (case-only) or is  
different in cases and controls (case/control)

Via testing a log OR for association between two loci
However, the log OR for association (λ) encapsulates a slightly  
different quantity between the different methods

All implemented (along with standard logistic and linear regression)  
in CASSI

http://www.staff.ncl.ac.uk/richard.howey/cassi/
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Empirical evidence for G×Ginteractions

Epistasis among HLA-DRB1, HLA-DQA1, and HLA-DQB1 in  
multiple sclerosis (Lincoln et al. 2009 PNAS 106:7542-7547)

HLA-C and ERAP1 in psoriasis (Strange et al. 2010)

HLA-B27 and ERAP1 in ankylosing spondylitis (Evans et al. 2011)

BANK1 and BLK in SLE (Castillejo-Lopez et al. 2012)

Gusareva et al. (2014) found a reasonably convincing (partially  
replicating) interaction between SNPs on chromosome 6 (KHDRBS2)  
and 13 (CRYL1) in Alzheimer’s disease

Dai et al. (2016) [AJHG 99:352-365] identified 3 loci simultaneously  
interacting with established risk factors gastresophageal reflux, obesity  
and tobacco smoking, with respect to risk for Barrett’s esophagus
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Empirical evidence for G×Ginteractions

Hemani et al. 2014 (Nature 508:249-253) found 501 instances of  
epistatic effects on gene expression, of which 30 could be replicated in  
two independent samples

Many SNPs are close together, could represent haplotype effects?  
Or the effect of a single untyped variant?
See caveats in

Wood et al. (2014) Nature 514(7520):E3-5. PMID:25279928
Fish et al. (2016) Am J Hum Genet 99(4):817830. PMID:27640306

The Hemani et al. paper was subsequently retracted  
(https://www.nature.com/articles/s41586-021-03766-y)
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Empirical evidence for G×E interactions

Myers et al. (2014) Hum Mol Genet 23(19): 5251-9 “Genome-wide  
Interaction Studies Reveal Sex-Specific Asthma RiskAlleles”

Small et al. (2018) Nat Genet 50(4): 572-580 “Regulatory Variants at  
KLF14 Influence Type 2 Diabetes Risk via a Female-Specific Effect on  
Adipocyte Size and Body Composition”

Sung et al. (2019) Hum Molec Genet 28(15): 2615-2633 “A
multi-ancestry genome-wide study incorporating gene-smoking interactions  
identifies multiple new loci for pulse pressure and mean arterial pressure.”

2 6 2 4 H u m a n  M o l e c u l a r  G e n e t i c s ,  2 0 1 9 ,  V o l .  2 8 ,  N o . 1 5

Figure 3. Smoking-specific genetic effect sizes in African ances try for MAP or PP. Among th e 138 loci significantly assoc ia ted w ith MAP and /o r PP, 8 loci s h ow significant

in te rac t ion s w ith smok ing exposu re s ta tu s in African ancestry . Smoking-specific effect e s t ima tes a n d 95% conf idence intervals for va r ian ts a ssoc ia ted w ith BP traits a re
s h ow n as red a n d blue squa res for cu rren t-smokers a n d non -cu rren t smokers , respectively. SNP effects b e tw e en two stra ta a re significantly different (one DF in te rac t ion

P< 5 × 10−8). These resu l ts w ere based o n African-specific re su l ts in s tage 1. MAP: me a n arterial pressure; PP: pu lse pressure; CS: cu rren t-smok ing .
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Empirical evidence for G×E interactions

Fav́e et al. (2018) Nat Commun 9(1): 827 “Gene-by-environment  
Interactions in Urban Populations Modulate Risk Phenotypes”
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1

• To avoid wasting time and money 
– Does not make sense to perform an inadequately powered study for which it 

is unlikely to to correctly reject the null hypothesis due to inadequate sample 
size

• Collaborations can aid in increasing sample sizes
– Caveats

» Disease definition may not be the same between studies
» Study subjects may be drawn for different populations

» Processing of genetic material maybe not be consistent

• Almost always necessary for grant proposals
– Can be denied funding if unable to demonstrate planned study has adequate 

power
• Realistic disease models are necessary when performing power calculations
• Correctly adjust alpha for multiple testing which will be performed

– e.g., use genome-wide significant level of 5 x 10-8 for GWAS studies

Why Estimate Sample Sizes  and/or Power? 

2

• The correct α must be use for sample size estimation/power 
analysis

• Type I (α) the probability of rejecting the null hypothesis of no 
association when it is true

• Due to multiple testing a more stringent value than α=0.05 is 
used in order to control the Family Wise Error Rate

Power and Sample Size Estimation for Case-
Control Data

3

• GWAS of common variants where each variant is test separately
– α=5 X10-8  (Bonferroni Correction for testing 1,000,000 variant sites)
– Shown to be a good approximation for the effective number of tests 

• Valid even when more than 1,000,000 variant sites tested
– Effective number of tests is dependent of the linkage disequilibrium (LD) 

structure
• Single variant tests using whole genome sequence data

– Many more rare variants than common variants
• Lower levels of LD between rare variants than between common variants

– The number of effective tests for rare variants is higher than for analysis 
limited to common variants 

– α is yet to be determined for association analysis of whole genome 
sequence data

Power and Sample Size Estimation for Case-
Control Data

4

• Using genotypes from the Wellcome Trust Case-Control 
Consortium

• Dudbridge and Gusnato, Genet Epidemiol 2008

• Estimated a genome-wide significance threshold for the UK 
European population

• By sub-sampling genotypes at increasing densities and using 
permutation to estimate the nominal p-value for a 5% family-
wise error

• Then extrapolating to infinite density

• The genome wide significance threshold estimate ~7.2X10-8

• Estimate is based on LD structure for Europeans
– Not sufficiently stringent for populations of African Ancestry

An Example of Determining Genome-wide 
Significance Levels for Common Variants

5

• For gene-based rare variant aggregate methods a Bonferroni 
correction for the number of genes/regions tested is used 
– e.g., 20,000 genes significance level  α=2.5 x 10-6

• Can use a less stringent criteria
– Not all genes have two or more variants

» Divide 0.05 by number of genes tested

• If units other than genes are used 
– A more stringent criteria may be necessary

• For rare variants – very low levels of LD between variants in 
separate genes
– Therefore, a Bonferroni correction is not overly stringent

• The number of tests ≅ effective number tests
– This would not be the case for variants in LD 

Power and Sample Size Estimation for Aggregate 
Rare Variant Tests

6
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• For replication studies can base the significance level (α)

• On the number of genes/variants being brought from the 
discovery (stage I) study 

• To replication (stage II)
• For example, if it is hypothesized that 20 genes and 80 

independent variants will be brought to stage II (replication)
– A Bonferroni correct can be made for performing 100 tests 

• An α = 5.0 x 10-3 can be used for a family wise error rate of 0.05

Power and Sample Size Estimation for Replication 
Studies

7

• Can be obtained analytically

• Information necessary
– Prevalence
– Risk allele frequency
– Effect size (odds ratio-for case control data)
– Genetic model for the susceptibility variant

• Recessive (γ1=1)
• Dominant (γ2=γ1)
• Additive  (γ2=2γ1-1) 
• Multiplicative (γ2=γ12)

Estimating Power/Sample Sizes For Single 
Variant Tests

8

• Usually, information on disease prevalence is known from 
epidemiological data 

• A range of risk allele allele frequencies and effect sizes are used

• A variety of genetic models can also used
• Dominant
• Additive 
• Multiplicative

Estimating Power/Sample Sizes For Individual 
Variants

9

• Power and Sample size
– Calculated under different models

• Where γ is the relative risk
– Multiplicative

» γ2=γ12

– Additive
» γ2=2γ1-1

– Dominant
» γ2=γ1

– Recessive
» γ1=1

Armitage Trend Test

10

• Most software for power calculations/sample size estimation use 
the relative risk (ɣ) and not the odds ratio

• The relative risk only approximates the odds ratio when disease is 
rare (Prevalence ~< 0.1%)
– The relative risk is not appropriate for common traits when a case-control 

design is used

Gamma is the Relative Risk not the Odd Ratio

11

Correspondence Between the Odds Ratio and Relative Risk

Disease Prevalence 1/2* RR=1.5 2/2** RR=1.5
0.01 1.51 1.51
0.10 1.59 1.59
0.20 1.71 1.71

Disease Prevalence 1/2 RR=1.5 2/2 RR=2.25
0.01 1.51 2.28
0.10 1.59 2.61
0.20 1.71 3.25

Marker minor allele and disease allele frequency 0.01 
D’ and r2=1  
*1/2 genotype – heterozygous (one copy of the alternative allele)
**2/2 genotype  - homozygous for the alternative allele

Dominant Model

Multiplicative  Model

12
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Genetic Association Study (GAS) Power Calculator

• http://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/i
ndex.html

• A one-stage study power calculator
– Which was derived from CaTs 

• Which is to perform two-stage genome wide association studies
– Skol et al. 2006

• Cochran Armitage Trend Test

• Displays graphs of the results

13

GAS Power Calculator

14

• http://zzz.bwh.harvard.edu/gpc/

• S Purcell & P Sham
• Uses the methods described in Sham PC et al. (2000) Am J Hum 

Genet 66:1616-1630
– VC QTL linkage for sibships
– VC QTL association for sibships
– VC QTL linkage for sibships conditional on the trait
– TDT for discrete traits
– Case-Control for discrete traits
– TDT for quantitative traits
– Case-Control quantitative traits

• Although input is the relative risk 
– Displays odds ratios

Genetic Power Calculator

15 16

17

• http://compgen.rutgers.edu/pawe/

• Implements the linear trend test
• Four different error models can be used

– See online documentation for complete explanation
• Can either perform: 

– Power calculations for a fixed sample size
– Sample size calculations for a fixed power

• The genotype frequencies can be generated either using a:
– Genetic model free method or
– Genetic model-based method

Power Association With Errors (PAWE)

18
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• Provides sample size and power calculations for

• Genetic and environmental main effects
• Interactions

– Gene x gene
– Gene x environment

• Sample & power calculations can be carried for:
– Case-control

• Unmatched
• Matched

– Case-sibling
– Case-parent (trios)

• Quantitative
• Qualitative

– Independent sample of individuals
• Quantitative traits

– Assumption sampled from a random population

• Can only be run under windows
– https://pphs.usc.edu/download-quanto/ 

Quanto
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• Power will be reduced if causal variant is not in perfect LD (r2=1)
with the tag SNP 

• Can adjust sample size when r2 <1 to increase power to the 
same level as when r2=1

• Can estimate sample size when r2≠1
– N/r2=N’ 
– Valid only for multiplicative model
– (Pritchard and Przeworski, 2001)

• Power calculation almost always assume that r2=1
• For whole genome sequence data this should be the case since

usually the causal variant would be included in the data 

Linkage Disequilibrium (LD) 

20

• Many unknown parameters must be modeled
– Allelic architecture within a genetic region

• Varied across genes and populations
– Effects of variants within a region

• Fixed or varied effect sizes of causal variants
• Bidirectional effect of variants
• Proportion of non-causal variants

• Power estimated empirically

• Simplified assumptions can be made to obtain analytical
estimates
– All variants have the same effect size
– No non-causal variants within a region that is analyzed in aggregate

Power Analysis for Rare Variant Aggregate 
Association Tests

21

Simplistic Analytical Power Calculation for Rare-
variant Aggregate Association Analysis

• Assumption
– All rare variants are causal and have the same effect size

• Although usual not be correct
– Provides a gestalt of the power for a given samples or sample size

for a given power

• Use aggregate of allele frequencies
– For example, assume a cumulative allele frequency of 0.025

– Use an exome-wide significant level e.g., 2.5x10-6 

• Provide disease prevalence and penetrance model
• Perform calculations in the same manner as was described

for single variants

22

Empirical Power Calculations

• A variety of methods can be used to generate variant
data to empirically estimate power

• Variant data is generated
–  Based upon a penetrance model samples of cases and

controls are generated
– Or a quantitative trait is generated based upon the genetic

variance

• Multiple replicates are generated and analyzed
– To determine the power

23

Empirical Power Calculations

• Examples
– 5,000 replicates are generated each with 20,000 cases and

20,000 controls 
• The power is the proportion of replicates with p-value less than the 

specified threshold, e.g., 5x10-8

– For rare-variant aggregate tests all autosomal genes are 
generated and those genes with more than two rare variants
(e.g., predicted loss of function) are analyzed

• The power is the proportion of genes that were tested with p-value 
which is below a specified threshold, e.g., 2.5x10-6

24
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Simulation Methods

Other

Coa
les

cen
t

Note: Not all methods give a realistic distribution of variants & in particular for rare variants

25

Generating Exome Sequence Data Sets
 Forward-time Simulation

Data Haplotype
Counts

Demographics 

Boyko 105,814*
Kyrukov 1,800,000*

Gazave 1,308,000*

Same Model, Di�erent Profile
Rank & Range in power under fixed phenotype model setting

Odds Ratio “ = 2.0
B S V C M I R W K

[0.42,0.57]
K S V I K R C M W

[0.15,0.51]
G S R V C M I K W

[0.29,0.60]
ESP S V R C M I K W

[0.49,0.68]

ExAC S V R C M I K W
[0.54,0.73]

Odds Ratio “ = 2.0
A1BG V C K M W I S R

[0.42,0.57]
ADD2 S R V C K W M I

[0.17,0.83]
BMP2 S V R C M I W K

[0.13,0.60]
CAMTA2 S R V C W I K M

[0.12,0.86]
DUSP1 K V C I W M R S

[0.12,0.68]

Same Model, Di�erent Profile
Rank & Range in power under fixed phenotype model setting

Odds Ratio “ = 2.0
B S V C M I R W K

[0.42,0.57]
K S V I K R C M W

[0.15,0.51]
G S R V C M I K W

[0.29,0.60]
ESP S V R C M I K W

[0.49,0.68]

ExAC S V R C M I K W
[0.54,0.73]

Odds Ratio “ = 2.0
A1BG V C K M W I S R

[0.42,0.57]
ADD2 S R V C K W M I

[0.17,0.83]
BMP2 S V R C M I W K

[0.13,0.60]
CAMTA2 S R V C W I K M

[0.12,0.86]
DUSP1 K V C I W M R S

[0.12,0.68]

Same Model, Di�erent Profile
Rank & Range in power under fixed phenotype model setting

Odds Ratio “ = 2.0
B S V C M I R W K

[0.42,0.57]
K S V I K R C M W

[0.15,0.51]
G S R V C M I K W

[0.29,0.60]
ESP S V R C M I K W

[0.49,0.68]

ExAC S V R C M I K W
[0.54,0.73]

Odds Ratio “ = 2.0
A1BG V C K M W I S R

[0.42,0.57]
ADD2 S R V C K W M I

[0.17,0.83]
BMP2 S V R C M I W K

[0.13,0.60]
CAMTA2 S R V C W I K M

[0.12,0.86]
DUSP1 K V C I W M R S

[0.12,0.68]

*Selection coefficients used to define “variant type”
-”Missense” (1.0 x 10-5 – 1.8 x 10-2)
-“Nonsense, splice site and frameshift”  (>1.8 x 10-2)
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SKAT Power Calculator

• R Library 

• Provides a haplotype matrix
– 10,000 haplotypes over 200kb region
– Simulated using a calibrated coalescent model (cosi)
– Mimicking linkage disequilibrium structure of European ancestry
– User can also provide haplotype data

• Power and sample size calculations for binary and quantitative  
traits 

• User specify proportion of variants that increase or lower risk

27

SEQPower
http://www.bioinformatics.org/spower/

Wang et al. 2014 Bioinformatics

28

Generating Variants: Using a European 
Demographic Model and Exome Sequence Data

• Variant data generated on 18,397 genes
• Variant data simulated using a European 

population demographic model
– Gazave et al. 2013

• Variants generated using exome 
sequence data
– 4332 Exomes obtained from European 

American

Which method performs better and why?

29

Does Generating Variant Data Using the European 
Population Demographic Model Perform Well? 

Simulated Data
ESP Data

Distribution of number of variants per gene

• Simulated variant counts based 
on the entire simulated population

• Simulated variant counts based on 
haplotype pool down-sampled to ESP 
size

30
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Simulating Data Using Sequence Data (ESP)

Number of Variant Sites Proportion of Variant Sites that are 
Singletons, Doubletons and Tripletons

31

Simulating Data: Using Population 
Demographic Models (PDM)

Number of Variant Sites Proportion of Variant Sites that are 
Singletons, Doubletons and Tripletons

32

Simulation Studies to Evaluate Power for Rare Variant 
Association Studies

• It is unknown which genes are important in disease etiology
– Correct allelic architecture is unknown

• Can get a better understanding of power to detect 
associations by generating variants for the entire exome

• Use a variety of disease models 
– Odds ratios
– Proportion of pathogenic variants

• Analyze of all genes
– e.g., those with 2 or more variant sites

• Determine power as the proportion of genes that meet 
exome-wide significance (e.g., 𝛂=2.5x10-6)
– If addition regions besides genes are analyzed

• A more stringent 𝛂 value should be used

33

Power Analysis

• For tests of individual variants
– Power depended on sample size, disease prevalence, minor 

allele frequency, genetic model and variant effect size

• For rare variants (aggregate association tests)
– Also dependent on the allelic architecture

• Cumulative variant frequency within analyzed region
• Proportion of causal variants

– How much contamination from non-causal variants
• Effect sizes the same the same or different across gene regions

– Effects of variants in the same or different directions
» Protective and detrimental for binary traits
» Increase and decrease quantitative trait values

34

Power Analysis Rare Variants
 (Aggregate Association Tests)

• Power will not only vary between traits greatly
• The power to detect an association will also vary 

drastically between genes for the same complex trait
– For some causal genes even with hundreds of thousands of 

samples power will be low
– While for other causal genes a few thousand samples may be 

sufficient

35

How Large of a Sample Size is Necessary to 
Detect Rare Variant Associations?

• Data generated on 18,397 genes
• Variant data simulated using a 

European population demographic 
model
– Gazave et al. 2013

• Every missense, nonsense and splice with a MAF< 1% assigned an 
odds ratio of 1.5

• Sample sizes to detect X number of genes determined for 
– α =2.5 x 10-6 

– power=0.8

36
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Sample Sizes Necessary to Detect an Association 
(Case-Control Data)

37
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Imputing and Analyzing Imputed Genotype 
data

Suzanne M. Leal, Ph.D.

© 2024 Suzanne Leal

1

Motivation for Imputation of Genotype Data

• Obtain genotypes for variant sites that are not genotyped
– Additional variants can be tested for associations 

• Providing additional power to tag causal variant sites
• Potential inclusion of causal variants that are unavailable on genotyping 

arrays
– Aids in fine-mapping

• Considerably less expensive than generating whole 
genome sequence data
– Does come at a cost of accuracy

• In particularly for very rare variants

– Imputed data will be available for very rare variants if
• For a variant site the alternative allele has be observed ~8X in the 

reference panel in order for it to be imputed

2

• Can be performed locally or on an imputation server
• Imputation locally has it limitation due to availability of a 

references panel
– Internal data 
– 1000 genomes
– Haplotype reference consortium (HRC)

• Only part of this dataset is made publicly available

• Smaller imputation panels will impact the ability to impute 
lower frequency and rare variants
– Additionally, regardless variant MAF a decrease in the size and diversity 

of imputation panel will lead to a decrease in the imputation accuracy

Imputation of Variants

3

Phasing and performing imputation 
using an Imputation Server

4

Imputation Step 1 Phasing

Study samples are 
uploaded to 

imputation server

Imputation server with 
phased reference 
panel (haplotypes)

H1         AATACG
H2         AA ATTT
H3         CTGATG
H4         AATACG
H5         CTGATG
H6         AAATTT
.
.
.
H65K    CTGATG

A|C

-- 

T|G

A|A

--

G|G

Sample phased (e.g., 
SHAPIT, EAGLE2)
using reference panel, 
e.g. TOPMed 

AC

-- 

GT

AA

--

GG

VS1

VS 2 

VS 3

VS 4

VS 5

VS 6

      Variant Site (VS)

5

Step 2 Imputation 

Phased 
sample 12

Imputation 
Server

A|C

-- 

T|G

A|A

--

G|G

H1         AATACG
H2         AA ATTT
H3         CTGATG
H4         AATACG
H5         CTGATG
H6         AAATTT
.
.
.
H65K    CTGATG

Phased data 
can be 

downloaded

Predicted genotypes & 
posterior probabilities

A|C .02 .97  .01                  0.96            

 A|T .22 .53 .35                  0.24

 T|G .02 .96 .02                 0.94

 A|A .98 .01 .01                 0.99

 A|C .06 .93 .01                  0.82

 GG .01 .08 .91           0.75
 

1/1   1/2   2/2  

Imputation software
e.g., Impute5, 

PBWT,  Minmac4 

R2

Measure of imputation 
accuracy for each 

variant site

Most likely 
Genotype

6
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• R2/INFO
– Measures of imputation accuracy 

• Most programs report R2 
– Impute provides INFO scores 

• r2 is the correlation between the dosage and genotype 
obtained from sequence or genotype array data
– Must have imputed data and sequence or genotype array 

data for the same person to estimate r2.  

Measures of Imputation Accuracy

7

• Variants are filtered according to R2 values
– e.g., analyze variants with an R2>0.8

• Most likely genotypes are not analyzed instead dosages are 
analyzed

• The dosage can be estimated as follows for variant site 1 sample 
12: A|C with prior probabilities 1/1= 0.02, 1/2=0.97, & 2/2=0.01  
(R2=0.96)

• The dosage for variant site 2 sample 12:  A|T with prior 
probabilities 1/1= 0.22, 1/2=0.53, & 2/2=0.35  (R2=0.23)

Step 3 Analysis of Imputed Data

Genotype 1/1    0 x 0.02 =  0.0
Genotype 1/2    1 x 0.97 =  0.97
Genotype  2/2   2 x 0.01 =  0.02
Dosage       0.99

Genotype 1/1    0 x 0.22 =  0.0
Genotype 1/2    1 x 0.53 =  0.53
Genotype  2/2   2 x 0.35 =  0.70
Dosage      1.23

8

• 1000 Genomes Phase 3*
– 2,504 reference samples

• 26 populations from Africa, the Americas, Europe, East Asia, & South Asia

• African Genome Resource

• Asthma among African-ancestry Populations in the   
Americas (CAAPA)

• Genome Asia Pilot (GAsP)

• HAPMAP2

• Haplotype Reference Consortium (HRC) *
– 32,470 references samples (39,635,008 variants)

• Predominately European Ancestry 

Imputation Panels

*Commonly used imputation panels

9

• Multi-ethnic HLA

• Southeast Asian Reference Database (SEAD) 

• The Trans-Omics for Precision Medicine (TOPMed)*
– Version R3 133,597 reference samples (445,600,184 variants)

• ~40% European, ~29% African/African American, ~19% Hispanic/Latino, 
~8% Asian, & ~4% other/unknown) 

• UK10K

• Westlake Biobank for Chinese (WBBC)

Imputation Reference Panels

*Commonly used imputation panels

10

• Michigan (US)
– Reference panels include, HRC, 1,000 Genomes, etc.
– Phasing EAGLE2
– Imputation Minmax4
– https://imputationserver.sph.umich.edu/index.html#!

• NHLBI (US)
– Reference panel TOPMed
– Phasing EAGLE2
– Imputation Minmax4
– https://imputation.biodatacatalyst.nhlbi.nih.gov/#!

Imputation Servers

11

• Sanger (UK) 
– Reference panels include HRC, 1,000 Genomes, etc. 
– Phasing SHAPEIT or EAGLE2
– Imputation PBWT
– https://www.sanger.ac.uk/tool/sanger-imputation-service/ 

• Westlake (People’s Republic of China)
– Reference panels include 1000 Genomes, GAsP, SEAD, & 

WBBC
– Phasing SHAPEIT2
– Imputation Minmax4
– https://imputationserver.westlake.edu.cn/index.html

Imputation Servers

12
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• Reference (imputation) panel 
– Sample size

• Larger samples 
– Increase imputation accuracy

– Ability to impute rare variants

– Ancestry diversity
• Target sample

– Density of markers
– Genotype quality
– Ancestry and representation on the imputation panel
– The population’s linkage disequilibrium structure

What Impacts Imputation Quality?

Note: Since each target sample is phased and imputed 
separately using the pre-phased imputation panel on the 
imputation server, sample size of the target sample does not 
impact imputation accuracy 

13

• Reference Panels 
– 1000 Genomes Phase 3

• 2,504 reference samples
– 26 populations from Africa, the Americas, Europe, East Asia, & South Asia

– HRC v1.1 2016
• 32,470 references samples (39,635,008 variants)

– Predominately European Ancestry 

– TOPMed (Version r2)
• 97,256 reference samples (308,107,085 variants)

– Diverse population from the USA 48.49% European, 25.95% African/African 
American, 17.57% Hispanic/Latino/Admixed Americans, 1.22% East Asian, 0.66 
South Asians, 6.11% other/unknown )

– TOPMed (53K)
• 53,831 reference samples

How Well do 1000 Genomes, HRC, and TOPMed 
Imputation Reference Panels Perform?

14

• Target Sample
– 100 ancestry specific samples, 

• e.g. Europeans, African-Americans, & South Asians

– Obtained from BioMe
• Samples are not included in any of the reference panels

How Well do 1000 Genomes, HRC, and TOPMed 
Imputation Reference Panels Perform?

15

Europeans

Taliun et al. 2021 Nature

Panel A:  r2 between the sequence-based genotypes and imputed dosages across all variants, 
assigning r2 = 0 to variants absent from each reference panel

Panels B:  average r2 with only the variants present from each reference panel

Panel C: The proportion of variants present in the reference panels

A B

C

16

African Americans

Taliun et al. 2021 Nature

A B

C

Panel A:  r2 between the sequence-based genotypes and imputed dosages across all variants, 
assigning r2 = 0 to variants absent from each reference panel

Panels B:  Average r2 with only the variants present from each reference panel

Panel C: The proportion of variants present in the reference panels

17

East Asians

Taliun et al. 2021 Nature

Panel A:  r2 between the sequence-based genotypes and imputed dosages across all variants, 
assigning r2 = 0 to variants absent from each reference panel

Panels B:  Average r2 with only the variants present from each reference panel

Panel C: The proportion of variants present in the reference panels

A B

C

18
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• Unrelated white European UK Biobank study participants 
(N=168,206) with 
– Release 2 exome sequence 
– Genotype array data available

• Imputed variants using both HRC and TOPMed (v2)
• Comparison of variant distributions

– Exome sequence (ES) data
– HRC imputed data r2>0.3 and r2>0.8
– TOPMed imputed data r2>0.3 and r2>0.8

Comparison of Rare Variant Distributions

19

Distribution of Rare Variants

Variants for chromosomes 1 and 2 in coding regions

20

Meta-imputation (I)

Yu et al. (2022) Am J Hum Genet

Use, in turn, two or more reference panels*, then combine the results

Requires pre-phased data 

next slide

*The reference panels must use the same genome build

21

Meta-imputation (II)

Yu et al. (2022) Am J Hum Genet

Obtain region-specific weights via leave-one-out (LOO) in an HMM

Weighting by the 
concordance between 

LOO prediction and 
true genotype

Imputation using 1st reference panel Imputation using 2nd reference panel

4 out of 5 
matching 

haplotypes carry 
the correct allele

4 out of 4

match

4 out of 5

Simplified!
(all haplotypes are used in 

an HMM akin to Li & 
Stephens’ with LOO results 
as emission probabilities)

22

• Imputation locally has it limitation due to availability of  
references panels
– Internal data 
– 1000 genomes
– HRC

• Only part of this dataset is made publicly available to  download to use 
locally

• Can be computationally intensive to phase and impute 
genotypes locally

• All haplotype phasing and imputation software used on 
imputation servers are publicly  available

• Due to data sharing limitation in particular within the European 
Union
– It may not be possible to use imputation servers which are located in the 

US, UK or China

Imputation of Variants without using an 
Imputation Server

23

Using Imputation to Detect Genotyping Errors

• Can provide information on genotyping error by comparing the 
genotype of the imputed variant with genotypes obtained from 
array or sequence data
– Would suggest there is genotype error if for the imputed data the R2 

(measure of imputation accuracy) is high 

• But the r2 (correlation) between the imputed variant and the genotypes 
obtained from sequence or array data is low. 

– Association analysis results obtained for the imputed variant and the 
same variant obtained from genotyping array or sequencing vary greatly 
even though the R2 value is high for the imputed variant

• Suggest that there is probably genotyping error for the variant obtained 
from genotyping array or sequence data

• The variant obtained from array or sequence data can be 
replaced with the imputed variant

24
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Combining data obtained from different genotyping 
arrays 

• Variants that don’t overlap between arrays can be 
imputed
– As well as variants not available on any of the arrays

• Caution should be used because the imputation quality 
can vary between datasets
– Influenced by different error rates between datasets 
– Principal components analysis (PCA) can be used to determine 

if the potential problems
• If additional quality control is necessary

• If there are more cases or controls for a particular dataset
– Type I errors can be increased

25
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Linkage disequilibrium in genetic  
association studies

Gao Wang, Ph.D.

Advanced Gene Mapping Course, May 2024

The Gertrude H. Sergievsky Center and Department of Neurology  
Columbia University Vagelos College of Physicians and Surgeons

1

1

Genetic association studies (recap)

Identify genetic variants associated with complextraits

• Association does not implycausality
• Disease, quantitative traits, molecular phenotypes

in order to

• Understand biologicalmechanism
• Identify potential drug targets
• Identify individuals with high diseaserisk

2

2

Sources of association signals

Causal association —meaningful
• Tested genetic variations influence traits directly  

Linkage disequilibrium (LD) —useful

• Tested genetic variations associated with other nearby  
variations that influencetraits

• Meaningful or misleading, in different contexts

Population stratification —misleading
• Tested genetic variations is unrelated to traits, but is  

associated due to samplingdifferences
• eg, minor allele frequency, disease prevalence

3

3

Sources of association signals: analysis tools

Causal association —meaningful
• Fine-mapping, colocalization, Mendelian randomization  

Linkage disequilibrium (LD) —useful

• Meaningful: LD scores regression, polygenic risk scores  
(PRS), transcriptome-wide association studies(TWAS)

• Misleading: fine-mapping, LD pruning / clumping

Population stratification —misleading

• Principle component analysis, linear (mixed) models

4

4

Linkage disequilibrium (LD)

LD: the sharing of certain combinations of variants

• Formally, equivalents to Haplotypestructure
• There are several measures of LD but largely irrelevant to  

our learningobjectives
• In gene-mapping, let’s simply understand LD as Pearson’s  

correlation betweenvariants

5

5

Linkage disequilibrium (LD)

Levels of LD is a result of chromosomal“shuffling”

• Segregation andRecombination

Each row is a variant site

• Shuffle within rows does not change marginal MAF .
• Multi-loci MAF, i.e., haplotype frequency , willchange.

6

6
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Why do we care about LD?

When obviously LD is an issue

• Many variants will look “similar” by genotype but have  
different biological function — mapping “causal” variants  
is challenging

When LD is useful

• Can leverage non-causal genetic variables to predict  
phenotypes when causal variant is not observed indata

• Can leverage variants that are LD to infer each other’s  
genotype to complete missing genotypedata

• also, association study summarystatistics

7

7

Impact of LD on GWAS analysis

Oligogenic: trait influenced by a few genetic variants

• Misleading: difficult to identify causal variants
• Useful: ‘tag SNPs’ in array based GWASdesign

8

8

Impact of LD on GWAS analysis

Polygenic: trait influenced by numerous genetic variants

• Misleading: stronger association due to more LD‘friends’
• Useful: whole-genome prediction with sparsemodels

9

9

A second thought on genomic inflation

Population stratification? Or, polygenic inheritance + LD?

Suggested reading: Yang et al (2011) EJHG
10

10

LD score regression (LDSC)

LD score regression model without populationstratification

11

11

LD score regression (LDSC)

gSeparating h2 and populationstratification

A more powerful and accurate correction factor for GWAS  
summary statistics compared to genomic control approach.

• Bulik-Sullivan et al (2015) Nature Genetics — the LDSC regression paper

• Zhu and Stephens (2017) AoAS — a neat, alternative LDSC regression model  

derivation in supplemental material

12

12
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LDSC application: heritability estimation

Narrow senseheritibility

• Proportion of phenotypic variation explained by additive  
genetic factors

Estimation strategy

• Pedigree design: genetic covariance and IBDsharing
• Population design: linear mixed models

Population design, summary statistics

• LDSC to estimate SNP-basedheritability
• Stratified LDSC (S-LDSC) to partition heritability by  

functional annotations

13

13

Variance of height explained in GWAS

Yengo et al. (2022) Nature

14

14
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Statistical fine-mapping in genetic  
association studies

Gao Wang,Ph.D.

Advanced Gene Mapping Course, May 2024

The Gertrude H. Sergievsky Center and Department of Neurology  
Columbia University Vagelos College of Physicians andSurgeons

1

1

Figure: Broekema et al. (2020) Open Biol.

2

2

Correlated variables in association studies

Due to a phenomenon called linkage disequilibrium (LD)

3

3

Figure: N’Diaye et al. (2011) PLoS Genet.

4

4

Objectives

Statistical fine-mapping aids in the identification of causal  
variants, in order to

• interpret association signals (pinpoint to genes)
• understand biological function of avariant
• elucidate genetic architecture of complex and molecular  

phenotypes

5

5

Identify non-zero effect (“causal”)
variables

Simply pick the top association in an LD block?Maybe?

7

6
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Identify non-zero effect (“causal”)variables

Simply pick the top association in an LD block? ... ornot!

7

7

Architecture: sparse effects, polygenicbackground

Figure: O’Donovan et al. (2014) Nature
8

8

Challenge: large-sample computationalchallenge

Figure: UK Biobank height GWAS,
http://nealelab.is/uk-biobank

9

9

“One causal SNP”
assumption

Effect variable (red) correlated with non-effect variable (green)

SNP 1
SNP 2

10

10

“One causal SNP”
assumption

SNP 1
SNP 2

Compute likelihood ratios (LR) H1 vsH0,

LR1  = 6.15 × 108 LR2= 0.94×
108

10

11

“One causal SNP” assumption

SNP 1
SNP 2

Compute likelihood ratios (LR) H1 vsH0,

LR1  = 6.15 × 108 LR2= 0.94× 108

Probability of association assuming one effectvariable,

LR1 LR2

LR1 + LR2 LR1 + LR2

10

= 0.87 =
0.13

12
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Per variable contingency table analysis, Rcode

# returns likelihood ratio of H_1 vs H_0
get_2x2_lr = function(tbl) {

tbl = as.table(matrix(tbl, 2,2,  
dimnames=list(status=c('case','control'),  
genotype=c('minor_allele','major_allele'))))

test = MASS::loglm(~status+genotype,data=tbl)  
return(exp(test$lrt / 2))

}
lr1 = get_2x2_lr(c(1200,800,1000,1000))  
lr2 =
get_2x2_lr(c(1190,809,1000,1000))

11

13

A “single effect” Bayesian variable
selection

Use Bayes Factor, and compute posterior inclusion  
probability

PIP1 =
BF1

=
0.85

PIP2 =

BF1 + BF2  

BF2

BF1 + BF2
=
0.15

12

14

Bayesian variable selection: PIP

Computes Posterior Inclusion Probability (PIP)

BVSR

13

15

Bayesian variable selection: PIP

Computes Posterior Inclusion Probability (PIP)

BVSR

13

16

Bayesian variable selection: CredibleSets

‘Clusters’ of signals to account for correlations between  
variables (egLD)

14

17

Bayesian variable selection: CredibleSets

• 95% credible set S: Pr(e f f ect variable in S) ≥ 95%
• e.g. , “Single effect” model:

∑ PIP(j) ≥ 95%
j∈S

where PIP(j)’s are in descending order.
• Formal definition: Wang et al. (2020) J. R. Stat. Soc.B

15

18
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Multiple effects: step-wise
search

Figure: Spain and Barrett (2015) Hum. Mol. Genet.
16

19

A simple frequentist conditional analysis

Forward selectionalgorithm
1. For each SNP fit a simple linear regressionmodel
2. Select the SNP j that has the largest model

likelihood
3. Form residuals y′ := y − Xjb̂ j, andrepeat

17

20

A simple frequentist conditional analysis

Forward selection algorithm
1. For each SNP fit a simple linear regressionmodel
2. Select the SNP j that has the largest model likelihood
3. Form residuals y′ := y − Xjb̂ j, andrepeat

A greedy algorithm to choose the “best” SNPs, but is  
incapable of capturing multiple SNPs in LD

17

21

To quantifyuncertainty

Bayesian forward selectionalgorithm
1. For each SNP j, fit a simple Bayesian linear regression  

model to get Bayes Factor BFj

2. Form weight for each SNP, wj ∝ BFj

3.Form residuals y′ := y − ∑j wj Xjb̂ j, and repeat

18

22

To quantify uncertainty

Bayesian forward selectionalgorithm
1. For each SNP j, fit a simple Bayesian linear 

regression  model to get Bayes FactorBFj

2. Form weight for each SNP, wj ∝ BFj

3.Form residuals y′ := y − ∑j wj Xjb̂ j, and repeat

What if a “bad decision” is made early on?

18

23

A motivating example

data available asdata(susieR::N2finemapping)
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A motivating example
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Detecting multiple effect variables

Intuition: A model involving the two effect variables should  
fit the data better than that involving the top variable.

20

26

Bayesian Variable Selection Regression(BVSR)

Fine-mapping is a particular multiple regressionproblem:

21

yn×1 =  Xn×pbp×1 + en×1

• b is sparse: most of its elements are0’s
• Columns of X are very correlated

27

Why BVSR?

• Other sparse variable selection regression may not work
• designed to minimize prediction errors, e.g. LASSO

22

28

Why BVSR?

• Other sparse variable selection regression may not work
• designed to minimize prediction errors, e.g. LASSO

• Bayesian variable selection regression(BVSR)
• can evaluate significance of effect variables

• can quantify uncertainty in variables selected

22

29

Figure: Schaid et al. (2018) Nat. Rev. Genet.

23

30
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BVSR model

y = Xb + e 
e  ∼ N(0, σ2In)

γj  ∼ Bernoulli(π)
bγ|γ ∼ g(·)
b−γ|γ ∼ δ0

γ: model configurations; π: prior inclusion probability.

24

31

BVSRresults

Assess combinations ofvariables

SNPs 1 2 3 4 5 ··· Probability

model configurations

1 0 1 0 0 ··
·1 0 0 1 0 ···
0 1 1 0 0 ···
0 1 0 1 0 ···

0.25
0.25
0.25
0.25

• PIPj := Pr(zj isnon-zero)

PIP = (0.5,0.5,0.5,0.5,0,···)

25

32

Assessing multi-effectsconfigurations

L = 1

26

33 34

35 36
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37

Assessing multi-effects configurations

Marginal associations

26

38

Assessing multi-effectsconfigurations

The 95% (smallest) CredibleSet

26

39

BVSR inference: posteriormethods

BVSR is computationally challenging!
• MCMC: BIMBAM, Guan & Stephens (2011)
• Enumeration: CAVIAR, Hormozdiari et al. (2014)
• Schochastic  search:  FINEMAP,  Benner  et al. (2016)
• Deterministic approximation:  DAP-G,  Wen  et al.

(2016)

27

40

41

Summarizing BVSRresults

0.25

0.25

0.25

0.25

28

42

7070



Summarizing BVSRresults

0.25

0.25

0.25

0.25

28

43

Summarizing BVSRresults

0.5 0.5 0.5 0.5

28

0 1 1 0 "Truth"
Posterior Inclusion  
Probability

44

Summarizing BVSRresults

0.5 0.5 0.5 0.5

0 1 1 0 "Truth"
Posterior Inclusion  
Probability

95% Credible Set (CS)

28

45

Limitation of BVSR inference

0.5 0.5 0.5 0.5

29

• There are 2 signals expected (0.5 +  0.5 +  0.5 + 0.5)
• But which two? Any two?
• 95% certainty that all effect variables arecaptured?

46

Limitation of BVSR inference

0.5 0.5 0.5 0.5

• There are 2 signals expected (0.5 +  0.5 +  0.5 + 0.5)
• But which two? Any two?
• 95% certainty that all effect variables arecaptured?
• We need to quantify this better!

29

47

Quantifying uncertainty in variable selection

Consider a sparse regressionexample
p

30

y  =  ∑xjbj  + e e ∼ N(0, σ2 In), (1)
j=1

wherex1= x2, x3= x4, b1̸= 0, b4̸= 0, bj∈/{1,4} = 0.

48
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Quantifying uncertainty in variable selection

Consider a sparse regressionexample
p

30

y  =  ∑xjbj  + e e ∼ N(0, σ2 In), (1)
j=1

wherex1= x2, x3= x4, b1̸= 0, b4 ̸ = 0, bj∈/{1,4} = 0.

We are interested in making the followingstatement,

(b1 ̸= 0 or b2 ̸ = 0) AND (b3 ̸= 0 or b4 ̸ =  
0).

49

Quantifying uncertainty in variable selection

We are interested in making the followingstatement,

(b1 ̸= 0 or b2 ̸ = 0) AND (b3 ̸= 0 or b4 ̸ = 0).

1. There are two independent variables with non-zeroeffect
2. x1 and x2 (and x3 and x4) are too similar to distinguish
3. yet they can be prioritized relative to eachother

30

50

Quantifying uncertainty in variable selection
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b1 ̸ = 0 or b2 ̸ = 0, and b3 ̸ = 0 or b4 ̸ =  0.

True effect size Lasso
● ●

51

Quantifying uncertainty in variable selection

●

0 200 400 600 800 1000
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●

0 200 400 600 800 1000
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PI P 0.
2

b1 ̸ = 0 or b2 ̸ = 0, and b3 ̸ = 0 or b4 ̸ = 0.

Bayesian sparse regression SuSiE, 2 CS identified
● ● ● ● ● ● ● ●

31

52

The Sum of Single Effects model (SuSiE )

y= Xb+ e
L

b =  ∑ bl
l=1

=

32

X X + X + X

Wang et al. (2020) J. R. Stat. Soc. B

53

The Sum of Single Effects model (SuSiE )

y= Xb+ e
L

b =  ∑bl
l=1

=

32

X X + X + X

A variational approximation to posterior under SuSiE
q(b1, . . . ,bL) = ∏ ql(bl)

l
• b1, . . . , bL are treated as independent aposteriori.
• Do not assume ql factorizes over the elements of bl.

54
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A fast Bayesian variable selection
algorithm

Iterative Bayesian forward selection algorithm(IBSS)
• For each iteration t

33

j
(t)
j1.  For  each  SNP  j fit y= Xb + e get BF(t)

j

2. Form weight for each SNP w(t) ∝ BF(t)
j j

j j
ˆ(t) (t)

j j3.  Form residuals  y′ :=  y  − ∑ w Xb and repeat
• Until converge

Coordinate ascent algorithm; convergence based on  
evidence lower bound(ELBO)

55

SuSiE model, formal notation

“single effect”:  bl’s

y = Xb+ e

34

e ∼ N(0, σ2 In)
L

b =  ∑ bl
l=1

bl= γl βl

γl ∼ Mult(1, 
π) 2

l 0lβ ∼ N(0, σ )
2
0lσ ≥ 0

A mean-field
approximation

q(b1, . . . ,
b l

L) = ∏ ql(bl)

• b1, . . . , bL are treatedas
independent aposteriori.

• Do not assume ql factorizes  
over the elements ofbl .

56

IBSS algorithm, formal notation

Algorithm Iterative Bayesian forward
selection

Require: data y and variable matrixX. 1
2
1Require: Single Effect Regression: SER(y, X) → (α, µ , σ )

1: Initialize αl,µl, b̄l for l = 1, . . . , L.
2: repeat
3: for l in 1, . . . , L do

rl← y− ∑l′̸=l

Xb̄ l′l l
2
l l(α , µ , σ ) ← SER(r , 

X)

4:
5:
6: b̄l ← αl ◦ µl

7: until converged
8: return α1, µ1, . . . , αL, µL.

35

57

SuSiE model yields single-effect CS

=
+

+

36

58

SuSiE model yields single-effect CS

=

+

+

36

59 60
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IBSS algorithmillustration

1. At random (zero) initialization, fit single effect model on y

0.5 0.5 ≈0≈0

37

61

IBSS algorithmillustration

2. Compute residual r2usingfittedmodel,anddoitagain

0.5 0.5 ≈0≈0

≈0≈0 0.5 0.5

37

62

IBSS algorithm illustration

3. Compute residual r3usingfittedmodel,anddoitagain

0.5 0.5 ≈0≈0

0.5

37

≈0≈ 0 0.5

≈0≈ 0 ≈0≈ 0

63

IBSS algorithm illustration

4. Iterate until converge; compute single-effect credible sets

0.5 0.5 ≈0≈0

≈0≈0 0.5 0.5

≈0≈0 ≈0≈0

37

64

SuSiE CSillustration
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Two signal-level 95% CS
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Real-world example illustrated
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Real-world example illustrated
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Real-world exampleillustrated
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37 SNPs, minimum  
absolute pairwise  
correlation is 0.97
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Real-world example illustrated
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The IBSS algorithm iterations breakdown

40

70

SuSiE ispowerful

0.
0

0
0.

1
0

0.
2

0
0.

3
0

po
we

r

SuSiE  
DAP−G  
CAVIAR  
FINEMAP

0.00 0.10 0.20 0.30

FDR

† SuSiE priors not required as they are learned from local tests.
41

71

SuSiE is fast

Speed comparison (3 causal variables; unit: sec.)

42

Method Avg. Min. Max.
SuSiE† 0.64 0.34 2.28
DAP-G 2.87 2.23 8.87
FINEMAP 23.01 10.99 48.16
CAVIAR 2907.51 2637.34 3018.52

† An R implementation of SuSiE . Others are implemented in C++.

72
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Similar model, different problems

• X is gene expression, y is tissue /  cell type
• X is pathway, y isgene-set
• X is functional annotation, y is GWAS effect size
• X is “step matrix”, y is spatially-structured variable

43

73

The “changepoint” problem

Data is piecewise constant, e.g. copy numbervariation

44

74

The “changepoint”problem

Can be modelled as linear combination of step functions

+=

44

75

Example: simulated DNA copy numbervariation

SuSiE vs Circular Binary Segmentation Olshen et al. (2004) Biostatistics

−1
.

0
0. 0

1. 0

0 100 200 300 400 500

Notice the benefit of quantifying uncertainty in this example

45

76

11

77

A sparse model (a somewhat oligogenic
view)

Generalized linear model for SNP effects given K annotations

βj = ( 1 − πj)δ0 + πjg(Θ)
πj := Pr(γj =  1|α,d)

log 1 − πj

12

πj ] K

k= 1
= α + α d0 ∑ k kj

α are log fold enrichment of functional genomicfeatures

• Suggested reading: Wen (2016) AoAS

78
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Enrichment of DNase I in GTEx eQTLs

Figure: Wen et al. (2016) AJHG

13

79

Annotations improves fine-mapping resolution

Integrating functional information prioritizes the left SNP.

14

80

Recall the toy example

Probability of association assuming one effectvariable,

LR1 LR2

LR1 + LR2 LR1 + LR2

15

= 0.87 = 0.13

81

Recall the toyexample

Probability of association assuming one effectvariable,

LR1 LR2

LR1 + LR2 LR1 + LR2
= 0.87 = 0.13

What if we determine a priori that SNP 1 is twice as  
important as SNP 2?

2× LR1 LR2

2 × LR1  + LR2 2× LR1 + LR2

15

= 0.93 =
0.07

82

Fine-mapping with functional annotations

Recall the BVSR model

y= Xb+ e  
e  ∼ N(0, σ2 In)

γj  ∼ Bernoulli(π)
bγ|γ ∼ g(·)
b−γ|γ ∼ δ0

Key idea: π, prior inclusion probability, can be modelled by
enrichment of functional annotations

16

83

Genome-wide approach withS-LDSC

• A single locus may not have enough power to leverage  
annotation enrichment

• Genome-wide evaluation of thousands of annotations can  
increase power offine-mapping

• Lead to new loci to discover
• Functional enrichment can be done under the same  

framework
• Prioritize genomic features /  tissues / cell-types

• Enrichment coefficient may be transferrable cross  
population

• Weissbrod et al. (2022) Nat. Genet.

17

84
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Functionally informed fine-mapping in UK
Biobank

In analyses of 49 UK Biobank traits, PolyFun +  SuSiE  
identified >32% more fine-mapped variant–trait 
pairs  compared to using SuSiEalone.

Figure: Weissbrod et al. (2020) Nat.Genet. 18

85

Example: SuSiE with functional informed prior

Figure: Zhang et al. (2020) Science

19

86

Caution: disease specific enrichment

Figure: Zhang et al. (2020) Science

20
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Multivariate analysis in genetic  
association studies

Gao Wang, Ph.D.

Advanced Gene Mapping Course, May 2024

The Gertrude H. Sergievsky Center and Department of Neurology  
Columbia University Vagelos College of Physicians and Surgeons

1

88

1 Motivation

2 Meta-analysis review

3 Meta-analysis: a multivariate regression prospective

4 Multivariate adaptive shrinkage andfine-mapping

2

89

Motivation

90
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Beyond per trait per variant associationstudies

Statistical fine-mapping (multiple regressors)

• Identify non-zero effect variables by accounting for LD

Meta-analysis (multiple responses)

• Integrate information across multiple conditions / studies

“Causal” variants across multiple conditions?

• Cross-population fine-mapping; colocalization; pleiotropy;  
mediation; . . .

3

91

The problem

4

92

The problem

For a genetic variable analyzed in two conditions:

5

P(“causal” in trait 1 & 2 | association data for 1 &2)

93

The problem

For a genetic variable analyzed in two conditions:

5

P(“causal” in trait 1 & 2 | association data for 1 & 2)

Denote data as  D1  and  D2, and  use  indicator variables  γ1, γ2

for variable having effects in 1  and  2, and  hyperparameters Θ:

P(γ1 =  1, γ2 = 1|D1, D2, Θ)

94

Multivariate relationships?

Figure: Pleiotropy or Linkage?

6

95

Meta-analysis review

96
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Meta-analysis: a multivariate  
regression prospective

97

Fixed effect and random effectsmodels

Different assumptions on effects across studies

• Fixed effect model: all studies share a common effect size
• Random effects model: effect sizes are random variables

from an underlying distribution

7

98

Fixed effect (FE) model

ˆLet βi be the observed effect size of study i, 1 ≤ i ≤ k, and s 2
i

its variance. The true effect size is β. The observed effect is  
modelled as

β̂i
2
i∼ N(β, s 

),with likelihood function

ˆ
k

i

ˆ
k

∏ i ∏
i

L(β) = P(β|β) = P(β |β) ∝ exp −
k

∑
i

ˆ
i(β − β)2

2s2

8

i

]
.

99

Fixed effect (FE) model
ˆLet β i be the observed effect size of study i, 1 ≤ i ≤ k, ands 2

i
its variance. The true effect size is β. The observed effect is  
modelled as

β̂i
2
i∼ N(β, s ),

with likelihood function

ˆ
k

ˆi

k

∏ ∏L(β) = P(β|β) = P(β |β) ∝ exp −
k

∑
i i i

ˆi(β −
β)

2

2s2
i

]
.

Let wi =  1/s2  be the weight of study i. The MLE ofi
summary effect is

β̂= ∑k wi β̂ ii
k

8

∑i wi
Inverse varianceweighting

100

Random effects (RE)model

ˆLet β i be the observed effect size of study i, 1 ≤ i ≤ k, ands 2
i

its variance. Let βi be the true effect size of study i. The  
observed effect is modelled as

β̂|βi i i
2
i∼ N(β , s ), βi ∼ N(β, σ2)

with likelihood function

ˆ 2P(β|β σ )
k

i i
∏ s2 + σ2

, ∝ 1 exp −
k

∑
i

(β̂ i − β)2

i

9

2 22(s +  σ)
]
.

101

Random effects (RE)model
ˆLet β i be the observed effect size of study i, 1 ≤ i ≤ k, ands 2

i
its variance. Let βi be the true effect size of study i. The  
observed effect is modelled as

β̂|βi i i
2
i∼ N(β , s ), βi ∼ N(β, σ2)

with likelihood function

ˆ 2P(β|β σ )
k
∏ s2 + σ2

, ∝ 1 exp −
k
∑ (β̂ i − β)2

i i i i

9

2 22(s +  σ)
]
.

iRE has weight wi
∗ =  1/(s2  +  σ2); summary effect β̂ canbe

similarly computed as FE, replacing wi with wi
∗. σ2 can be  

estimated (e.g. , MLE).

102
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Multivariate model(s) for effect
sizes

Consider a parametric model on effect sizes across studies,

Bj|γ = 1 ∼ MVN(0, U)

Consider 2 studies, e.g. height GWAS in Europeans and  
Africans.

10

103

Fixed-effect model multivariate analysis

fixed

11

2
0U =  σ×

1  1
1  1

Effect sizes are exactly the same between twostudies,

i 1

104

Random effects model multivariate analysis

U

12

random
2
0=  σ ×

1  0
0  1

Effect sizes are different between two studies, but are from the  
same distribution,

i 1

105

Other multivariatemodels

U

13

partially 
shared

2
0=  σ ×

1 ρ
ρ 1

i 1

where |ρ| ≤ 1. This contains the two meta-analysis models as  
special cases!

106

Other flexible multivariate models

Moregenerally,

14

U =
i

σ σ2 2
1 12

σ2 σ2
12 2

1

• Pro: more generic than Ufixed andUrandom

• Con: 3 parameters to deal with, compared to oneσ2
0

107

Analogy to popular multivariate models  
(some necessary but, not sufficient)

1  0
0  0

15

, 0  0
0  1

• Colocalization correlationmatrix:

i
1 ρ

1

ρ 1

• Condition specific correlationmatrix:

i 1 i 1

108
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Analogy to popular multivariate models  
(some necessary, but not sufficient)

• Mediation:

16

Umediation
2
0=  σ×

i
1 ρ12

ρ12 ρ2

1

• Genotype→ Trait 1 → Trait 2.
• Effect on trait 2 should be smaller than that on trait 1.

109

The problem

For a genetic variable analyzed in GWAS and eQTLstudies:

P(γg =  1, γe = 1|Dg, De, Θ)

17

110

Colocalization method: coloc

coloc [Giambartolomei et al. (2014) PLoSGenet.]

• On X: “one causal” assumption
• On Y: the null +  4 combinations given “one causal“

1. In 1  but not 2
2. In 2  but not 1
3. In 1 and 2 but not the same variable
4. In 1 and 2 and the same variable (colocalization)
5. No association in both data 1 and2

18

111

Colocalization method: eCAVIAR

eCAVIAR [Hormozdiari et al. (2016) Am. J. Hum. Genet.]

• On X: multiple effect variables
• On Y: each effect variable can be

1. In 1  but not 2
2. In 2  but not 1
3. In both 1 and 2
4. No association in both data 1 and 2

19

112

eCAVIAR effects assumption

Effect sizes areindependent,

20

U =
i

σ2
g 0

20 σe

1

113

Colocalization method: enloc

enloc [Wen et al. (2017) PLoS Genet.]

• Key difference: cross-condition effects not independent
• eQTL signals are enriched inGWAS

21

114
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Colocalization method: enloc

enloc [Wen et al. (2017) PLoS Genet.]

• Key difference: cross-condition effects not independent
• eQTL signals are enriched inGWAS

But how?
• Through a simple logistic link using eQTL as an  

annotation for j

21

log
π ]

1 − π =  α + αγ0 e

and in thiscontext

π := P(γg =  1|γe = 1)

115

enloc two step procedure

1. Obtain P(γg =  1) and P(γe =  1) using fine-mapping
2. Fit the enrichment model via multipleimputation

22

116

Connections between colocalizationmethods

• eCAVIAR is a special case of enloc with α = 0.
• coloc is a special case of “one causal” fine-mapping  

based enloc with fixed, high(!) α value bydefault.
• Recent coloc extension: coloc version 5, aka SuSiE-coloc

removed the “one causal”assumption.
• Wallace (2021) PLoS Genetics
• https://chr1swallace.github.io/coloc/

23

117

Connections between colocalizationmethods

• eCAVIAR is a special case of enloc with α = 0.
• coloc is a special case of “one causal” fine-mapping  

based enloc with fixed, high(!) α value bydefault.
• Recent coloc extension: coloc version 5, akaSuSiE-coloc

removed the “one causal”assumption.
• Wallace (2021) PLoS Genetics
• https://chr1swallace.github.io/coloc/

Summary: pattern and scale of effect size correlations,  
represented as different priormodels.

23

118

Practical considerations

• Choice of prior
• Best to estimate enrichment α from data
• α ∈ [0, 5] suggested by >  4, 000 GWAS + GTEx data

• LD reference mismatch: underestimate α, thus power loss

Hukku et al. (2021) Am. J. Hum.Genet.

24

119

Multi-trait colocalization

Figure: HyPrColoc, Foley et al. (2021) Nat. Comm.

Assuming a single causal variant in theloci.
25

120
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Multivariate adaptive 
shrinkage  and fine-mapping

121

More phenotypes, more complications

Figure: Plausible patterns of sharing

26

122

Major challenges

• For a given variant: the less assumption made on  
multivariate effects, the more parameters to estimate.

• FE and RE models are restrictive but easy to fit.
• Different variants: may fit in different multivariate  

effect models

27

123

A naive mixture model

“FE and RE are equally likely for any 
variant”:

28

mixed =U 0.5× σ2 2
0 0

σ2 σ2 + 0.5 
×

i 1 i
σ σ2

0 0
0 σ2

0 0 0

1

Prior allows for possibility of both; data will determine where  
posterior lands.

124

A data-adaptive mixture model

Instead of making assumptions, can we learn from data:

• What are the latent structures for multivariate effects?
• How often does each structureappear?

and use these to construct the mixture model?

29

125

Patterns of sharing: factor analysis

Decomposing effect estimates, B�=  LF + E

Figure: Sparse factor analysis of GTExdata

30

126
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Incorporating all possible patterns

U

31

mixed 1=  π × 2+  π ×
2.4  0.3 1.6 0.001
0.3  1.5 0.001 0.02

Multivariate effects of a variant follows the k-th pattern with  
probability πk:

i 1 i 1
3+ π  × ···

This is the Multivariate Adaptive Shrinkage Prior.

• Step 1: estimated πk via EM algorithm using data across  
genome.

• Step 2: apply this prior to each variant in association  
mapping.

127

Multivariate effect size sharing in eQTLs

Figure: Quantitative characterization of eQTL effects  
heterogeneity in GTEx

32

128

Application to multivariate fine-mapping

g. mvSuSiE fine-mapping
• posterior inclusion probabilities (PIPs)
• credible sets (CSs)
• posterior effects (NCPs) and CS lfsrs

mixtureweights
fine-mappingregions

b. select  
weakest  
signals

d. select
strongest
signals

mixturecovariances

c. estimate residual correlations
phenotypes

e. Extreme Deconvolution (ED)
phenotypes

ph
en

oty
pe

s
ph

en
oty

pe
s

ph
en

ot
yp

es

f. select a region forfine-mapping

PI
Ps

ph
en

oty
pe

s

SNPs lf s r  N C P

p-
va

lue

SNPsSNPs

a. GWASdata

p-
va

lue

CS3

33

CS 1 CS2

Figure: mvSuSiE fine-mapping with adaptive shrinkage model

Zou et al. (2023) biorxiv

129

Multi-trait fine-mapping methods & challenges
mvSuSiE CAFEH PAINTOR MTHESS BayesSUR flashfm msCaviar HyPrColoc moloc

>5 traits integrated

>10 traits integrated

Multiple causal signals

Individual level data

Summary statistics

Missing data

Trait specific LD

Correlated effects

Trait specific effects

Arbitrary  
heterogeneous effects

Arbitrary multi-trait  
colocalization

Correlated traits

Partial sample overlap

Functional annotation

Trait specific functional  
annotation

Genome-wide  
scalability

Reference: CAFEH: Arvanitis et al (2022); PAINTOR: Kichaev et al (2017); MTHESS: Lewin et al (2016); BayesSUR: Zhao et al (2021);  
flashfm: Hernández et al (2021); msCaviar: LaPierre et al (2021); HyPrColoc: Foley et al (2021); moloc: Giambartolomei et al (2018).

34

130

Comparison to other methods

35

131

GWAS application: 16 blood traits in UKBiobank

Analysis overview

• Sample  size  248,980; 975  candidate regions fine-mapped
• Average #SNPs per region 4,776; maximum 36,605

36

132
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GWAS application: 16 blood traits in UKBiobank
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Analysis overview

• Sample  size  248,980; 975  candidate regions fine-mapped
• Average #SNPs per region 4,776; maximum 36,605

Top patterns of effect size sharing inferred from data:
mixture weight = 0.287 mixture weight = 0.249 mixture weight = 0.202 mixture weight = 0.117

platelet

36

Red blood
cell

Compound wh PLiTt# e blood cell
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GWAS application: 16 blood traits in UKBiobank

Many more signals identified compared to fine-mapping per  
each trait
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Complex phenotype prediction and  
transcriptome-wide association studies

Gao Wang, Ph.D.

Advanced Gene Mapping Course, May 2024

The Gertrude H. Sergievsky Center and Department of Neurology  
Columbia University Vagelos College of Physicians and Surgeons

1

135

2

136

Motivation: eQTLs are enriched in GWAS signals

Figure: Heinig (2018) Front. Cardiovasc. Med.

3

137

Transcriptome-wide association study (TWAS)

Contributions of multiple genetic variants to complex traits  
through their impact on molecular phenotypes

Figure: Gusev et al. (2016) Nat. Genet.

4

138
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TWAS challenge: association vs causality

Figure: Gusev et al. (2016) Nat. Genet.

5

139

TWAS challenge: association vs causality

Figure: Gusev et al. (2016) Nat. Genet.

6

140

TWAS challenge: technical considerations

Ideal TWASsetup
• Homogenous population
• Tissue and cell-typespecific

• Training data-set is large and complete (N >  200)  
But in reality

• Cross population TWASaplications
• Multiple tissue and cell-types
• Availability of individual level data vs summarystatistics

7

141

TWAS methodsoverview

Figure: Zhu and Zhou et al. (2021) Quantitative Biology

8

142

Univariate TWAS methods overview

These methods can also be used for Polygenic RiskScore
(PRS) calculations

9

143

Simple regression method

10

144
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Ridge regression / BLUP

11

145

Other penalizedregression

12

146

Bayesian variable selectionregression

13

147

Choice of methods: cross validation

14

148

Likelihood basedapproach

Figure: CoMM, Yeung et al. (2019)

Also see Yuan et al. (2022) likelihood based Mendelian  
Randomization

15

149

Multivariate TWAS methods overview

Leverage similarity between molecular phenotypes

• UTMOST, Yu  et al.  (2019)  NatureGenetics
• MR-JTI, Zhou  et al.  (2020)  NatureGenetics
• mr.mash, Morgante et al. (2023) PLoS Genetic (to  

appear) 16

150
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Multivariate TWAS method: mr.mash

17

151

An omnigenic view of genetic regulations

Figure: Liu et al. (2019) Cell

18

152

Multi-omic Strategies for TWAS

Mediator-enriched TWAS

Figure: Bhattacharya et al. (2020) PLoS Genet.

19

153

Multi-omic Strategies for TWAS

Distal-eQTL Prioritization via Mediation Analysis

Figure: Bhattacharya et al. (2020) PLoS Genet.

19

154

Multi-omic Strategies for TWAS

Figure: Bhattacharya et al. (2020) PLoS Genet.

19

155

Deep learning to predict molecular traits

Avsec (2021) Nature Methods

20

156
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Multivariate TWAS hands-on exercise

statgen-setup launch --tutorial twas

21

157

Missing regulation in eQTL andGWAS

22

158

TWAS and fine-mapping: variableselection

23

159

TWAS and fine-mapping: variableselection

Figure: Zhao et al. (2022) biorxiv

24

160

TWAS and colocalization: pleiotropy

Figure: Jordan et al. (2019) Genome Biology

25

161

TWAS +  colocalization:pleiotropy

• Image  credit:  Haky Im@UChicago
• “Locus level” colocalization: Hukku et al. (2022) AJHG;  

Okamoto et al. (2023)AJHG.

26

162
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TWAS and colocalization: statistical framework

• “locus level”, Pr(γ ̸= 0|Data) ∝ Pr(γ ̸= 0)Pr(Data)
• Pr(γ ̸= 0) = Pr(coloc) × Pr(twas)
• Data: z-score fromTWAS.
• Key idea: Test γ =  0, not to estimate γ which is  

MendelianRandomization.

27
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TWAS and Mendelianrandomization

Figure: Zhu and Zhou (2021) Quantitative Biology

TWAS can be viewed as two-sample MR — using various IV  
selection methods. 28

164
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Fine-mapping with summary statistics:  
current methods and practical  
considerations

Gao Wang, Ph.D.

Advanced Gene Mapping Course, May 2024

The Gertrude H. Sergievsky Center and Department of Neurology  
Columbia University Vagelos College of Physicians and Surgeons

1

1

Association analysis summarystatistics

z-scores from univariate associationstudies:

ẑ j := βˆj/sj,

where
j jβ̂ j   := (x⊺ x)−1 x⊺y s := σ

2

2 ⊺
j jˆ (x x) − 1

• Sufficient statistics: x⊺ x, x⊺y,σ̂ 2j
• “Summary” statistics:

• z-scores: ẑ
• Genotypic correlation: R̂

2

Reasons to work with summary statistics

Advantage over full data (genotypes andphenotypes):

• Easier to obtain and share withothers
• Convenient to use: QC and data wrestling barely needed
• Computationally suitable for large-sampleproblems

• O(p2) (summary statistics) ≪ O(np) (full data)
• when sample size n ≫ variants in fine-mapped region p

Suggested reading: Pasaniuc and Price (2017) Nat. Rev. Genet.

3

3

Regression with Summary Statistics (RSS)

ẑ    ∼ N(R̂  z, R̂)
Assumptions:

1. Heritability of any single SNP issmall
2. R̂ is sample genotypic correlation for the same study
3. Genotypes used to computed z and R̂ areaccurate

4

4

Properties of per SNP z scores

• z-score for a SNP depends on effects of both itself and  
other correlatedSNPs:

p

5

E(ẑ j|R̂ ) = ∑ rijzj.
i=1

GWAS marginal effects are biased due to LD!
• z-scores arecorrelated,

Cor(ẑ j, ẑ k) = rjk, ∀j, k

• Recall the previously discussed connection with LDSC

5

Summary of summary statistics

• X, genotype matrix
• Y, phenotype matrix, can be multiple traits
• XTY, association results — effect sizeestimate
• XX , LD matrix
• XXT , genomic relatedness matrix, reflectskinship
• YY , trait correlation, relevant in multi-trait analysis and  

integration

6

6
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Figure: Benner et al. (2017) Am. J. Hum. Genet.

7

7

Fine-mapping via RSS model

“Single effect”: zl’s

ẑ ∼  N(R̂  z,R̂)
L

z =  ∑ zl
l=1

zl = γlzl

l
2
lz ∼  N(0, ω )

γl ∼  Mult(1,π)
Suggested reading:

8

Zou et al (2022) PLoS Genet.

8

β̂ and SE(β )̂ based models
The ẑ model:

ẑ ∼  N(R̂  z,R̂)

9

The b̂, ŝ model:

b̂|ŝ ∼  N(Ŝ  R̂Ŝ −1b,Ŝ R̂Ŝ )
• Both models can be easily written as SuSiE regression

• ẑ model: lower MAF variants have larger effects
• b̂, ŝ model: effect sizes are the same regardless ofMAF

• b̂, ŝ model takes sample size intoconsideration
• No longer have to assume small effect per SNP

• ẑ model: CAVIAR, FINEMAP(2016)
• b̂, ŝ model: Zhu and Stephens (2017) AoAS; FINEMAP  

(2018 10.1101/318618), SuSiE-RSS (Zou et al. 2022)

9

Summary statistics methods comparison

Zou et al. (2022) PLoS Genet 10

10

Summary statistics methods comparison

Zou et al. (2022) PLoS Genet. 11

11

Impact of allele flips

What is allele flip?

• Different allele encoding between GWAS and LDreference
• e.g. AA=0, AC=1, CC=2 in GWAS; AA=2, AC=1,  

CC=0 in LD reference genotype
• A challenging problem coupled with strand flip, when  

merging sequence data from different platforms

12

12
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Impact of allele flips

Zou et al. (2022) PLoS Genet. 13

13

Addressing the allele flip challenge

• susieR::susie rss() function implements adiagnosis
• bigsnpr::snp match() function implements a basic  

allele matching for two sets of summarystatistics
• Other resources

• Allele flip illustration: https://statgen.us/  
lab-wiki/compbio_tutorial/allele_qc

• A powerful, multi-set data merger (by Yin Huang):  
https://cumc.github.io/xqtl-pipeline/  
pipeline/misc/summary_stats_merger.html

14

14

Impact of mis-matched LD reference: PIP

15

15

Impact of mis-matched LD reference: PIP

15

16

Impact of mis-matched LD reference: PIP

15

17

Impact of mis-matched LD reference: credible sets

16

18
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Impact of mis-matched LD reference: real data

Benner et al. (2017) Am. J. Hum. Genet.

17

19

Impact of mis-matched LD reference: real data

Benner et al. (2017) Am. J. Hum. Genet.

17

20

Impact of mis-matched LD reference: real data

Benner et al. (2017) Am. J. Hum. Genet.

17

21

Fine-mapping in meta-analysis:overview

Kanai et al. (2022) Cell Genomics

18

22

Fine-mapping in meta-analysis: key factors

Kanai et al. (2022) Cell Genomics

19

23

Fine-mapping in meta-analysis: diagnosis

Chen et al. (2021) Nat. Comm. (DENTIST)  
Kanai et al. (2022) Cell Genomics

20

24

9595



Fine-mapping in meta-analysis: diagnosis

Kanai et al. (2022) Cell Genomics

21

25

Covariate adjustment in LDreference

Consider two GWAS regression analysis:

1. Evaluate SNP effect in Trait ∼ SNP+Age+Sex+PCs
2. Fit model Trait ∼  Age+Sex+PCs, compute residual of  

Trait (remove covariates), and evaluate SNP effect in  
model Residual Trait ∼ SNP

Are these two analysisequivalent?

More technical details see McCaw et al. (2020) Biometrics

22

26

Covariate adjustment in LDreference

Consider two GWAS regression analysis:

1. Evaluate SNP effect in Trait ∼ SNP+Age+Sex+PCs
2. Fit model Trait ∼  Age+Sex+PCs, compute residual of  

Trait (remove covariates), and evaluate SNP effect in  
model Residual Trait ∼ SNP

They are not equivalent because covariates should also be  
removed from SNP data: Residual Trait ∼  Residual SNP

More technical details see McCaw et al. (2020) Biometrics

22

27

Covariate adjustment in LDreference

Covariates should be removed from genotype before  
computing LD reference forfine-mapping

Quick et al. (2020)biorxiv

23

28
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Integrating GWAS with functional  
annotations

Gao Wang, Ph.D.

Advanced Gene Mapping Course, May 2024

The Gertrude H. Sergievsky Center and Department of Neurology  
Columbia University Vagelos College of Physicians and Surgeons

1

1

Non-coding functional  
annotation in GWAS

2

2

3

GWAS variants catelog by functionalannotations

Most GWAS variants arenon-coding

Lee et al. (2018) Human Genetics

3

4

Functional enrichment in fine-mappedvariants

Signals concentrated in tissue /  cell specific functional area

Figure: Huang et al. (2017) Nature

4

5

Functional annotation in  
aggregated rare variant  
association analysis

6
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Functional annotation filters in aggregatedtests

Aggregated tests are sensitive to (mis-)classification of  
functional variants. Different sets can be evaluated in practice:

• Loss of function: start-loss, stop-gain, splicesites
• Damaging missense: start-loss, stop-gain, splice sites,  

nonsynonymous with REVEL score > 0.5
• Ioannidis et al (2016)AJHG

• All: start-loss, stop-gain, splice sites, nonsynonymous

5

7

Annotations integrated to aggregated tests

Figure: Li et al. (2020) Nature Genetics

Also see Li et al. (2019) AJHG; Li et al. (2022) Nature Methods
6

8

Annotations integrated to aggregated tests

Figure: Li et al. (2020) Nature Genetics 6

9

Rare xQTL can improve PRS for complex traits

Figure: Smail et al. (2022) AJHG

Also see Li et al. (2017) Nature; Ferraro et al. (2020) Science

7

10

Functional annotation in  
common variant association  
analysis

11

A polygenic model: stratified LD score regression

8

12
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A polygenic model: stratified LD score regression

• Perform LDSC restricted to a functionalcategory
• Enrichment: The proportion of SNP-heritability in the  

category divided by the proportion ofSNPs

8

13

Cell-type enrichment in GWAS traits viaS-LDSC

Figure: Finucane et al. (2015) Nature Genetics
9

14

Integration approaches

• Integrate directly as range based binary annotations
• Finucane et al (2015) Nature Genetics — Stratified  

LDSC paper

• Extension: variant specific continuous annotations
• Gazal et al (2017) Nature Genetics

• Tissue specific variant level annotations independent of  
GWAS results

• Deep Learning methods
• Zhou et al (2015) Nature Genetics, Zhou et al (2018)  

Nature Genetics, Lai et al. (2022) PLoS Comp Bio
• Avsec et al. (2021) Nature Methods

10

15

11

16

A sparse model (a somewhat oligogenic view)

Generalized linear model for SNP effects given K annotations

βj = (1− πj)δ0 + πjg(Θ)
πj := Pr(γj =  1|α,d)

log 1 − πj

12

πj ] K

k= 1
= α + α d0 ∑ k kj

α are log fold enrichment of functional genomicfeatures

• Suggested reading: Wen (2016) AoAS

17

Enrichment of DNase I in GTEx eQTLs

Figure: Wen et al. (2016) AJHG

13

18
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Annotations improves fine-mapping resolution

Integrating functional information prioritizes the left SNP.

14

19

Recall the toy example

Probability of association assuming one effectvariable,

LR1 LR2

LR1 + LR2 LR1 + LR2

15

= 0.87 = 0.13

20

Recall the toy example

Probability of association assuming one effectvariable,

LR1 LR2

LR1 + LR2 LR1 + LR2
= 0.87 = 0.13

What if we determine a priori that SNP 1 is twice as  
important as SNP 2?

2× LR1 LR2

2 × LR1  + LR2 2× LR1 + LR2

15

= 0.93 = 0.07

21

Fine-mapping with functional annotations

Recall the BVSR model

y= Xb+ e  
e  ∼ N(0, σ2 In)

γj  ∼ Bernoulli(π)
bγ|γ ∼ g(·)
b−γ|γ ∼ δ0

Key idea: π, prior inclusion probability, can be modelled by
enrichment of functional annotations

16

22

Genome-wide approach withS-LDSC

• A single locus may not have enough power to leverage  
annotation enrichment

• Genome-wide evaluation of thousands of annotations can  
increase power offine-mapping

• Lead to new loci to discover
• Functional enrichment can be done under the same  

framework
• Prioritize genomic features /  tissues / cell-types

• Enrichment coefficient may be transferrable cross  
population

• Weissbrod et al. (2022) Nat. Genet.

17

23

Functionally informed fine-mapping in UKBiobank

In analyses of 49 UK Biobank traits, PolyFun +  SuSiE  
identified >32% more fine-mapped variant–trait pairs  
compared to using SuSiEalone.

Figure: Weissbrod et al. (2020) Nat.Genet. 18

24
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Example: SuSiE with functional informed prior

Figure: Zhang et al. (2020) Science

19

25

Caution: disease specific enrichment

Figure: Zhang et al. (2020) Science

20

26
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Multivariate analysis in genetic  
association studies

Gao Wang, Ph.D.

Advanced Gene Mapping Course, May 2024

The Gertrude H. Sergievsky Center and Department of Neurology  
Columbia University Vagelos College of Physicians and Surgeons

1

1

1 Motivation

2 Meta-analysis review

3 Meta-analysis: a multivariate regressionprospective

4 Multivariate adaptive shrinkage and fine-mapping

2

2

Motivation

3

Beyond per trait per variant associationstudies

Statistical fine-mapping (multiple regressors)

• Identify non-zero effect variables by accounting for LD

Meta-analysis (multiple responses)

• Integrate information across multiple conditions / studies

“Causal” variants across multiple conditions?

• Cross-population fine-mapping; colocalization; pleiotropy;  
mediation; . . .

3

4

The problem

4

5

The problem

For a genetic variable analyzed in twoconditions:

5

P(“causal” in trait 1 & 2 | association data for 1 &2)

6
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The problem

For a genetic variable analyzed in twoconditions:

5

P(“causal” in trait 1 & 2 | association data for 1 &2)

Denote data as  D1  and  D2, and  use  indicator variables  
γ1, γ2

for variable having effects in 1  and  2, and  hyperparameters 
Θ:

P(γ1 =  1, γ2 = 1|D1, D2, Θ)

7

Multivariate
relationships?

Figure: Pleiotropy or Linkage?

6

8

Meta-analysis review

9

Meta-analysis: a multivariate  
regression prospective

10

Fixed effect and random effectsmodels

Different assumptions on effects across studies

• Fixed effect model: all studies share a common effect size
• Random effects model: effect sizes are random variables

from an underlying distribution

7

11

Fixed effect (FE)model

ˆLet βi be the observed effect size of study i, 1 ≤ i ≤ k, and s 2
i

its variance. The true effect size is β. The observed effect is  
modelled as

β̂i
2
i∼ N(β, s 

),with likelihood
function

ˆ
k

i

ˆ
k

∏ i ∏
i

L(β) = P(β|β) = P(β |β) ∝ exp −
k

∑
i

ˆ
i(β − β)2

2s2

8

i

]
.

12
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Fixed effect (FE)model
ˆLet β i be the observed effect size of study i, 1 ≤ i ≤ k, and s 2

i
its variance. The true effect size is β. The observed effect 
is  modelledas

β̂i
2
i∼ N(β, s 

),with likelihood function

ˆ
k

ˆi

k

∏ ∏L(β) = P(β|β) = P(β |β) ∝ exp −
k

∑
i i i

ˆi(β −
β)

2

2s2
i

]
.

Let wi =  1/s2  be the weight of study i. The MLE ofi
summary effect is

β̂= ∑k wi β̂ ii
k

8

∑i wi
Inverse varianceweighting

13

Random effects (RE)model

ˆLet β i be the observed effect size of study i, 1 ≤ i ≤ k, and s 2
i

its variance. Let βi be the true effect size of study i. The  
observed effect is modelled as

β̂|βi i i
2
i∼ N(β , s ), βi ∼ N(β, 

σ2)
with likelihood
function

ˆ 2P(β|β σ )
k

i i
∏ s2 + σ2

, ∝ 1 exp −
k

∑
i

(β̂ i − β)2

i

9

2 22(s +  σ)
]
.

14

Random effects (RE)model
ˆLet β i be the observed effect size of study i, 1 ≤ i ≤ k, and s 2

i
its variance. Let βi be the true effect size of study i. The  
observed effect is modelled as

β̂|βi i i
2
i∼ N(β , s ), βi ∼ N(β, 

σ2)
with likelihood
function

ˆ 2P(β|β σ )
k
∏ s2 +
σ2

, ∝ 1 exp −
k
∑ (β̂ i − β)2

i i i i

9

2 22(s +  σ)
]
.

iRE has weight wi
∗ =  1/(s2  +  σ2); summary effect β̂ canbe

similarly computed as FE, replacing wi with wi
∗. σ2 can be  

estimated (e.g. , MLE).

15

Multivariate model(s) for effect
sizes

Consider a parametric model on effect sizes acrossstudies,

Bj|γ = 1 ∼ MVN(0, U)

Consider 2 studies, e.g. height GWAS in Europeans and  
Africans.

10

16

Fixed-effect model multivariate analysis

fixed

11

2
0U =  σ×

1  1
1  1

Effect sizes are exactly the same between twostudies,

i 1

17

Random effects model multivariateanalysis

U

12

random
2
0=  σ×

1  0
0  1

Effect sizes are different between two studies, but are from the  
samedistribution,

i 1

18
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Other multivariate models

U

13

partially 
shared

2
0=  σ ×

1 ρ
ρ 1

i 1

where |ρ| ≤ 1. This contains the two meta-analysis models 
as  specialcases!

19

Other flexible multivariate models

Moregenerally,

14

U =
i

σ σ2 2
1 12

σ2 σ2
12 2

1

• Pro: more generic than Ufixed andUrandom

• Con: 3 parameters to deal with, compared to oneσ2
0

20

Analogy to popular multivariate models  
(some necessary but, notsufficient)

1  0
0  0

15

, 0  0
0  1

• Colocalization correlationmatrix:

i
1 ρ

1

ρ 1

• Condition specific correlationmatrix:

i 1 i 1

21

Analogy to popular multivariate models  
(some necessary, but not sufficient)

• Mediation:

16

Umediation
2
0=  σ×

i
1 ρ12

ρ12 ρ2

1

• Genotype→ Trait 1 → Trait 2.
• Effect on trait 2 should be smaller than that on trait 1.

22

The problem

For a genetic variable analyzed in GWAS and eQTLstudies:

P(γg =  1, γe = 1|Dg, De, Θ)

17

23

Colocalization method: coloc

coloc [Giambartolomei et al. (2014) PLoS Genet.]

• On X: “one causal” assumption
• On Y: the null + 4 combinations given “one

causal“
1. In 1  but not 2
2. In 2  but not 1
3. In 1 and 2 but not the same variable
4. In 1 and 2 and the same variable (colocalization)
5. No association in both data 1 and 2

18

24
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Colocalization method: eCAVIAR

eCAVIAR [Hormozdiari et al. (2016) Am. J. Hum. Genet.]

• On X: multiple effect variables
• On Y: each effect variable can be

1. In 1  but not 2
2. In 2  but not 1
3. In both 1 and 2
4. No association in both data 1 and 2

19

25

eCAVIAR effects assumption

Effect sizes areindependent,

20

U =
i

σ2
g 0

20 σe

1

26

Colocalization method: enloc

enloc [Wen et al. (2017) PLoS Genet.]

• Key difference: cross-condition effects not independent
• eQTL signals are enriched inGWAS

21

27

Colocalization method: enloc

enloc [Wen et al. (2017) PLoS Genet.]

• Key difference: cross-condition effects not independent
• eQTL signals are enriched in GWAS

But how?
• Through a simple logistic link using eQTL as an  

annotation for j

21

log
π ]

1 − π =  α + αγ0 e

and in thiscontext

π := P(γg =  1|γe = 1)

28

enloc two step procedure

1. Obtain P(γg =  1) and P(γe =  1) usingfine-mapping
2. Fit the enrichment model via multiple imputation

22

29

Connections between colocalizationmethods

• eCAVIAR is a special case of enloc with α = 0.
• coloc is a special case of “one causal” fine-mapping  

based enloc with fixed, high(!) α value bydefault.
• Recent coloc extension: coloc version 5, akaSuSiE-coloc

removed the “one causal”assumption.
• Wallace (2021) PLoS Genetics
• https://chr1swallace.github.io/coloc/

23

30
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Connections between colocalizationmethods

• eCAVIAR is a special case of enloc with α = 0.
• coloc is a special case of “one causal” fine-mapping  

based enloc with fixed, high(!) α value bydefault.
• Recent coloc extension: coloc version 5, akaSuSiE-coloc

removed the “one causal”assumption.
• Wallace (2021) PLoS Genetics
• https://chr1swallace.github.io/coloc/

Summary: pattern and scale of effect size correlations,  
represented as different priormodels.

23

31

Practical
considerations

• Choice of prior
• Best to estimate enrichment α from data
• α ∈ [0, 5] suggested by >  4, 000 GWAS + GTEx data

• LD reference mismatch: underestimate α, thus power loss

Hukku et al. (2021) Am. J. Hum.Genet.

24

32

Multi-trait
colocalization

Figure: HyPrColoc, Foley et al. (2021) Nat. Comm.

Assuming a single causal variant in theloci.
25

33

Multivariate adaptive 
shrinkage  and fine-mapping

34

More phenotypes, more complications

Figure: Plausible patterns of sharing

26

35

Major
challenges

• For a given variant: the less assumption made on  
multivariate effects, the more parameters to
estimate.

• FE and RE models are restrictive but easy to fit.
• Different variants: may fit in different multivariate  

effect models

27

36
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A naive mixture model

“FE and RE are equally likely for any 
variant”:

28

mixed =U 0.5× σ2 2
0 0

σ2 σ2 + 0.5 
×

i 1 i
σ σ2

0 0
0 σ2

0 0 0

1

Prior allows for possibility of both; data will determine where  
posterior lands.

37

A data-adaptive mixture model

Instead of making assumptions, can we learn from data:

• What are the latent structures for multivariate effects?
• How often does each structureappear?

and use these to construct the mixturemodel?

29

38

Patterns of sharing: factor analysis

Decomposing effect estimates, B�=  LF + E

Figure: Sparse factor analysis of GTExdata

30

39

Incorporating all possible patterns

U

31

mixe
d

1=  π × 2+  π ×
2.4  0.3 1.6 0.001
0.3  1.5 0.001 0.02

Multivariate effects of a variant follows the k-th pattern with  
probability πk:

i 1 i 1
3+ π  ×

···

This is the Multivariate Adaptive Shrinkage Prior.

• Step 1: estimated πk via EM algorithm using data across  
genome.

• Step 2: apply this prior to each variant in association  
mapping.

40

Multivariate effect size sharing in eQTLs

Figure: Quantitative characterization of eQTL effects  
heterogeneity in GTEx

32

41

Application to multivariate fine-mapping

g. mvSuSiE fine-mapping
• posterior inclusion probabilities (PIPs)
• credible sets (CSs)
• posterior effects (NCPs) and CS lfsrs

mixture weights
fine-mapping regions

b. select  
weakest  
signals

d. select
strongest
signals

mixturecovariances

c. estimate residual correlations
phenotypes

e. Extreme Deconvolution (ED)
phenotypes

ph
en

oty
pe

s
ph

en
oty

pe
s

ph
en

ot
yp

es

f. select a region for fine-mapping

PI
Ps

ph
en

oty
pe

s

SNPs lf s r  N C P

p-
va

lue

SNPsSNPs

a. GWAS data

p-
va

lue

CS3

33

CS 1 CS 2

Figure: mvSuSiE fine-mapping with adaptive shrinkage model

Zou et al. (2023) biorxiv

42
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Multi-trait fine-mapping methods & challenges
mvSuSiE CAFEH PAINTOR MTHESS BayesSUR flashfm msCaviar HyPrColoc moloc

>5 traits integrated

>10 traits integrated

Multiple causal signals

Individual level data

Summary statistics

Missing data

Trait specific LD

Correlated effects

Trait specific effects

Arbitrary  
heterogeneous effects

Arbitrary multi-trait  
colocalization

Correlated traits

Partial sample overlap

Functional annotation

Trait specific functional  
annotation

Genome-wide  
scalability

Reference: CAFEH: Arvanitis et al (2022); PAINTOR: Kichaev et al (2017); MTHESS: Lewin et al (2016); BayesSUR: Zhao et al (2021);  
flashfm: Hernández et al (2021); msCaviar: LaPierre et al (2021); HyPrColoc: Foley et al (2021); moloc: Giambartolomei et al (2018).

34

43

Comparison to other methods

35

44

GWAS application: 16 blood traits in UKBiobank

Analysis overview

• Sample  size  248,980; 975  candidate regions fine-mapped
• Average #SNPs per region 4,776; maximum 36,605

36

45

GWAS application: 16 blood traits in UKBiobank
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Analysis overview

• Sample  size  248,980; 975  candidate regions fine-mapped
• Average #SNPs per region 4,776; maximum 36,605

Top patterns of effect size sharing inferred from data:
mixture weight = 0.287 mixture weight = 0.249 mixture weight = 0.202 mixture weight = 0.117

platelet

36

Red blood
cell

Compound wh PLiTt# e blood cell

46

GWAS application: 16 blood traits in UKBiobank

Many more signals identified compared to fine-mapping per  
each trait
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Complex phenotype prediction and  
transcriptome-wide association
studies

Gao Wang, Ph.D.

Advanced Gene Mapping Course, May 2024

The Gertrude H. Sergievsky Center and Department of Neurology  
Columbia University Vagelos College of Physicians and Surgeons

1

1

Motivation: eQTLs are enriched in GWAS signals

Figure: Heinig (2018) Front. Cardiovasc. Med.

2

2

Transcriptome-wide association study (TWAS)

Contributions of multiple genetic variants to complex traits  
through their impact on molecular phenotypes

Figure: Gusev et al. (2016) Nat. Genet.

3

3

TWAS challenge: association vs causality

Figure: Gusev et al. (2016) Nat. Genet.

4

4

TWAS challenge: association vs causality

Figure: Gusev et al. (2016) Nat. Genet.

5

5

TWAS challenge: technical considerations

Ideal TWAS setup
• Homogenous population
• Tissue and cell-typespecific

• Training data-set is large and complete (N >  200)  
But in reality

• Cross population TWASaplications
• Multiple tissue and cell-types
• Availability of individual level data vs summary statistics

6

6
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TWAS methods overview

Figure: Zhu and Zhou et al. (2021) Quantitative Biology

7

7

Univariate TWAS methods overview

These methods can also be used for Polygenic Risk Score
(PRS) calculations 9

8

Simple regression method

9

9

Ridge regression / BLUP

10

10

Other penalized
regression

11

11

Bayesian variable selection regression

12

12
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Choice of methods: cross validation

13

13

Likelihood basedapproach

Figure: CoMM, Yeung et al. (2019)

Also see Yuan et al. (2022) likelihood based Mendelian  
Randomization

14

14

Multivariate TWAS methods overview

Leverage similarity between molecular phenotypes

• UTMOST, Yu  et al.  (2019)  NatureGenetics
• MR-JTI, Zhou  et al.  (2020)  NatureGenetics
• mr.mash, Morgante et al. (2023) PLoS Genetic (to  

appear) 16

15

Multivariate TWAS method:
mr.mash

16

16

An omnigenic view of genetic regulations

Figure: Liu et al. (2019) Cell

17

17

Multi-omic Strategies for
TWAS

Mediator-enriched TWAS

Figure: Bhattacharya et al. (2020) PLoS Genet.

19

18
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Multi-omic Strategies for TWAS

Distal-eQTL Prioritization via Mediation Analysis

Figure: Bhattacharya et al. (2020) PLoS Genet.

19

19

Multi-omic Strategies for
TWAS

Figure: Bhattacharya et al. (2020) PLoS Genet.

19

20

Deep learning to predict molecular traits

Avsec (2021) Nature Methods

20

21

Multivariate TWAS hands-on
exercise

statgen-setup launch --tutorial twas

21

22

Missing regulation in eQTL and GWAS

22

23

TWAS and fine-mapping: variable selection

23

24
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TWAS and fine-mapping: variable selection

Figure: Zhao et al. (2022) biorxiv

24

25

TWAS and colocalization: pleiotropy

Figure: Jordan et al. (2019) Genome Biology

25

26

TWAS + colocalization: pleiotropy

• Image  credit:  Haky Im @UChicago
• “Locus level” colocalization: Hukku et al. (2022) AJHG;  

Okamoto et al. (2023)AJHG.

26

27

TWAS and colocalization: statistical framework

• “locus level”, Pr(γ ̸= 0|Data) ∝ Pr(γ ̸= 0)Pr(Data)
• Pr(γ ̸= 0) = Pr(coloc) × Pr(twas)
• Data: z-score from TWAS.
• Key idea: Test γ =  0, not to estimate γ which is  

Mendelian Randomization.

27

28

TWAS and Mendelianrandomization

Figure: Zhu and Zhou (2021) Quantitative Biology

TWAS can be viewed as two-sample MR — using various IV  
selection methods. 28

29
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Advanced Gene Mapping Course, April 2024

Jurg Ott, Ph.D., Professor Emeritus

Rockefeller University, New York

https://lab.rockefeller.edu/ott/ 
https://jurgott.github.io/ 

ott@rockefeller.edu
PH +1 646 321 1013

Genotype Pattern Mining For 
Digenic Traits

1

Ott "Genotype Patterns" 2

2

Topics

o Science develops independently in different fields
n Frequent Pattern Mining
n Human gene mapping

o Mining consumer databases
n The Apriori algorithm (30 years ago)
n Newer algorithms: eclat, fpgrowth

o Case-control association analysis
n GWAS: Main effects in genetic association studies
n Digenic traits (20 years ago)
n MDR, Multifactor Dimensionality Reduction (20 years ago)
n Differences in interaction between cases and controls
n AprioriGWAS (10 years ago)
n Newest approach, Gpairs program
n Analysis of AMD dataset

Ott "Genotype Patterns" 3

3

Frequent Pattern Mining
https://www.philippe-fournier-viger.com/spmf/

o Thirty years ago, supermarkets started collecting huge amounts of consumer data 
at their cashiers. Consumer habits – if someone buys bread and milk, how likely 
will they also buy wine?

o Apriori algorithm (Agrawal et al, ACM SIGMOD Conference on Management of 
Data 1993; 207-216): Efficient search for frequent sets of items (“itemsets”, 
patterns) purchased by a consumer (“transaction”). (1) Development of 
association rules, that is, conditional probabilities P(Y|X), with Y and X being 
items or itemsets. (2) Apriori property: “If an itemset is infrequent, all its 
supersets will be infrequent”. Recursive search for longer patterns.

o Research published in conference proceedings, less so in traditional journals.
o Other implementations of search algorithms, e.g. fpgrowth (written in C) 

(https://borgelt.net/software.html), SPMF (in java). Huge memory demands.

Ott "Genotype Patterns" 4
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Digenic Traits
Ming & Muenke (2002) Am J Hum Genet 71, 1017 (review)
Schaffer A (2013) J Med Genet 50, 641-52 (review)
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Genetic Interactions between Variants
Okazaki & Ott (2022) Trends in Genetics 38 (10):1013-1018; DOI:10.1016/j.tig.2022.04.009

1. Traditionally, disease association has been carried out at the level of alleles or 
genotypes. The total number of pairs can be prohibitively large. While this level of 
analysis generally requires the most effort, it also entails the highest degree of 
precision in the sense that disease-causing elements can be directly traced down to 
nucleotides.
2. Working with pairs of variants provides some economy of computational effort but 
may ‘dilute’ a signal from a single genotype pair when all nine genotype pairs in a 
pair of variants are analyzed jointly.
3. Finally, focusing on pairs of genes represents the most economical approach but is 
also the most imprecise among the three strategies. Also, focusing on genes disregards 
susceptibility elements outside of genes. Distant-acting transcriptional enhancers have 
been known for over 10 years to affect susceptibility to human disease and noncoding 
RNAs have been shown to be associated with many diseases, for example, cardiac 
hypertrophy.

Ott "Genotype Patterns" 6
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Finding disease-associated pairs of 
variants or genotypes

q Multifactor Dimensionality Reduction (MDR)                                       
Ritchie MD, Hahn LW, Moore JH. Power of multifactor dimensionality reduction 
for detecting gene-gene interactions ... Genet Epidemiol 2003;24:150–157

q Zhang Q, Long Q, Ott J. AprioriGWAS, PLoS Comput Biol. 
2014;10(6):e1003627                                                                                    
Apriori applied to GWAS: In the absence of strong main effects, we need to 
directly search for genotype patterns (at two [or more] variants) with different 
frequencies in cases and controls, without consulting main effects.

q Applying off-the-shelf pattern search algorithms                                    
Chee C-H, Jaafar J, Aziz IA, Hasan MH, Yeoh W. Algorithms for frequent itemset 
mining: a literature review. Artificial Intelligence Review. 2019;52(4):2603-21

q Construction of Bayesian network                                                              
Guo Y, Zhong Z, et al. Epi-GTBN: An approach of epistasis mining based on 
genetic Tabu algorithm and Bayesian network. BMC Bioinform 2019;20:444
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Exhaustive search for interacting SNPs

o “Discovering Genetic Factors for psoriasis through 
exhaustively searching for significant second order SNP-
SNP interactions”

o Kwan-Yeung Lee, Kwong-Sak Leung, Nelson L. S. Tang  & Man-Hon Wong. 
Sci Rep 2018;8:15186

o Abstract: To deal with the enormous search space, our search algorithm is 
accelerated with eight biological plausible interaction patterns and a pre-
computed look-up table. After our search, we have discovered several      
SNPs having a stronger association to psoriasis when they are in 
combination with another SNP...
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Gpairs program: All pairs of genotypes, schizophrenia data
https://lab.rockefeller.edu/ott/programs/GPM 

https://github.com/jurgott/gpm_prog 

o Schizophrenia case-control data: 1,044 cases and 2,052 controls genotyped 
for 892,850 SNPs. Pruned and focused on males.

o Evaluate all pairs of genotypes for SNPs. For each SNP pair, analyze each 
of the 9 genotype pairs: 81,972,176,883 genotype pairs tested. 
Distribute work over many threads (CPUs, up to 192 CPUs in new PCs). 
For each genotype pair, X, make 2 × 2 table:

o 69 genotype pairs significantly more frequent in cases than controls
o Genotypes → variants → genes: Network of 17 genes
o Prediction, classification: c = 0 → person with X must be a case!

Ott "Genotype Patterns" 9

o Min. 20 occurrences of any genotype 
pair (support)

o Each table analyzed by Fisher test
o pBon = min(#tests × pNom , 1)

9

Prediction vs. Significance

o Given a “case”, what is the probability the test is significant? 
Power = sensitivity = a/(a + b)

o Given presence of X in an individual, what is the probability that 
individual is a case? Positive predictive value, PPV = a/(a + c), 
also called confidence in machine learning.

o Lo et al (2015) Why significant variants aren’t automatically good 
predictors, PNAS 112 (45). DOI: 10.1073/pnas.1518285112
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o Presence of a given genotype pair, 
X, as an indicator of disease

10

Cross-Validation

o Estimates of PPV for the same data that furnished the predictions 
→ tend to be too good

o Solution: Develop predictors in a set of data and apply the 
predictors to a new set of data.

o Same data: Build model in 90% of the data and apply resulting 
predictors to 10% of the data → 10-fold cross-validation

o Better approach [1]: Leave-one-out method, L1out. Remove i-th 
individual from data and develop predictor → apply to i-th 
individual. Do this for all individuals.

o Implement L1out (1) for Gpairs and (2) for polygenic risk score, 
PRS, as implemented in plink with the --score function.

o 1. Agresti (2019) An introduction to categorical data analysis. Wiley, Hoboken NJ

Ott "Genotype Patterns" 11
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Decision Rules
DeWan et al, ...wet age-related macular degeneration. Science, 19 Oct 
2006. DOI: 10.1126/science.1133807

o Gpairs: For a number N of best predicting genotype pairs, call an 
individual a “case” if she/he carries 20+ of such genotype pairs.

o Polygenic Risk Score: For N best predicting variants, call an individual a 
“case” if she/he has a score above the 95th percentile of controls.

Ott "Genotype Patterns" 12
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From cross-phenotype associations to 
pleiotropy in human genetic studies

1

Pleiotropy

• Phenomenon in which a genetic locus affects more than 
one trait or disease

• Molecular level
– Single gene with multiple physiological function
– Two domains of a single gene product with different functions 

and affecting multiple phenotypes
– Gene product with a single function that affects multiple 

phenotypes acting in multiple tissues
• Statistical level

– A locus displaying cross-phenotype associations is often 
considered pleiotropic

– Can be at the variant, gene or region level

2

2

Solovieff et al. Nat Rev Genet. 2013 July ; 14(7): 483–495. doi:10.1038/nrg3461.

3

v

Early example of “pleiotropy”

Gregor Mendel documented one of the earliest examples of 
pleiotropy in his pea plant experiments

4

White flowers
- Seed coats = white
- Axils = white and unspotted 

Violet flowers
- seed coats = brown-grey 
- axils = red and spotted

M ende l, J . G ., 1866  E xpe rim en ts  in  p lan t hyb rid iza tion . V e rhand lungen   des na tu rfo rschenden  V e re ines in  B runn  4 : 3–47  (in  G erm an). 

4

Examples in humans
• Marfan syndrome 

– FBN1 (fibrillin-1)
– thinness, joint hypermobility, limb elongation, lens dislocation, 

and increased susceptibility to heart disease. 
• Holt-Oram syndrome, 

– TBX5 (transcription factor)
– cardiac and limb defects 

• Nijmegen breakage syndrome
– NBS1 (DNA damage repair protein)
– microcephaly, immunodeficiency, and cancer predisposition

5

Pleiotropy and complex disease 
comorbidity

• Examples of correlated (comorbid) disease
– Obesity, hypertension, dyslipidemia, type 2 diabetes 

(metabolic disorder)
– Depression, anxiety, personality disorders (psychiatric 

disorder)
– Asthma, obesity (pro-inflammatory conditions)

• Why do certain disease occur together
– Causality
– Shared environmental risk factors
– Shared genetic risk factors

6
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Pleiotropy and complex disease 
comorbidity

7

Pleiotropy and complex disease 
comorbidity

• Pleiotropy-informed analyses consider multiple 
phenotypes together and take into account the 
correlation between the phenotypes

– Analyzing multiple correlated phenotype (e.g. 
comorbid diseases) is equivalent to analyzing a single 
narrowly-defined phenotype with low heterogeneity

8

Pleiotropy and complex disease comorbidity

• Detecting shared genetics and/or molecular pathways 
between comorbid diseases can help us understand exactly 
how the etiology of the diseases overlap 

• Etiologic overlaps:
• provide opportunities for novel interventions that prevent 

or treat the comorbidity, rather than preventing/treating 
each disease separately

• facilitate drug repurposing (that is, known drugs targeting 
a pleiotropic locus may be repurposed to treat other 
diseases controlled by that locus, precluding the need for 
the development and testing of a brand-new drug)

9

9 10

Pleiotropy in gene mapping

• Mapping a single genotype to multiple phenotypes has the 
potential to uncover novel links between traits or diseases

• It can also offer insights into the mechanistic underpinnings of 
known comorbidities

• It can increase power to detect novel associations with one or 
more phenotypes

11

11

A practitioners’ guide for studying pleiotropy 
in genetic epi studies

12

12
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Guidelines for generating robust 
statistical evidence of pleiotropy

Discover CP 
associations

Dissect CP 
associations

Classify them as examples 
of biological, mediated, or 

spurious pleiotropy

13

13

Cross-phenotype (CP) associations

v

Statistical associations between a single genetic locus – a single 
gene or a single variant within a gene – and multiple phenotypes

Note that the dashed lines denote uncertainty 
about whether the SNP has a direct effect on the 

phenotypes.

A

Y

Y
SNP

P2

P1

14

14

Analytic options for discovery of 
CP associations

15

Key distinction:
• Univariate methods examine the association between a given SNP and each 

trait separately
• Multivariate methods examine the association between a given SNP and 

each trait by modeling the traits jointly

MultivariateUnivariate

15

Analytic options for discovery of 
CP associations

16

Choice between univariate and multivariate approaches depends on:
• Types of data available on our phenotypes of interest 

• Summary statistics vs. individual-level data?
• Are the phenotypes measured on the same subjects?

• Distribution of the phenotypes (e.g., quantitative or disease trait)

MultivariateUnivariate

16

Univariate methods are by far the most 
commonly used to detect CP associations

• Univariate methods include (but are not limited to) the 
methods you’ve discussed in class so far:
• allelic Chi-Square test
• genotypic Chi-Square test

• regression-based methods 
• The overall approach is to:

• obtain univariate association p-values for each phenotype 
• declare CP associations at genetic loci that are statistically 

significantly associated with each phenotype

17

Step 1. Fit two univariate regression models within PLINK

Step 2. For a given SNP, examine p-values for 𝜷𝟏 from each model.

• P-value for 𝜷𝟏 in hypertension model = 1.03 x 10-12

• P-value for 𝜷𝟏 in heart disease model = 6.02 x 10-9

Step 3. Declare CP associations at a given SNP, if the p-values for 𝜷𝟏 in 
each model surpass the study significance threshold.

• Assuming the standard GWAS significance threshold (alpha=5 x10-8), there 
is a statistically significant association with both hypertension and heart 
disease at this particular SNP.  Therefore, we have sufficient statistical 
evidence to declare a CP association at this SNP. 

Hypothetical example: Discovery of CP 
associations for hypertension and heart 

disease by using logistic regression

𝐸 ℎ𝑦𝑝𝑒𝑟𝑡𝑒𝑛𝑠𝑖𝑜𝑛 = 𝛽#+ 𝜷𝟏 ∗ 𝑆𝑁𝑃
𝐸 ℎ𝑒𝑎𝑟𝑡	𝑑𝑖𝑠𝑒𝑎𝑠𝑒 = 𝛽#+ 𝜷𝟏 ∗ 𝑆𝑁𝑃

Word of caution: The univariate tests of association should be 
marginal tests (conducted irrespectively of the second phenotype) 
NOT conditional tests (conducted on a subset defined based on 
absence/presence of the second phenotype). In this example, what 
that means is that the regression for hypertension should be fit on all 
subjects irrespectively of their heart disease status; and the 
regression for heart disease should be fit on all subjects 
irrespectively of their hypertension status. More on this later!

18
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Hypothetical example: Discovery of CP 
associations for hypertension and heart 

disease by using logistic regression

Step 1. Fit two univariate regression models within PLINK

Step 2. For a given SNP, examine p-values for 𝜷𝟏 from each model.

• P-value for 𝜷𝟏 in hypertension model = 1.03 x 10-12

• P-value for 𝜷𝟏 in heart disease model = 6.02 x 10-9

Step 3. Declare CP associations at a given SNP, if the p-values for 𝜷𝟏 in 
each model surpass the study significance threshold.

• Assuming the standard GWAS significance threshold (alpha=5 x10-8), there 
is a statistically significant association with both hypertension and heart 
disease at this particular SNP.  Therefore, we have sufficient statistical 
evidence to declare a CP association at this SNP. 

𝐸 ℎ𝑦𝑝𝑒𝑟𝑡𝑒𝑛𝑠𝑖𝑜𝑛 = 𝛽#+ 𝜷𝟏 ∗ 𝑆𝑁𝑃
𝐸 ℎ𝑒𝑎𝑟𝑡	𝑑𝑖𝑠𝑒𝑎𝑠𝑒 = 𝛽#+ 𝜷𝟏 ∗ 𝑆𝑁𝑃

19

Using multivariate methods to increase the 
power to detect cross-phenotype associations

20

20

21 22

1 Department of Chronic Disease Epidemiology; 2 Department of Biostatistics, 
Yale School of Public Health, Yale University, 60 College St, New Haven, 

Connecticut, USA

Yasmmyn D. Salinas1, Andrew T. DeWan1, and Zuoheng Wang2

A comparison of univariate and multivariate
GWAS methods for analysis of multiple 

dichotomous phenotypes

Genet. Epidemiol. 41 (7), 689-689

23

Simulation scenarios

# traits associated hi2 rY1,Y2 Pj

1 h12=0.1%,h22=0% [-0.9,0.9] P1 = P2 = 10%
P1 = P2 = 20%
P1 = 10%, P2 = 20%
P1 = 20%, P2 = 10%

2 h12 = h22= 0.1% [-0.9,0.9] P1 = P2 = 10%
P1 = P2 = 20%
P1 = 10%, P2 = 20%
P1 = 20%, P2 = 10%

2 h12 = 0.1%,h22 = 0.05% [-0.9,0.9] P1 = P2 = 10%
P1 = P2 = 20%
P1 = 10%, P2 = 20%
P1 = 20%, P2 = 10%

24
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PLEIOTROPY PRESENT
equal effect sizes

25

Problem: CP associations need not be 
indicative of pleiotropy

26

26

CP associations

Biological 
pleiotropy

Spurious 
pleiotropy

Mediated
pleiotropy

27

27

Biological pleiotropy

v

Independent associations between a genetic locus (A) 
and multiple phenotypic outcomes (Y)

The SNP has a direct effect on each phenotype. 
(Note that direct or causal effects are depicted 

with solid lines).

A

Y

Y
SNP

P2

P1

28

28

Mediated pleiotropy

v

Association between a genetic locus (A) and an intermediate 
phenotype (M) that causes a second phenotypic outcome (Y)

A non-genetic causal link between M and Y 
induces an association between A and Y, 

even in the absence of a direct effect of A on Y.

A

Y

M
SNP

P2

P1

29

29

Spurious pleiotropy

v

Artifactual associations with multiple phenotypes due to issues related 
to study design, confounding, or associations with markers in strong 

linkage disequilibrium* with multiple causal variants in different genes

*Linkage disequilibrium is the non-random co-segregation of alleles. 

A

Y

Y
SNP

P2

P1

C A

Y

Y
SNP

P2

P1

Cor

30

30
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Spurious pleiotropy

v

Artifactual associations with multiple phenotypes due to issues related 
to study design, confounding, or associations with markers in strong 

linkage disequilibrium* with multiple causal variants in different genes

*Linkage disequilibrium is the non-random co-segregation of alleles. 

A

Y

Y
SNP

P2

P1

C A

Y

Y
SNP

P2

P1

Cor

Confounders of the 
relationship between the 

phenotypes induce spurious 
cross-phenotype associations

31

31

Spurious pleiotropy

v

Artifactual associations with multiple phenotypes due to issues related 
to study design, confounding, or associations with markers in strong 

linkage disequilibrium* with multiple causal variants in different genes

*Linkage disequilibrium is the non-random co-segregation of alleles. 

A

Y

Y
SNP

P2

P1

C A

Y

Y
SNP

P2

P1

Cor

The SNP has a direct effect 
on only one of the 

phenotypes.

32

32

Spurious pleiotropy

v

Artifactual associations with multiple phenotypes due to issues related 
to study design, confounding, or associations with markers in strong 

linkage disequilibrium* with multiple causal variants in different genes

*Linkage disequilibrium is the non-random co-segregation of alleles. 

A

Y

Y
SNP

P2

P1

C A

Y

Y
SNP

P2

P1

Cor

Variables associated with the phenotypes and the 
SNP induce spurious cross-phenotype associations

33

33

Spurious pleiotropy

v

Artifactual associations with multiple phenotypes due to issues related 
to study design, confounding, or associations with markers in strong 

linkage disequilibrium* with multiple causal variants in different genes

*Linkage disequilibrium is the non-random co-segregation of alleles. 

A

Y

Y
SNP

P2

P1

C A

Y

Y
SNP

P2

P1

Cor

The SNP does not have a direct effect 
on either phenotype.

34

34

P < 5 x 10-8

P < 5 x 10-8

Univariate: 
Phenotype 1

Univariate: 
Phenotype 2

P < 5 x 10-8

Mediation 

Pleiotropy exercise (Parts 1 and 2)

35

P < 5 x 10-6

P < 5 x 10-6

Univariate: 
Phenotype 1

Univariate: 
Phenotype 2

Multivariate
P < 5 x 10-8

Mediation 

Pleiotropy exercise (Parts 1 and 2)

36

122122



Guidelines for generating robust 
statistical evidence of pleiotropy

Discover CP 
associations

Dissect CP 
associations

Classify them as examples 
of biological, mediated, or 

spurious pleiotropy

37

37

Mediation analysis provides a tool 
for dissecting CP associations

38

• Mediation analysis decomposes the 
total effect of the SNP (A) on a  
phenotypic outcome (Y ) into:
• Direct effect: effect of A on Y 

that occurs independently of an 
intermediate phenotype (M)

• Indirect effect: effect of A on Y  
that occurs through the 
intermediate phenotype M

38

• Decomposes the total effect of SNP A on 
phenotypic outcome Y into:

• Direct effects: effect of A on Y that occurs 
independently of an intermediate variable M

• Indirect effects: effect of A on Y  that occurs 
through intermediate variable M

Mediation analysis: Data requirements

39

• All phenotypes must be measured on 
the same subjects

• Temporality must be ascertained 
• The occurrence of the 

intermediate variable M must 
precede that of the phenotypic 
outcome variable Y

39

Mediation analysis: Assumptions

40

• There must be no unmeasured:
• confounders of the total effect

• confounders of the relationship 
between SNP A and the 
mediator M

• confounders of the relationship 
between mediator M and 
phenotypic outcome Y

40

Mediation analysis: Assumptions

41

• There must be no unmeasured:
• confounders of the total effect

• confounders of the relationship 
between SNP A and the 
mediator M

• confounders of the relationship 
between mediator M and 
phenotypic outcome Y

Typically met in genetic epi studies!

41

Mediation analysis: Assumptions

42

• There must be no unmeasured:
• confounders of the total effect

• confounders of the relationship 
between SNP A and the 
mediator M

• confounders of the relationship 
between mediator M and 
phenotypic outcome Y

Requires adjustment for known confounders to prevent bias 
(Note: this effectively restricts the use of mediation analyses to datasets 
in which data on such variables have been collected)

42
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Mediation analysis: 
Regression-based approach

43

• Requires fitting two regression models, 
one for mediator M and one for 
phenotypic outcome Y:

Assesses the effect of A on M, 
while controlling for measured 
confounders (C)

• 𝐸 𝑀	 𝑎, 𝑐] = 	 𝛽# + 𝜷𝟏𝑎 + 𝛽$%𝑐

• 𝐸 𝑌	 𝑎, 𝑚, 𝑐	] = 𝜃# + 𝜽𝟏𝑎 + 𝜽𝟐𝑚 + 𝜃'%𝑐

43

Mediation analysis: 
Regression-based approach

44

• Requires fitting two regression models, 
one for mediator M and one for 
phenotypic outcome Y:

Assesses the effect of A on Y, 
while controlling for both M and C

• 𝐸 𝑀	 𝑎, 𝑐] = 	 𝛽# + 𝜷𝟏𝑎 + 𝛽$%𝑐

• 𝐸 𝑌	 𝑎, 𝑚, 𝑐	] = 𝜃# + 𝜽𝟏𝑎 + 𝜽𝟐𝑚 + 𝜃'%𝑐

44

Mediation analysis: 
Regression-based approach

45

• Requires fitting two regression models, 
one for mediator M and one for 
phenotypic outcome Y:

• The parameter estimates from these 
models (namely 𝜷𝟏,	𝜽𝟏, and	𝜽𝟐) are 
used to estimate the direct and indirect 
effects

• 𝐸 𝑀	 𝑎, 𝑐] = 	 𝛽# + 𝜷𝟏𝑎 + 𝛽$%𝑐

• 𝐸 𝑌	 𝑎, 𝑚, 𝑐	] = 𝜃# + 𝜽𝟏𝑎 + 𝜽𝟐𝑚 + 𝜃'%𝑐

45

Guidelines for generating robust 
statistical evidence of pleiotropy

Discover CP 
associations

Dissect CP 
associations

Classify them as examples 
of biological, mediated, or 

spurious pleiotropy

46

46

Mediation analysis: Interpretation

47

• Mediated pleiotropy
• Complete mediation: SNP A is associated with 

mediator M and the total effect of A on phenotypic 
outcome Y is equal to its indirect effect (i.e., the 
direct effect is equal to 0).

• Incomplete mediation: SNP A is associated with 
mediator M and A has both direct and indirect 
effects on phenotypic outcome Y (i.e., the total 
effect is equal to the sum of the direct and indirect 
effects)

• Biological pleiotropy 
• SNP A is associated with mediator M, and the total 

effect of SNP A on phenotypic outcome Y is equal 
to its direct effect (i.e., the indirect effect is equal to 
0)

47

Mediation analysis: Interpretation

48

• Mediated pleiotropy
• Complete mediation: SNP A is associated with 

mediator M and the total effect of A on phenotypic 
outcome Y is equal to its indirect effect (i.e., the 
direct effect is equal to 0).

• Biological pleiotropy 
• SNP A is associated with mediator M, and the total 

effect of SNP A on phenotypic outcome Y is equal 
to its direct effect (i.e., the indirect effect is equal to 
0)

• Incomplete mediation: SNP A is associated with 
mediator M and A has both direct and indirect 
effects on phenotypic outcome Y (i.e., the total 
effect is equal to the sum of the direct and indirect 
effects)

48
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Mediation analysis: 
Interpretation

49

• Spurious pleiotropy
• SNP A is not associated with 

mediator M after controlling for 
measured confounders

49

mediation R package
> med.fit<-glm(W1~rs1_2, data=combined, family=binomial("logit"))
> out.fit<-glm(W2~W1+rs1_2, data=combined, family=binomial("logit"))
> med.out<-mediate(med.fit,out.fit, treat="rs1_2", mediator="W1", boot=TRUE, boot.ci.type="bca", sims=1000)
> summary(med.out)

Causal Mediation Analysis

Nonparametric Bootstrap Confidence Intervals with the BCa Method

                          Estimate 95% CI Lower 95% CI Upper p-value
ACME (control)             0.02152      0.01823         0.03  <2e-16 ***
ACME (treated)             0.02199      0.01868         0.03  <2e-16 ***
ADE (control)              0.00723      0.00415         0.01  <2e-16 ***
ADE (treated)              0.00771      0.00443         0.01  <2e-16 ***
Total Effect               0.02922      0.02461         0.03  <2e-16 ***
Prop. Mediated (control)  0.73634      0.65429         0.84  <2e-16 ***
Prop. Mediated (treated) 0.75247      0.67272         0.85  <2e-16 ***
ACME (average)             0.02175      0.01847         0.03  <2e-16 ***
ADE (average)              0.00747      0.00426         0.01  <2e-16 ***
Prop. Mediated (average) 0.74441      0.66254         0.84  <2e-16 ***

50

Empirical searches for pleiotropic loci 
for asthma and comorbidities

51

51

Asthma-obesity comorbidity

AsthmaObesity/BMI

Ford ES. The epidemiology of obesity and asthma. J Allergy Clin Immunol. 2005;115(5):897-909; quiz 10.
Stukus DR. Obesity and asthma: The chicken or the egg? J Allergy Clin Immunol. 2014.
Kim SH, Sutherland ER, Gelfand EW. Is there a link between obesity and asthma? Allergy Asthma Immunol Res. 2014;6(3):189-95.
Egan KB, Ettinger AS, DeWan AT, Holford TR, Holmen TL, Bracken MB. Longitudinal associations between asthma and general and abdominal weight status among Norwegian adolescents and young adults: 
the HUNT Study. Pediatric obesity. 2014.

Shared environmental 
risk factors

Effect Modifiers

52

Study design

• Two parts:
• Genome-wide search for cross-phenotype associations 

with asthma and body mass index
• Follow-up mediation analysis to dissect genome-wide 

significant CP associations

53

53

Study population

• N = 305,945 White, British subjects from the UK Biobank (a 
population-based prospective cohort study of > 500,000 
subjects, aged 40-69 years at baseline)

 

54

54
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Phenotype definitions

• BMI at baseline (kg/m2): 
• calculated based on height and weight measurements 

collected by trained UK Biobank staff at the recruitment 
sites 

• Asthma diagnosed prior to baseline (yes/no): 

• ascertained via the question “Has a doctor ever told you 
that you had asthma?”

• Note: In mediation analyses, two subgroups were created 
based on age-at-diagnosis
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Statistical Methods

56

Assessment of potential confounders of the asthma-BMI relationship

Pa
rt 

1
Pa

rt 
2

QC in PLINK

Search for overlapping signals between asthma and BMI

Assessment of asthma-BMI relationship in the UK Biobank GWA sample

Follow-up mediation analysis in ‘mediation’ R Package

Univariate association analyses using
 linear mixed effects models in BOLT-LMM

Estimation of genetic correlation using BOLT-REML

56

Overlap in GWA signals

57

Association with BMI among the 1,457 SNPs with genome-
wide significant p-values for asthma

Figure 1. Overlap in GWA signals between asthma and BMI.  Results for asthma are for the 
analysis of all asthmatic subjects (35,373 asthmatics vs. 270,572 non-asthmatics).  Results for 
BMI are for the quantitative BMI analysis (n=305,945).  Both analyses are sex- and age- 
adjusted. The threshold for genome-wide significance was alpha=5x10-8.  

57

Overlap in GWA signals

Association with asthma among the 1,699 SNPs with 
genome-wide significant p-values for BMI

58

Figure 1. Overlap in GWA signals between asthma and BMI.  Results for asthma are for the 
analysis of all asthmatic subjects (35,373 asthmatics vs. 270,572 non-asthmatics).  Results for 
BMI are for the quantitative BMI analysis (n=305,945).  Both analyses are sex- and age- 
adjusted. The threshold for genome-wide significance was alpha=5x10-8.  

58

Regional plot around rs705708 for BMI 
(blue) and asthma (red)

59

59

Cross-phenotype associations in 12q13.2
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Decomposing the effect of rs705708 on BMI 
via mediation analysis 

61

61

Note: Effect estimates shown are adjusted for common determinants of asthma and 
BMI: age, sex, breast-feeding status, exposure to maternal smoking, and smoking 
status at asthma diagnosis (adult analyses only). Unless otherwise noted by an 
asterisk(*), all paths are significant at the 0.05 level. 

62

62

Conclusions

• rs705708 has a positive direct effect on asthma
• Stronger in magnitude for childhood asthma

• rs705708 has a negative direct effect on BMI 
• Consistent in magnitude and direction in analyses 

including childhood vs. adult asthmatics

• This suggests that locus 12q13.2, tagged by rs705708, has 
pleiotropic effects on asthma and BMI.

63

63

Conclusions

• 12q13.2 is multigenic and our CP associations span genes 
CDK2, RAB5, SUOX, IZK4, RPS26, ERBB3, and ESYT1. 

• rs705708 is the top regional BMI signal and resides in ERBB3.
• The top regional asthma signal, rs2456973, resides in IZKF4.
• While rs705708 and rs2456973 could be in LD with the same 

causative variant in either ERBB3 or IKZF4 or another gene in 
12q13.2, it is also possible that each variant could tag a distinct, 
trait-specific causative variant in different genes.

• Therefore, locus 12q13.2 displays pleiotropic effects on 
asthma and BMI, but this may not be an example of pleiotropy 
at the gene level (biological pleiotropy). 

64
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What if we expand this 
investigation to look at more 
phenotypes correlated with 

asthma?

65

Asthma, T2D and anthropometric 
measures

• Obesity is a well-established risk factor for both asthma and 
T2D.
– While highly correlated, waist circumference (WC) can provide 

distinct information on adiposity as it is a measure of visceral 
obesity, specifically WC adjusted for BMI. WC is often used in 
studies of chronic diseases. 

– Increased WC has been shown to be an additional risk factor for 
T2D and asthma even after adjusting for BMI

• Elevated blood glucose and T2D have been linked to 
increased risk of asthma in adults, and conversely, asthma 
has been associated with increased risk of developing T2D in 
adults.

• Height is a highly heritable polygenic trait; there is evidence 
that shorter individuals have an increased risk for developing 
T2D and individuals with childhood onset asthma have shorter 
stature as adults compared to non-asthmatics

66
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  # variants 

# variants 
removed in 
this step # subjects 

# subjects 
removed in 
this step 

Step 1: Initial variant QC     
Genotyped variants 805,426    
Autosomal variants 784,256 21,170   
Covered by both arrays 733,322 50,934   
Batch level qc 687,004 46,318   
SNPs only (indels removed) 674,489 12,515     

     
Step 2: Subject QC1     
Mahalanobis defined non-British white   49,352  
Genetic and reported sex match   49,307 45 
Sex chromosomes non-XX XY   49,265 42 
Outliers in heterozygosity/missing rate   49,133 132 
Individual call rate > 99%   44,173 4,960 
Unrelated2     39,133 5,040 

     
Step 3: Final variant QC2     
call rate > 99% 639,847 34,642   
HWE p<5x10-8 631,089 8758   
MAF > 1% 550,028 81,061     

     
Total 550,028  44,173  
     
1Subject QC was performed using the 674,489 variants 

2Unrelated subjects were used for final variant QC and then the set of variants were selected for the 
full set of subjects 

 

  # variants 

# variants 
removed in 
this step # subjects 

# subjects 
removed in 
this step 

Step 1: Initial variant QC     

Genotyped variants 805,426    

Autosomal variants 784,256 21,170   

Covered by both arrays 733,322 50,934   

Batch level qc 687,004 46,318   

SNPs only (indels removed) 674,489 12,515     

     

Step 2: Subject QC1     

Genotypes available   488,377  

Phenotypes available    488,282 95 

Genetic and reported sex match   487,910 372 

Sex chromosomes non-XX XY   487,440 470 

Outliers in heterozygosity/missing rate   486,477 963 

"Caucasian" (f.22006)   408,186 78,291 

Individual call rate > 99%   366,752 41,434 

Unrelated2     307,259 59,493 

     

Step 3: Final variant QC2     

call rate > 99% 639,852 34,627   

HWE p<5x10-8 631,088 29.843   

MAF > 1% 550,062 80,995     

     

Total 550,062  366,752  
     
1Subject QC was performed using the 674,489 variants   

2Unrelated subjects were used for final variant QC and then the set of variants were selected for the 
full set of subjects 

 

Discovery                   Replication

Genotypes were imputed by UK Biobank and used in the analysis; INFO > 0.8 and MAF > 0.001
N=13,407,279 (Discovery)                                           N=13,793,916 (Replication)

68

Phenotypes
• Asthma: defined by either ICD-10 code (field 41270, J45 or J46) or 

self-reported diagnosis by a doctor (field 6152).
• T2D: defined by either ICD-10 code (UK Biobank field 41270, code 

E11) or self-reported diagnosis by a doctor at ≥ 30 years of age 
(fields 2443 and 2976). Individuals with type 1 diabetes [self-
reported diabetes that occurred < 30 years of age or E10] or 
gestational diabetes [self-report (field 4011) or O24] were excluded 
from both cases and controls.  

• Anthropometric measurements: 
– Waist circumference (WC), adjusted and unadjusted for BMI
– Height
– Weight
– BMI 
– When used as outcomes, WC, BMI, height, and weight were 

transformed using rank-based inverse normal transformation as 
implemented in R 

69

Asthma 
Cases

Asthma 
Controls

T2D 
Cases

T2D 
Controls

WC 
(cm)

BMI 
(kg/m2)

Height 
(cm)

Weight 
(kg)

Discovery

N/mean (sd) 48,623 290,722 22,670 313,404
90.33 

(14.46)
27.42 
(4.76)

168.71 
(9.23)

78.26 
(15.87)

Sex (N [%] male)
20,483 
(42.13)

135,525 
(46.62)

14,202 
(62.65)

141,147 
(45.04)

167,655 
(45.87)

167,654 
(45.87)

167,854 
(45.87)

167,748 
(45.87)

Age at recruitment 
(mean [sd]) 56.48 (8.18) 56.89 (7.98)

60.47 
(6.68) 56.60 (8.04)

56.91 
(8.00)

56.92 
(8.00)

56.92 
(8.00)

56.92 
(8.00)

Replication

N/mean (sd) 5,822 36,615 2,625 39,324
89.74 

(13.75)
27.28 
(4.92)

168.36 
(9.21)

77.56 
(16.25)

Sex (N [%] male)
2,454 

(42.15)
16,252 
(44.39)

1,610 
(61.33)

16,936 
(43.07)

19,379 
(44.09)

19,380 
(44.08)

19,391 
(44.06)

19,389 
(44.09)

Age at recruitment 
(mean [sd]) 55.26 (8.30) 55.40 (8.16)

59.34 
(7.06) 55.13 (8.17)

55.44 
(8.17)

55.44 
(8.17)

55.44 
(8.17)

55.44 
(8.18)

Discovery and replication sample 
demographics
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Variants in JAZF1 with genome-wide significant 
associations with asthma, T2D and at least one 

anthropometric measure 

71

Collider Bias

72
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Univariate fine-mapping results in the JAZF1 region for 
asthma, T2D and height

74

Mediation results for the two variants in JAZF1 with cross-
phenotype associations for asthma, T2D and height

75

JAZF1
• JAZF1 encodes a protein with three zinc fingers and acts as a 

transcriptional repressor. 
• It is member of a chaperone complex that orchestrates acetylation at 

regulatory regions controlling the expression of many genes 
involved in ribosome biogenesis.

• Work on the Jazf1 knockout mouse induced pluripotent stem cells 
suggests JAZF1 is involved in differentiation of β-cells and glucose 
homeostasis.

• JAZF1 appears to limit inflammation in adipose tissue and mice 
overexpressing JAZF1 have lower body and fat weight.

• In mouse airway epithelial cultures, JAZF1 expression was shown to 
be necessary for multiciliated cell differentiation, which is important 
for removing contaminants from the airway. 

• These functional studies suggest the plausibility of the role of JAZF1 
in asthma and T2D, but do not suggest a genetic link between these 
phenotypes.

76

Previous associations with JAZF1

• Previous studies have found variants within JAZF1 to be associated 
separately with T2D, obesity phenotypes, as well as, height.

• These findings include at least one study that reports a significant 
association with SNPs in JAZF1 with WC adjusted for BMI.
– Our findings also suggest that previous associations with SNPs in 

JAZF1 with WC adjusted for BMI are likely due to the same collider bias 
we observed, and the variants are associated with height, not adiposity.

• There is evidence JAZF1 is associated with child-onset and possibly adult-
onset asthma

77

Conclusions
• While previous studies have identified associations with variants in JAZF1 

associated with some aspect of all three phenotypes, this is the first time 
that asthma, T2D, and anthropometric measurements have been analyzed 
simultaneously in the same dataset and the first attempt at dissecting 
whether there are overlapping causal variants and/or biological pathways 
for these phenotypes. 

• This study provides the strongest evidence for an association of variants in 
JAZF1 with asthma compared to previous studies. 

• Variants in JAZF1 are associated with asthma, type 2 diabetes and height 
which provides a promising link between these three phenotypes, but the 
fine-mapped variant(s) for asthma, type 2 diabetes and height are unique. 

• These results are consistent with biological pleiotropy at the gene-level for 
all three phenotypes. 

• Mounting evidence that pleiotropy is more common at the gene-level 
(different causal variants) rather than at the variant level (shared causal 
variants) 
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P < 5 x 10-6

P < 5 x 10-6

Univariate: 
Phenotype 1

Univariate: 
Phenotype 2

Multivariate
P < 5 x 10-8

Mediation 

Pleiotropy exercise (Part 3)
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Mendelian randomization: 
An Introduction

1

Adam s et al. (2006) Overweight, Obesity and M ortality in a Large Prospective Cohort of Persons 50 to 71 Years O ld. N  Engl J M ed 255:763-778

2

The “Obesity Paradox”

Rom ero-Corral A et al. (2006) Association of bodyweight w ith total m ortality 
and w ith cardiovascular events in coronary artery disease: a system atic 
review  of cohort studies. The Lancet 368:666-678.

Carnethon M  et al. (2012) Association of W eight Status W ith M ortality in Adults W ith 
Incident D iabetes. JAM A 308:581-590. 

3

BMI and Bloodstream Infection (BSI)/Sepsis 
Mortality

W ang S et al. (2017) The role of increased body m ass index in outcom es of sepsis: a system atic review and m eta-
analysis. BM C Anesthesiol 17: 118.

4

Paulsen J et al. (2017) Association of obesity and lifestyle w ith the risk and m ortality of bloodstream  infection in a general population: a 15-
year follow -up of 64 027 individuals in the H UN T Study. Int J Epidem iol 46:1573-1581

5

Areas of Concern (BMI/BSI as an example)

• Selection Bias: If obesity is associated with BSI risk, non-obese 
patients may have other characteristics that cause their BSI that in 
turn are more strongly associated with mortality

• Reverse Causation: if measured BMI is affected by BSI

• Confounding: if factors such as chronic diseases and smoking habits 
that affect both BMI and BSI mortality are not adequately adjusted

6
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Mendelian randomization

• Mimic randomized trial using genetic data as instruments for 
exposures

• Leverages information on genetic variants that segregate randomly at 
conception

• If an association between the instrument and outcome is detected, a 
causal relationship for this association is strengthened 

7

Dim ou N L and Tsilidis KK. (2018) A prim er in M endelian Random ization M ethodology w ith a Focus on Utilizing 
Published Sum m ary Association Data. M ethods M ol B iol. 2018;1793: 211-230

8

MR Assumptions
• The genetic instrument (G) is associated with the exposure (X)

• The genetic instrument is not associated with any confounder (U) of 
the exposure-outcome association

• The genetic instrument is conditionally independent of the outcome 
(Y) given the exposure and confounders

9
Davies et al. (2018) Reading M endelian random ization studies: a guide, glossary, and checklist for clinicians. BM J 362:k601 

10

CRP and Heart Disease

C Reactive Protein Coronary Heart D isease Genetics Collaboration (CCGC) BM J 2011;342:bm j.d548

11

BMI and CHD|Stroke|Type 2 Diabetes

Dale CE et al. (2017) Causal Associations of Adiposity and Body 
Fat Distribution w ith Coronary Heart Disease, Stroke Subtypes 
and Type 2 Diabetes: A M endelian Random ization Analysis. 
C irculation, 135:2373-2388.

12
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One-sample vs. two-sample designs

One-sample
• Genotype(s), risk factor and 

outcome all measured in the 
same set of study subjects

• Individual level data must be 
available

Two-sample
• Genotype(s) and risk factor 

measured in one set of study 
subjects and genotype(s) and 
outcome measured in a separate 
set of study subjects

• Can use summary statistics or 
individual level data

13

Assumption/Issue One-sample Two-sample

Instrument variable related to risk 
factor

Weak instrument biases towards 
the confounded regression result

Weak instrument biases towards 
the null

Confounders Can (and should) check this for 
measured confounders

Not often possible when using 
summary statistics

Pleiotropy Multiple methods to explore this 
issue (including MR-Egger)

Multiple methods to explore this 
issue (including MR-Egger) and may 
be more powerful with large 
consortium datasets since methods 
tend to be statistically inefficient

Subgroup analyses Possible if large sample sizes and 
data on relevant risk factors are 
available

Only possible if individual level data 
are available

Bias from adjustments made in 
GWAS

N/A as all adjustments made in the 
same set of subjects

Summary data may or may not 
have been adjusted

One-sample vs. two-sample designs

Adapted from : Law lor DA (2016) Com m entary: Tw o-sam ple M endelian random ization: opportunities and challenges. Int J Epi 45: 908-915. 

14

Selecting genetic variants for an instrument

• Single or multiple variants

• Current recommendation is to select variant(s) that are significantly 
associated with the exposure at the genome-wide level

• Want a strong genetic instrument to avoid weak instrument bias
• A single variant or variants with modest effects in small samples are likely to 

have low power and can suffer from bias

• If selecting multiple variants these should not be in LD and assumes 
negligible gene-gene interaction among variants

15

Instrument strength

• Measured using the F statistic in the regression of the IV on the 
exposure

   𝐹 = !"#"$
#  * %!

$"%!

R2: proportion of the variance of the exposure explained by IV
N: sample size
K: number of genetic variants

General Rule: F < 10 is an indication of a weak instrument

16

Pleiotropy
• Assumption that the IV is not 

associated with Y independently 
from X
• Presence of pleiotropy can bias the 

causal estimate
• Sensitivity analyses such as MR-

Egger can be used to test whether or 
not the pleiotropy assumption has 
been violated

Davies et al. (2018) Reading M endelian random ization studies: a guide, glossary, and checklist for clinicians. BM J 362:k601 

17

Testing MR: Wald Ratio

• Simple ratio of the effects of the 
instrument variable on the 
outcome over the instrument 
variable on the exposure 
• Can be implemented in both one 

and two sample designs
• One sample can use either a single 

variant or a GRS
• Two sample design that uses 

multiple variants requires a 
method for combining Wald Ratios

!β𝐼𝑉 =
!β𝑍𝑌
!β𝑍𝑋

18
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Testing MR: 2 stage least squares (2SLS)

• Single continuous instrument 
(GRS)
• Only for one sample method
• Assumes a linear relationship 

between exposure and outcome

• Regress X on G
• Calculate genetically predicted 

values of X
• Regress Y on genetically 

predicted values of X
• Fix the standard errors (e.g. 

sandwich estimator)

19

Testing MR: Inverse variant weighted

• One or two sample designs
• Tends to give more reliable 

results in the presence of 
heterogeneity and when using 
large number of instruments

• Fixed (assumes no heterogeneity 
across SNP) or random effects 
meta-analysis

!β𝐼𝑉𝑊 =
Σ𝑗%γ%

&σ'%
(& !β𝑗

𝛴𝑗%γ%
&σ'%

(&

!β𝑗	= 
)*!
+,!

For each variant calculate the Wald ratio:

Combine into an overall estimate using a 
formula from meta-analysis literature:

20

Testing MR: Weighted Median
• Calculate the Wald ratio for each instrument
• Select the median value according to the weighted method

• Valid estimate when more than half of the genetic variants satisfy the IV 
assumptions

• No single IV contributes more than 50% of the weight

Bow den et al. (2016) Consistent estim ation in M endelian random ization w ith som e invalid instrum ents using a w eighted m edian estim ator. Genet Epi, 40: 304-314.

21

Testing MR: MR-Egger
• Provide a valid causal estimate in the presence of some violations of the 

MR assumptions (mainly pleiotropy)
• MR consisting of a single study with multiple IVs is analogous to a meta-

analysis
• Bias resulting from pleiotropy is analogous to small study bias in meta-

analysis
• Small studies with less precise estimates tend to report larger estimates than big 

studies with more precise estimates
• Regress the standard normal 

deviate (odds ratio divided 
by its se) on the estimate’s 
precision (inverse of the se)

• Without bias, intercept = 0, 
and in the presence of bias 
the intercept is a measure of 
asymmetry

Egger et al. (1997) B ias in m eta-analysis detected by a sim ple, graphical test. BM J 315:629 - 634

22

Bow den et al. (2015) M endelian random ization w ith invalid instrum ents: effect estim ation and bias detection through Egger regression. Int J Epi, 44: 512-525

23

Databases and software

Davies et al. (2018) Reading M endelian random ization studies: a guide, glossary, and checklist for clinicians. BM J 362:k601 

24
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Assess the causal association between BMI and risk of and mortality 
from BSI by overcoming the limitations of previous observational 
studies by conducting an MR study in a general population of 
approximately 56,000 participants in Norway with 23 years of follow-up

25

Study Population

• The Trondelag Health Study (HUNT) is a series 
of cross-sectional surveys carried out in Nord-
Trondelag County, Norway
• 130,000 inhabitants who are representative of 

the general Norwegian population in terms of 
morbidity, mortality, sources of income and age 
distribution
• Based on HUNT2 survey conducted in 1995-

1997 with 65,236 participants, 55,908 of whom 
had complete data for the analysis

26

27

Outcome

• Linked to all prospectively recorded blood cultures at the two 
community hospitals in the catchment area (Levanger and Namsos 
Hospitals) as well as St. Olav’s Hospital in Trondheim (tertiary referral 
center)
• Data on blood cultures were available from January 1, 1995 through 

the end of 2017
• Date of death and emigration out of Nord-Trondelag County were 

obtained from the Norwegian population registry
• BSI was defined as a positive blood culture of pathogenic bacteria
• BSI mortality was defined as death within 30 days of BSI diagnosis

28

Genetic Instrument

• Based on a BMI meta-analysis of ~700,000 individuals (Yengo L et al. [2018] M eta-analysis of 

genom e-w ide association studies for height and body m ass index in ~700 000 individuals of European ancestry. Hum . M ol. Genet., 27, 3641–3649.)

• 939 of 941 SNPs identified as associated with BMI (p<5x10-8, two 
SNPs did not pass imputation quality control)
• Genetic risk score (GRS) was calculated for BMI using the --score 

command in PLINK (version 1.9) and weighted based on the effect 
estimates from the meta-analysis

• GRS (939 variants) explained 4.2% of the variation in BMI in the 
population (F-statistic = 2,461)

29

Analysis Methods

• Fractional polynomial model (suggestion of a nonlinear relationship 
between BMI and BSI)
• 2-stage least squares (with sandwich estimator) for analyses assuming 

a linear relationship between exposure and outcome
• Sensitivity analyses

• MR Egger (random effects)
• INW
• Weighted median
• 2-sample (using Yengo et al. for SNP-exposure associations)

30
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33 34

S5 Table. Mendelian randomization sensitivity analyses of linear association between body mass index and 
bloodstream infection mortality in the general population

H R/O R Low er U pper P-value Intercept Low er U pper P-value

One-sample

M R-Egger, random  effects 1.18 1.04 1.33 0.011 1.00 0.99 1.00 0.476

IV W , random  effects 1.13 1.05 1.23 0.002 - - - -

M edian estim ator, w eighted 1.13 0.99 1.30 0.081 - - - -

Two-sample

M R-Egger, random  effects 1.98 0.95 4.18 0.070 1.00 0.99 1.01 0.877

IV W , random  effects 1.89 1.33 2.67 <0.001

M edian estim ator, w eighted 2.09 1.10 3.97 0.025
HR, hazard ratio; IVW, inverse-variance weighted; OR, odds ratio. Assuming a linear relationship between body mass index and bloodstream infection mortality in the 
general population using the same 939 single nucleotide polymorphisms (SNP) as used to create the genetic risk score. Two-sample analyses use SNP-exposure associations 
from Yengo et al [ref 2 in Supplementary text], and SNP-outcome associations from HUNT. The I2 of the SNP-exposure associations were 54% in the one-sample MR-Egger 
regression, and 92% in the two-sample MR-Egger regression. Effect estimates reported as HR for one unit increase of body mass index in one-sample analyses and as OR for 
one standard deviation increase of body mass index in two-sample analyses. 
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Davies et al. (2018) Reading M endelian random ization studies: a guide, glossary, and checklist for clinicians. BM J 362:k601 

37

Some Advanced MR analysis approaches

Burgess and Thom pson (2015) M ultivariable M endelian Random ization: The Use of P leiotropic Genetic Variants to Estim ate Causal 
Effects. Am  J Epidem iol, 181(4): 251–260.

Yuan et al. (2022) Likelihood-based M endelian random ization analysis w ith autom ated 
instrum ent selection and horizontal pleiotropic m odeling. Sci. Adv. 8, eabl5744 (2022)

R ichm ond et al. (2014) Assessing Causality in the Association between Child 
Adiposity and Physical Activity Levels: A M endelian Random ization Analysis. PLoS 
M ed 11(3): e1001618.

38

http://app.mrbase.org/

Hem ani G  et al. (2018) The M R-Base platform  supports system atic causal inference across 
the hum an phenom e. eLife 7:e34408.

39

BMI and Lung Cancer

Bhaskaran et al. (2014) Body-m ass index and risk of 22 specific cancers: a population-based 
cohort study of 5.24 m illion UK adults. Lancet 384:755-765

Duan et al. (2015) Body m ass index and risk of lung cancer: System atic review  and dose-response m eta-
analysis. Sci Rep 5:16938
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rs138-rs141

rs296, rs299 rs1138

rs1448

1

CHR    F     SNP         BP          P    TOTAL   NSIG    S05    S01   S001  S0001
   1    2   rs139     139000   2.86e-28        9      0      0      0      0      9 

                          KB      RSQ  ALLELES    F            P 
  (INDEX)   rs139          0    1.000        0    2     2.86e-28 

            rs137         -2    0.247    00/00    2     2.17e-17 
            rs138         -1    0.399    00/00    1     1.34e-09 
            rs138         -1    0.399    00/00    2     1.91e-18 
            rs139          0        1    00/00    1     2.77e-15 
            rs140          1    0.229    00/00    1     6.05e-12 
            rs140          1    0.229    00/00    2     1.85e-26 
            rs141          2    0.235    00/00    1      9.9e-09 
            rs141          2    0.235    00/00    2     2.98e-13 

          RANGE: chr1:137000..141000
           SPAN: 4kb

2

CHR    F     SNP         BP          P    TOTAL   NSIG    S05    S01   S001  S0001
   1    1   rs296     296000   1.15e-10        5      0      0      0      0      5 

                          KB      RSQ  ALLELES    F            P 
  (INDEX)   rs296          0    1.000        0    1     1.15e-10 

            rs295         -1    0.429    00/00    1     2.01e-08 
            rs296          0        1    00/00    2      2.6e-09 
            rs299          3    0.267    00/00    1     2.77e-09 
            rs299          3    0.267    00/00    2     7.29e-10 

          RANGE: chr1:295000..299000
           SPAN: 4kb

3

rs138-rs141

rs296, rs299 rs1138

rs1448
rs125

rs135 rs300

rs921, rs923

rs1361

rs1166

4

SNP
Beta 
(Trait 1) P (Trait 1)

Beta 
(Trait 2) P (Trait 2) MV1 P

MV1 
Loading 
(Trait 1)

MV1 
Loading 
(Trait 2) ADE ADE (P) ACME ACME (P)

Total 
Effect

Total 
Effect (P) 

Prop 
Mediated

Prop 
Mediated 
(P)

rs125 0.072 1.08E-08 0.062 6.45E-07 1.80E-10 0.8397 0.7096 0.045 <2e-16 0.015 <2e-16 0.0596 <2e-16 0.2516 <2e-16
rs135 -0.040 1.41E-06 0.050 1.47E-09 2.82E-17 -0.5457 0.7024 0.059 <2e-16 -0.008 <2e-16 0.0509 <2e-16 -0.3317 <2e-16
rs139 -0.065 2.77E-15 0.090 2.86E-28 2.26E-50 -0.5249 0.7196 0.103 <2e-16 -0.014 <2e-16 0.0891 <2e-16 -0.1580 <2e-16
rs296 -0.056 1.15E-10 -0.051 2.60E-09 1.78E-14 0.8100 0.7456 -0.039 <2e-16 -0.012 <2e-16 -0.0512 <2e-16 0.2306 <2e-16
rs300 -0.046 1.85E-08 -0.039 2.09E-06 1.34E-10 -0.8386 -0.7110 -0.029 <2e-16 -0.010 <2e-16 -0.0392 <2e-16 0.2507 <2e-16
rs921 0.109 6.29E-23 0.057 1.95E-07 1.16E-24 -0.9475 -0.5144 0.036 <2e-16 0.023 <2e-16 0.0595 <2e-16 0.3908 <2e-16
rs923 0.041 1.48E-06 0.042 4.04E-07 2.35E-09 0.7615 0.7957 0.034 0.002 0.009 <2e-16 0.0421 <2e-16 0.2035 <2e-16
rs1138 -0.050 9.58E-10 0.048 2.90E-09 2.44E-20 0.6511 -0.6027 0.058 <2e-16 -0.011 <2e-16 0.0468 <2e-16 -0.2319 <2e-16
rs1166 -0.051 4.77E-10 0.041 6.30E-07 1.02E-17 -0.7175 0.5275 0.049 <2e-16 -0.011 <2e-16 0.0382 <2e-16 -0.2918 <2e-16
rs1361 -0.056 2.65E-07 0.076 1.68E-12 3.52E-21 -0.5349 0.7114 0.087 <2e-16 -0.012 <2e-16 0.0751 <2e-16 -0.1614 <2e-16
rs1448 -0.079 3.46E-08 0.092 1.51E-11 2.21E-20 -0.5847 0.6679 0.108 <2e-16 -0.017 <2e-16 0.0908 <2e-16 -0.1879 <2e-16

SNP
Beta 
(Trait 1) P (Trait 1)

Beta 
(Trait 2) P (Trait 2) MV1  P

MV1  
Loading 
(Trait 1)

MV1  
Loading 
(Trait 2) ADE ADE (P) ACME ACME (P)

Total 
Effect

Total Effect 
(P) 

Prop 
Mediated

Prop 
Mediated 
(P)

rs125 0.072 1.08E-08 0.062 6.45E-07 1.80E-10 0.8397 0.7096 0.045 <2e-16 0.015 <2e-16 0.0596 <2e-16 0.2516 <2e-16

rs135 -0.040 1.41E-06 0.050 1.47E-09 2.82E-17 -0.5457 0.7024 0.059 <2e-16 -0.008 <2e-16 0.0509 <2e-16 -0.3317 <2e-16

rs139 -0.065 2.77E-15 0.090 2.86E-28 2.26E-50 -0.5249 0.7196 0.103 <2e-16 -0.014 <2e-16 0.0891 <2e-16 -0.1580 <2e-16

rs296 -0.056 1.15E-10 -0.051 2.60E-09 1.78E-14 0.8100 0.7456 -0.039 <2e-16 -0.012 <2e-16 -0.0512 <2e-16 0.2306 <2e-16

rs300 -0.046 1.85E-08 -0.039 2.09E-06 1.34E-10 -0.8386 -0.7110 -0.029 <2e-16 -0.010 <2e-16 -0.0392 <2e-16 0.2507 <2e-16

rs921 0.109 6.29E-23 0.057 1.95E-07 1.16E-24 -0.9475 -0.5144 0.036 <2e-16 0.023 <2e-16 0.0595 <2e-16 0.3908 <2e-16

rs923 0.041 1.48E-06 0.042 4.04E-07 2.35E-09 0.7615 0.7957 0.034 0.002 0.009 <2e-16 0.0421 <2e-16 0.2035 <2e-16

rs1138 -0.050 9.58E-10 0.048 2.90E-09 2.44E-20 0.6511 -0.6027 0.058 <2e-16 -0.011 <2e-16 0.0468 <2e-16 -0.2319 <2e-16

rs1166 -0.051 4.77E-10 0.041 6.30E-07 1.02E-17 -0.7175 0.5275 0.049 <2e-16 -0.011 <2e-16 0.0382 <2e-16 -0.2918 <2e-16

rs1361 -0.056 2.65E-07 0.076 1.68E-12 3.52E-21 -0.5349 0.7114 0.087 <2e-16 -0.012 <2e-16 0.0751 <2e-16 -0.1614 <2e-16

rs1448 -0.079 3.46E-08 0.092 1.51E-11 2.21E-20 -0.5847 0.6679 0.108 <2e-16 -0.017 <2e-16 0.0908 <2e-16 -0.1879 <2e-16

5

rs296

Trait 1

Trait 2

-0.051 [-0.051]

-0.039

-0.012

[0.211][-0.056]

6
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rs921

Trait 1

Trait 2

0.0595 [0.057]

0.036

0.023

[0.211][0.109]

7

rs139

Trait 1

Trait 2

0.0891 [0.090]

0.103

-0.014

[0.211][-0.065]

8

SNP
Beta 
(Trait 1) P (Trait 1)

Beta 
(Trait 2) P (Trait 2) MV1 P

MV1 
Loading 
(Trait 1)

MV1 
Loading 
(Trait 2) ADE ADE (P) ACME ACME (P)

Total 
Effect

Total 
Effect (P) 

Prop 
Mediated

Prop 
Mediated 
(P)

rs125 0.072 1.08E-08 0.062 6.45E-07 1.80E-10 0.8397 0.7096 0.045 <2e-16 0.015 <2e-16 0.0596 <2e-16 0.2516 <2e-16
rs135 -0.040 1.41E-06 0.050 1.47E-09 2.82E-17 -0.5457 0.7024 0.059 <2e-16 -0.008 <2e-16 0.0509 <2e-16 -0.3317 <2e-16
rs139 -0.065 2.77E-15 0.090 2.86E-28 2.26E-50 -0.5249 0.7196 0.103 <2e-16 -0.014 <2e-16 0.0891 <2e-16 -0.1580 <2e-16
rs296 -0.056 1.15E-10 -0.051 2.60E-09 1.78E-14 0.8100 0.7456 -0.039 <2e-16 -0.012 <2e-16 -0.0512 <2e-16 0.2306 <2e-16
rs300 -0.046 1.85E-08 -0.039 2.09E-06 1.34E-10 -0.8386 -0.7110 -0.029 <2e-16 -0.010 <2e-16 -0.0392 <2e-16 0.2507 <2e-16
rs921 0.109 6.29E-23 0.057 1.95E-07 1.16E-24 -0.9475 -0.5144 0.036 <2e-16 0.023 <2e-16 0.0595 <2e-16 0.3908 <2e-16
rs923 0.041 1.48E-06 0.042 4.04E-07 2.35E-09 0.7615 0.7957 0.034 0.002 0.009 <2e-16 0.0421 <2e-16 0.2035 <2e-16
rs1138 -0.050 9.58E-10 0.048 2.90E-09 2.44E-20 0.6511 -0.6027 0.058 <2e-16 -0.011 <2e-16 0.0468 <2e-16 -0.2319 <2e-16
rs1166 -0.051 4.77E-10 0.041 6.30E-07 1.02E-17 -0.7175 0.5275 0.049 <2e-16 -0.011 <2e-16 0.0382 <2e-16 -0.2918 <2e-16
rs1361 -0.056 2.65E-07 0.076 1.68E-12 3.52E-21 -0.5349 0.7114 0.087 <2e-16 -0.012 <2e-16 0.0751 <2e-16 -0.1614 <2e-16
rs1448 -0.079 3.46E-08 0.092 1.51E-11 2.21E-20 -0.5847 0.6679 0.108 <2e-16 -0.017 <2e-16 0.0908 <2e-16 -0.1879 <2e-16

SNP
Beta 
(Trait 1) P (Trait 1)

Beta 
(Trait 2) P (Trait 2) MV1  P

MV1  
Loading 
(Trait 1)

MV1  
Loading 
(Trait 2) ADE ADE (P) ACME ACME (P)

Total 
Effect

Total Effect 
(P) 

Prop 
Mediated

Prop 
Mediated 
(P)

rs125 0.072 1.08E-08 0.062 6.45E-07 1.80E-10 0.8397 0.7096 0.045 <2e-16 0.015 <2e-16 0.0596 <2e-16 0.2516 <2e-16

rs135 -0.040 1.41E-06 0.050 1.47E-09 2.82E-17 -0.5457 0.7024 0.059 <2e-16 -0.008 <2e-16 0.0509 <2e-16 -0.3317 <2e-16

rs139 -0.065 2.77E-15 0.090 2.86E-28 2.26E-50 -0.5249 0.7196 0.103 <2e-16 -0.014 <2e-16 0.0891 <2e-16 -0.1580 <2e-16

rs296 -0.056 1.15E-10 -0.051 2.60E-09 1.78E-14 0.8100 0.7456 -0.039 <2e-16 -0.012 <2e-16 -0.0512 <2e-16 0.2306 <2e-16

rs300 -0.046 1.85E-08 -0.039 2.09E-06 1.34E-10 -0.8386 -0.7110 -0.029 <2e-16 -0.010 <2e-16 -0.0392 <2e-16 0.2507 <2e-16

rs921 0.109 6.29E-23 0.057 1.95E-07 1.16E-24 -0.9475 -0.5144 0.036 <2e-16 0.023 <2e-16 0.0595 <2e-16 0.3908 <2e-16

rs923 0.041 1.48E-06 0.042 4.04E-07 2.35E-09 0.7615 0.7957 0.034 0.002 0.009 <2e-16 0.0421 <2e-16 0.2035 <2e-16

rs1138 -0.050 9.58E-10 0.048 2.90E-09 2.44E-20 0.6511 -0.6027 0.058 <2e-16 -0.011 <2e-16 0.0468 <2e-16 -0.2319 <2e-16

rs1166 -0.051 4.77E-10 0.041 6.30E-07 1.02E-17 -0.7175 0.5275 0.049 <2e-16 -0.011 <2e-16 0.0382 <2e-16 -0.2918 <2e-16

rs1361 -0.056 2.65E-07 0.076 1.68E-12 3.52E-21 -0.5349 0.7114 0.087 <2e-16 -0.012 <2e-16 0.0751 <2e-16 -0.1614 <2e-16

rs1448 -0.079 3.46E-08 0.092 1.51E-11 2.21E-20 -0.5847 0.6679 0.108 <2e-16 -0.017 <2e-16 0.0908 <2e-16 -0.1879 <2e-16

rs685 0.1512 1.349e-29 0.04347 0.001048 2.203e-28 -0.9974 -0.2836 0.011 0.32 0.032 <2e-16 0.0427 <2e-16 0.7490 <2e-16

9

rs685

Trait 1

Trait 2

0.043 [0.044]

0.011*

0.032

[0.211][0.151]

10

139139



1 2

3 4

5 6

140140



7 8

9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

LD
L

LD
L. C

LD
L. D

S.L
DL
.C

S.L
DL
.L

S.L
DL
.P

M.
LD
L. C

M.
LD
L. C
E

M.
LD
L. L

M.
LD
L. P

M.
LD
L. P
L

L.L
DL
.C

L.L
DL
.CE

L.L
DL
.FC

L.L
DL
.L

L.L
DL
.P

L.L
DL
.PL

LDL metabolites and CHD (IVW)

Be
ta

10

SNP LDL.C  LDL.D  S.LDL.C  S.LDL.L  S.LDL.P  M.LDL.C  M.LDL.CE  M.LDL.L  M.LDL.P  M.LDL.PL  L.LDL.C  L.LDL.CE  L.LDL.FC  L.LDL.L  L.LDL.P  L.LDL.PL
rs10468017 LDL.D
rs12149545 LDL.D
rs1260326 LDL.D
rs28456 LDL.D
rs75627662 LDL.D
rs10056811 LDL.C
rs112635299 LDL.C S.LDL.C S.LDL.L M.LDL.C M.LDL.CE M.LDL.L M.LDL.P
rs11591147 LDL.C S.LDL.C S.LDL.L S.LDL.P M.LDL.C M.LDL.CE M.LDL.L M.LDL.P M.LDL.PL L.LDL.C L.LDL.CE L.LDL.FC L.LDL.L L.LDL.P L.LDL.PL
rs142130958 LDL.C S.LDL.C S.LDL.L S.LDL.P M.LDL.C M.LDL.CE M.LDL.L M.LDL.P M.LDL.PL L.LDL.C L.LDL.CE L.LDL.FC L.LDL.L L.LDL.P L.LDL.PL
rs193084249 LDL.C S.LDL.C S.LDL.L M.LDL.C M.LDL.CE M.LDL.L M.LDL.P M.LDL.PL L.LDL.C L.LDL.CE L.LDL.L L.LDL.P L.LDL.PL
rs2207132 LDL.C M.LDL.C M.LDL.CE M.LDL.L M.LDL.P L.LDL.C L.LDL.CE L.LDL.FC L.LDL.L L.LDL.P L.LDL.PL
rs62523994 LDL.C
rs629301 LDL.C S.LDL.C S.LDL.L S.LDL.P M.LDL.C M.LDL.CE M.LDL.L M.LDL.P M.LDL.PL L.LDL.C L.LDL.CE L.LDL.FC L.LDL.L L.LDL.P L.LDL.PL
rs635634 LDL.C L.LDL.CE L.LDL.L L.LDL.P L.LDL.PL
rs6756629 LDL.C M.LDL.CE M.LDL.L M.LDL.P M.LDL.PL L.LDL.C L.LDL.CE L.LDL.FC L.LDL.L L.LDL.P L.LDL.PL
rs73066442 LDL.C S.LDL.L M.LDL.C M.LDL.CE M.LDL.L M.LDL.P M.LDL.PL L.LDL.C L.LDL.CE L.LDL.FC L.LDL.L L.LDL.P L.LDL.PL
rs73107473 LDL.C
rs7412 LDL.C S.LDL.C S.LDL.L S.LDL.P M.LDL.C M.LDL.CE M.LDL.L M.LDL.P M.LDL.PL L.LDL.C L.LDL.CE L.LDL.FC L.LDL.L L.LDL.P L.LDL.PL
rs934197 LDL.C S.LDL.C M.LDL.C M.LDL.CE M.LDL.L L.LDL.C L.LDL.CE L.LDL.FC L.LDL.L L.LDL.P L.LDL.PL
rs964184 LDL.C S.LDL.C S.LDL.L S.LDL.P M.LDL.PL
rs12916 S.LDL.L M.LDL.C M.LDL.PL
rs1367117 S.LDL.L S.LDL.P M.LDL.P M.LDL.PL
rs144064722 M.LDL.PL
rs261334 L.LDL.C L.LDL.FC L.LDL.L L.LDL.P L.LDL.PL
rs2954022 L.LDL.C L.LDL.FC L.LDL.PL
rs2980860 S.LDL.L S.LDL.P M.LDL.CE M.LDL.L M.LDL.P L.LDL.CE L.LDL.L L.LDL.P
rs2980875 M.LDL.C
rs34042070 S.LDL.C M.LDL.CE L.LDL.C L.LDL.CE L.LDL.L
rs3741298 M.LDL.C M.LDL.CE M.LDL.L M.LDL.P L.LDL.C L.LDL.CE L.LDL.L L.LDL.P L.LDL.PL
rs4614977 S.LDL.C
rs4703667 S.LDL.C S.LDL.P
rs495828 L.LDL.C L.LDL.FC
rs76866386 S.LDL.L S.LDL.P M.LDL.C
rs79225634 M.LDL.CE M.LDL.L M.LDL.P L.LDL.C L.LDL.CE L.LDL.FC L.LDL.L L.LDL.P L.LDL.PL
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The Ethics and 
Regulation of Human 

Subjects Research 

Wayne Patterson, PhD
Senior Consultant

1

The Nuremberg 
Code (1947)

Ten Basic Principles, including:

“The voluntary consent of the human subject is absolutely essential…”
“The experiment should be conducted as to avoid all unnecessary 

physical and mental suffering and injury…”

 “No experiment should be conducted where there is an a priori reason to 
believe that death or disabling injury will occur; except, perhaps, in 
those experiments where the experimental physicians also serve as 
subjects.”

“During the course of the experiment, the human subject  should be at 
liberty to bring the experiment to an end if he has reached the physical 
or mental state where continuation of the experiment seems to him to 
be impossible.”

During the course of the experiment the scientist in charge must be 
prepared to terminate the experiment at any stage, if he has probable 
cause to believe…that a continuation of the experiment is likely to 
result in injury, disability, or death to the experimental subject.

2

Tuskegee Study of Untreated Syphilis 
in the Negro Male (1932-1972) 

3

National Research Act (1974)

Required the creation of the National Commission for 
the Protection of Human Subjects of Biomedical and 

Behavioral Research. 

4

The Ethics of Conducting Research with 
Humans: The Belmont Report (1979)

n Beneficence
n maximize benefits, minimize risks

n Justice
n Who should bear the burdens of the
    research? 
n Who should benefit from results?

n Respect for Persons
n Autonomy 
n Protect those with diminished autonomy 

 

5

The Belmont Report was the basis for 
federal requirements of human 

research protections
Office for Human Research Protections 

• 45 CFR 46 Subpart A (‘Common Rule’) 
• Subpart B (Pregnant Women, Fetuses, and 

Nonviable/Questionable Viable Neonates), 
• Subpart C (Prisoners), 
• Subpart D (Minors)  

Food & Drug Administration
(jurisdiction: clinical investigations of drugs, devices, biologics)

• 21 CFR 50: Protection of Human Subjects 
• 21 CFR 56: Institutional Review Boards
• 21 CFR 312: Investigational Drugs  
• 21 CFR 812: Investigational Devices

 

6
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What is the 
Common 

Rule? 
 

It is the Federal Policy for the 
Protection of Human Subjects

Originally promulgated in 1991, with 
no significant changes, until 1/21/19! 

Rockefeller’s Federal Wide Assurance 
(FWA) certifies compliance with this 
federal policy (for human research 
conducted or supported by Common 
Rule agencies…)

7

What’s so 
Common 

about the 
Common 

Rule? 

ü19 federal agencies follow the new 
Common Rule, e.g.,

• DHHS, including NIH (45 CFR 46, 
Subpart A)*

• DoD  (32 CFR 219)
• NSF (45 CFR 690)
• Department of Energy (DoE) (10 CFR 

745)
• Veterans Administration (38 CFR 16)
• Department of Education (DoEd) (34 

CFR 97)

*FDA is within DHHS, but also has its own 
regulations 
*DoJ has not signed on yet

8

First Question: Is your 
activity “human subjects 
research” (HSR)?

9

Specifically:

1. Is it HSR according to the Common Rule?
2. Is it HSR according to FDA?    

(could be both!)
 

10

Start with the Common Rule 

First assess:

Does the activity involve Research?

 

11

Common Rule Definition of 
Research:

 “…a systematic investigation, including 
research development, testing and 
evaluation, designed to develop or 
contribute to generalized knowledge…”

(Both parts of the definition must be met)

12
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Part I of the definition:
What’s a Systematic Investigation?

an activity that involves a prospective plan 
which incorporates data collection, either 
quantitative and/or qualitative, and data 

analysis to answer a question

Does a case study involve a systematic 
investigation?

13

Part II: What does ‘designed to develop 
or contribute to generalizable 

knowledge’ mean?
…designed to draw general conclusions:

üwhat we know about what is being tested is not 
yet firmly established or accepted; 

and
üthe activity is not dependent on the unique 

characteristics of the target population or system in 
which it will be implemented

14

An activity is not likely to be 
generalizable if the intent is:

The evaluation or improvement of a process, practice, or 
program at the site where the activity is being conducted
  
Results only to be applied to populations, or inform practice 
within the target population or within the site where the activity 
is being conducted 
 
Implementation and evaluation of an evidence-based practice, 
process, or program (is it functioning as intended within the site 
where the activity is being conducted or with the local target 
population 
 

15

If the activity IS research: 
Does the research involve human subjects, 

according to the Common Rule? 
 

A living individual about whom an investigator conducting 
research: 
(i) Obtains information or biospecimens through intervention 
or interaction with the individual, and uses, studies, or 
analyzes the information or biospecimens; or 
(ii) Obtains, uses, studies, analyzes, or generates identifiable 
private information or identifiable biospecimens.

16

Once you determine if the activity is or is 
not human subjects research according to 

the Common Rule…

 You may still need to assess if the activity is 
human subjects research according to FDA

17

FDA Decisions

Does the activity evaluate an FDA-regulated test article (i.e., 
drug, biologic, device)?

Does the activity involve Human Subjects? 
An individual who is, or becomes, a participant in research, 
either as a recipient of the test article or as a control. A 
subject may be either a healthy human or a patient. Also 
included in the FDA human subject definition: The use of a 
biological specimen –even if de-identified-from an individual 
used to test an investigational device

Does the activity involve research (clinical investigation)?
Any experiment that involves a test article and one or more 
human subjects...

18
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If the activity IS human 
subjects research, next 
question: Is it exempt 
from the federal 
regulations? *

*this does not mean exempt from institutional 
review!

19

There are 6 HSR categories of research 
that are Exempt from IRB Review

Focus on: Exemption #4

Secondary research* for which consent is not required

*Secondary research only! (i.e., re-using identifiable information and/or 
identifiable biospecimens that were, or will be, are collected for another 

reason, e.g., clinical or research)

20

Exemption #4: Secondary research uses 
of identifiable private information or 

identifiable biospecimens can be 
exempt under this category, if at least 

one of the following criteria is met:

 

  

21

Exemption 4(i)

The identifiable private information or identifiable 
biospecimens are publicly available;

22

Exemption 4(ii)

Identifiable private information…is recorded by the 
investigator in such a manner that the identity of the 
human subjects cannot readily be ascertained directly or 
through identifiers linked to the subject, the investigator 
does not contact the subjects, and the investigator will 
not re-identify subjects; 

23

Exemption 4 (iii) 

“The research involves only information collection and 
analysis involving the investigator’s use of identifiable 
health information when that use is regulated under 45 CFR 
parts 160 AND 164, subparts A and E [HIPAA], for the 
purposes of “health care operations” or “research” as those 
terms are defined at 45 CFR 164.501 or “public health 
activities and purposes” as described under 45 CFR 
164.512(b)”

24
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Exemption 4 (iv) 
The research is conducted by, or on behalf of, a Federal 
department or agency using government-generated or 
government-collected information obtained for non-research 
activities, if the research generates identifiable private 
information that is or will be maintained on information 
technology that is subject to and in compliance with section 
208(b) of the E-Government Act of 2002, 44 U.S.C. 3501 note, if 
all of the identifiable private information collected, used, or 
generated as part of the activity will be maintained in systems of 
records subject to the Privacy Act of 1974, 5 U.S.C. 552a, and, if 
applicable, the information used in the research was collected 
subject to the Paperwork Reduction Act of 1995, 44 U.S.C. 3501 
et seq.

25

What are the ethical standards that 
should be considered for all exempt 

studies? 
Criteria Yes No NA
The research holds out no more than minimal risk to participants ☐ ☐
Selection of participants is equitable ☐ ☐
If there is recording of identifiable information, there are adequate provisions to maintain the 
confidentiality of the data ☐ ☐ ☐

If there are interactions with participants, there are adequate provisions to protect the privacy 
interests of participants ☐ ☐ ☐

If there are interactions with participants, the consent process or information provided to potential subjects includes 
the following:     ☐ N/A – there are no interactions and no other need for consent

That the activity involves research ☐ ☐ ☐
A description of the procedures ☐ ☐ ☐

For Category 3 research that involves subject deception: A statement that subjects will be 
unaware of or misled regarding the nature or purposes of the research ☐ ☐ ☐

That participation is voluntary ☐ ☐ ☐
Name and contact information for the researcher ☐ ☐ ☐

26

If the activity IS human 
subjects research, but does 
not qualify for exemption, it 
is HSR that is not exempt, 
i.e., it is subject to federal 
regulations governing human 
research protection…
 
…including review by a 
federally mandated  
Institutional Review Board 
(IRB)

27

Two Types of Non-Exempt Review

1. Expedited Review

2. Full Board Review

28

For a non-exempt study to qualify for 
Expedited (not full IRB Board) 

Review…
…The research must be all of the following:  
• no greater than minimal risk
• not involve prisoners (per OHRP guidance)
• not be classified 
• not involve identifiable data that would place subjects at risk of 

criminal or civil liability or be damaging to the subjects financial 
standing, employability, insurability, reputation, or be 
stigmatizing. If it could, reasonable protections must be in place 
so that risks related to invasion of privacy and breach of 
confidentiality are no greater than minimal, and

• Fit into one or more of these categories: 
https://www.hhs.gov/ohrp/regulations-and-
policy/guidance/categories-of-research-expedited-review-
procedure-1998/index.html

29

If the nonexempt 
research doesn’t qualify 
for expedited review, it 
must be reviewed at a 
convened IRB meeting.  

30
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Whether expedited or full board, 
a study must meet federally-
defined criteria in order to be 

approved

i.e.,

“The .111 Criteria”

31

§ 46.111 Criteria for IRB approval of 
research.
(a) In order to approve research 
covered by this policy the IRB shall 
determine that all of the following 
requirements are satisfied:

 

32

1. Risks to subjects are minimized:

(i) By using procedures which are consistent with 
sound research design and which do not 
unnecessarily expose subjects to risk, and 

(ii) Whenever appropriate, by using procedures 
already being performed on the subjects for 
diagnostic or treatment purposes

33

2. Risks to subjects are reasonable in 
relation to anticipated benefits, if any, to 

subjects, and the importance of the 
knowledge that may reasonably be 

expected to result

34

3. Selection of Subjects is Equitable
Consider:
• The setting in which the research will be conducted
• Who is included, who is excluded? Does it make 

scientific sense? Ethical sense? 
• If applicable: Are children in a study involving a test 

article that hasn’t first been tested in adults? 
Pregnant women before non-pregnant women?
• Costs or compensation that may impact ‘fairness’
• Screening and recruitment?
• What about non-English speakers?

35

4. Informed consent will be sought from 
each prospective subject or the 

subject's legally authorized 
representative, in accordance with, and 

to the extent required by, §46.116

If not:
Are ALL the criteria for waiving informed 
consent or for altering/excluding specific 
elements of informed consent met?

 

 

36
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5. Informed consent will be 
appropriately documented or 

appropriately waived in accordance with 
§46.117 

If not:
Does the research meet one of the 
allowable criteria to waive 
documentation?

37

6. When appropriate, the research plan makes 
adequate provision for monitoring the data 

collected to ensure the safety of subjects

• What data will be monitored for safety purposes? 
When? How?
• Who will be responsible for evaluating safety data? 

Is a DSMB needed? 
• Stopping Rules? 
• Communication plan of findings to investigators 

and IRBs (from the IRB of Record or Sponsor)
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7.When appropriate, there are 
adequate provisions to protect the 

privacy of subjects… 

Consider:
• Settings where recruitment, consent, and research 

procedures and interactions will occur
• Provisions to ensure privacy for each of the above
• Provisions to ensure privacy when contacting or 

soliciting information from subjects

39

…and to protect the confidentiality of 
subject data

General:

•  How will the data/biospecimens be stored?  
• If identifiers will be removed or replaced, is there a 

possibility that such information/biospecimens could be re-
identified?

• Will the data/biospecimens be shared/transmitted/ 
transferred to a third party or otherwise disclosed or 
released? How?

• Is there a potential risk of harm to individuals if the 
data/biospecimens are lost, stolen, compromised, or 
otherwise used in a way contrary to the parameters of the 
study?

• Plans for data retention and destruction?

40

A closer look at data security: minimize the risk 
of disclosure or breach of data 

• Obtaining the data
• What is the sensitivity of the data? Are all the data points that will be 

accessed or gathered for the research necessary to achieve the objectives 
of the research? 

• Recording the data
• What (if any) identifiers, including codes, will be recorded for the 

research?

• Storing the data
• Where will paper research records, including signed consent forms, be 

stored? How will paper records be kept secure and restricted to 
authorized project personnel?

• Where will the electronic research data be study be stored (University-
provided database application like REDCap, IT file server, etc.)?

• If there a key that links code numbers to identifiers, that list should be 
kept separate from the coded data, including copies of signed informed 
consent forms. Additionally, access to that list/key must be restricted to 
authorized research personnel.

41

Data security, continued 

• Transporting or transmitting the data
• If any research data will be collected on a mobile device, such as an 

electronic tablet, cell phone, or wireless activity tracker, details are needed 
regarding the physical security of the device, electronic security, and how 
the transfer of data from device to research storage location will be securely 
accomplished.

• If any research data will be directly entered/sent by subjects over the 
internet or via email, will a University-provided database application (like 
REDCap) be used, or is there an encrypted tunnel to the site/application?

• Access to the data 
• How will the investigators ensure only approved research personnel have 

access to the stored research data? Password-protected files, role-based 
security, etc.? 

• Sharing of the data 
• Will data be transferred or disclosed to or from the University? Is a contract 

or data transfer agreement necessary? What (if any) identifiers will be 
included? How will the data be securely transferred or disclosed (University-
approved secure file transfer, etc.)?

42
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Using Social Media in your 
research 

Recruitment
• Seek to normalize social media recruitment to the extent 

possible, drawing analogies to traditional recruitment efforts

• Ensure that the proposed online recruitment strategy complies 
with all applicable federal and state laws, e.g.
• Recruitment advertisements
• Web site “Terms of Use”
• Tell potential subjects that information shared via social media is 

not secure. 

 https://catalyst.harvard.edu/pdf/regulatory/Social_M edia_Guidance.pdf 
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Using Social Media in your 
research 

Recruitment
• Assure compliance between recruitment techniques 

and policies/terms of service of relevant websites. 
• If a proposed technique conflicts with website policies and 

terms of service, request a written exception from the site, 
OR

• Depending on IRB policy, provide a statement explaining why 
the recruitment strategy warrants approval without an 
explicit exception, to be evaluated by the IRB with input from 
institutional legal counsel. 

 https://catalyst.harvard.edu/pdf/regulatory/Social_M edia_Guidance.pdf 
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Using Social Media in your 
research 

Recruitment
• Ensure that proposed social media recruitment strategies 

respect all relevant ethical norms, including:
• Proposed recruitment does not involve deception or 

fabrication of online identities
• Proposed recruitment does not involve members of research 

team ‘lurking’ or ‘creeping’ social media sites in ways 
members are unaware of
• Strategy must be sensitive to the privacy of potential participants 

and respectful of the norms of the community being recruited
• Recruitment will not involve advancements or contact that 

could embarrass or stigmatize potential subjects

https://catalyst.harvard.edu/pdf/regulatory/Social_Media_Guidance.pdf 
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Using Social Media in your 
research 

Recruitment
• Enlist enrolled participants to facilitate introduction 

between members of their network and the 
research team. Ensure that consent will be obtained 
from current participants before they approach 
members of their online network for recruitment via 
their network or

• Ensure that a communication plan is in place for 
how the research team will handle online 
communication from enrolled participants that 
threatens the integrity of study

https://catalyst.harvard.edu/pdf/regulatory/Social_Media_Guidance.pdf 
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Using Social Media in your research 
Data source
• A key issue in observational research using 

social media is whether the proposed 
project meets the criteria as human subjects 
research, and if so, what type of review is 
needed

• Identifiable/de-identified data
• Minimal risk/greater than minimal risk

47

Using Social Media in your research 
Data source
• How is the data collected, transferred, etc.

• Specify if research data will be collected as part of 
the recruitment process via social media. If so, 
describe what data will be collected. If that data is of 
a sensitive or confidential nature, describe how that 
data will be transferred to secure institutional 
servers and how will it be protected upon receipt. 

48
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And (111.b) When some or all of the subjects are likely to be vulnerable to 
coercion or undue influence, such as children, prisoners, individuals with 

impaired decision-making capacity, or economically or educationally 
disadvantaged persons, additional safeguards have been included in the 

study to protect the rights and welfare of these subjects. 

(set aside issues with children, pregnant women/fetuses, prisoners, 
regulations for which are codified in the Common Rule subparts---more 
on that in a moment)

• What are some considerations when determining if additional 
safeguards are necessary and sufficient?  

• Examples:
• For economically disadvantaged…is there payment? What 

is the amount?  schedule?
• For educationally disadvantaged…is the consent process 

particularly simplified? Should there be a witness to the 
consent process? 

49

That’s it for the .111 criteria…
but that’s not all! 

Pregnant Women?
Subpart B of 45 CFR 46

Prisoners?
Subpart C of 45 CFR 46

Children?
Subpart D of 45 CFR 46

 Department of Education (ED)? 
Family Educational Rights and Privacy Act (FERPA) (34 CFR 99)

 and the Protection of Pupil Rights Amendment (PPRA) (34 CFR 98) 
See resources provided by ED when developing your research protocol

Investigational Drugs, biologics, devices?
FDA regulations at 21 CFR 50, 21 CFR 56, 21 CFR 312, 21 CFR 812

HIPAA?
45 CFR Part 160 and Subparts A and E of Part 164

50
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Genetic risk prediction

Genotype of an individual Life-time risk of genetic disorders

(Common SNPs) (Common complex genetic disorders)

1

Model-based estimates of effect sizes

O’Connor, Nature Genetics 2021

2

12,000 independent GWAS signals for height!

708 | Nature | Vol 610 | 27 October 2022

Article

meta-analysis each PGS (and corresponding prediction accuracy) was 
trained from. For example, PGSGWS-METAFE refers to PGSs based on 12,111 
GWS SNPs identified from our METAFE.

We first present results from PGSGWS across different ancestry groups. 
PGSGWS-METAFE yielded prediction accuracies greater than or equal to 
that of all other PGSGWS (Fig. 4a), partly reflecting sample size differ-
ences between ancestry-specific GWASs and also consistent with  
previous studies29. PGSGWS-EUR (based on 9,863 SNPs) was the second 
best of all PGSGWS across ancestry groups except in AFR. Indeed, 
PGSGWS-AFR (based on 453 SNPs) yielded an accuracy of 8.5% (s.e. 0.6%) 
in AFR individuals from UKB and PAGE; that is, significantly larger than 
the 5.9% (s.e. 0.6%) and 7.0% (s.e. 0.6%) achieved by PGSGWS-EUR in these 
two samples, respectively (Fig. 4a). PGSGWS-METAFE was the best of  
all PGSGWS in AFR participants with an accuracy RGWS−METAFE

2   =  
(12.3% + 9.9%)/2 = 10.8% (s.e. 0.5%) on average between UKB and PAGE 
(Fig. 4a). Across ancestry groups, the highest accuracy of PGSGWS-METAFE 
was observed in EUR participants (RGWS−METAFE

2 ~40%; s.e. 0.6%) and the 
lowest in AFR participants from the UKB (RGWS−METAFE

2  ≈ 9.4%; s.e. 0.7%). 
Note that the difference in RGWS−METAFE

2  between the EUR and AFR  
ancestry cohorts is expected because of the over-representation of 
EUR in our METAFE, and consistent with a relative accuracy (RGWS−METAFE

2  
in AFR)/(RGWS−METAFE

2  in EUR) of around 25% that was previously 
reported30. We extended analyses of PGSGWS to PGS based on SNPs  
identified with COJO at lower significance thresholds (Extended Data 
Fig. 7). As in previous studies3,20, the inclusion of sub-significant SNPs 
increased the accuracy of ancestry-specific PGSs. However, lowering 
the significance thresholds in our METAFE mostly improved accuracy 
in EUR (from 40% to 42%), whereas it slightly decreased the accuracy  
in AFR.

Overall, ancestry-specific PGSHM3 consistently outperform their  
corresponding PGSGWS in most ancestry-groups. However, PGSHM3 was 
sometimes less transferable across ancestry groups than PGSGWS,  
in particular in AFR and HIS individuals from PAGE. In EUR, PGSHM3 
reaches an accuracy of 44.7% (s.e. 0.6%), which is higher than previously 
published SNP-based predictors of height derived from individual-level 

data31–33 and from GWAS summary statistics28,34,35 across various exper-
imental designs (different SNP sets, different sample sizes and so on). 
Finally, the largest improvement of PGSHM3 over PGSGWS was observed 
in AFR individuals from the PAGE study (RGWS−AFR

2  = 8.5% versus 
RHM3

2  = 15.4%; Fig. 4a) and the UKB (RGWS−AFR
2  = 8.5% versus RHM3

2  = 14.4%; 
Fig. 4a).

Furthermore, we sought to evaluate the prediction accuracy of 
PGSs relative to that of familial information as well as the potential 
improvement in accuracy gained from combining both sources of 
information. We analysed 981 unrelated EUR trios (that is, two parents  
and one child) and 17,492 independent EUR sibling pairs from the 
UKB, who were excluded from our METAFE. We found that height of 
any first-degree relative yields a prediction accuracy between 25% 
and 30% (Fig. 4b). Moreover, the accuracy of the parental average 
is around 43.8% (s.e. 3.2%), which is lower than yet not significantly 
different from the accuracy of PGSHM3-EUR in EUR. In addition, we found 
that a linear combination of the average height of parents and of the 
child’s PGS yields an accuracy of 54.2% (s.e. 3.2%) with PGSGWS-EUR and 
55.2% (s.e. 3.2%) with PGSHM3-EUR. This observation reflects the fact 
that PGSs can explain within-family differences between siblings, 
whereas average parental height cannot. To show this empirically, 
we estimate that our PGSs based on GWS SNPs explain around 33% 
(s.e. 0.7%) of height variance between siblings (Methods). Finally, 
we show that the optimal weighting between parental average 
and PGS can be predicted theoretically as a function of the predic-
tion accuracy of the PGS, the full narrow sense heritability and the  
phenotypic correlation between spouses (Supplementary Note 4 
and Supplementary Fig. 20).

In summary, the estimation of variance explained and prediction 
analyses in samples with European ancestry show that the set of 12,111 
GWS SNPs accounts for nearly all of hSNP

2 , and that combining SNP-based 
PGS with family history significantly improves prediction accuracy. 
By contrast, both estimation and prediction results show clear attenu-
ation in samples with non-European ancestry, consistent with previous 
studies30,36–38.
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Fig. 3 | Variance of height explained by HM3 SNPs within GWS loci.  
a, Stratified SNP-based heritability (hSNP

2 ) estimates obtained after partitioning 
the genome into SNPs within 35 kb of a GWS SNP ('GWS loci' label) versus  
SNPs that are more than 35 kb away from any GWS SNP. Analyses were 
performed in samples of five different ancestries or ethnic groups: European 
(EUR: meta-analysis of UK Biobank (UKB) + Lifelines study), African (AFR: 
meta-analysis of UKB + PAGE study), East Asian (EAS: meta-analysis of UKB + 

China Kadoorie Biobank), South Asian (SAS: UKB) and Hispanic (HIS: PAGE).  
Error bars represent standard errors. b, More than 90% of hSNP

2  in all ancestries 
is explained by SNPs within GWS loci identified in this study. The cumulative 
length of non-overlapping GWS loci is around 647 Mb; that is, around  
21% of the genome, assuming a genome length of around 3,039 Mb (ref. 26).  
The proportion of HM3 SNPs in GWS loci is around 27%.

Yengo et al., Nature 2022

3

Effect sizes of individual variants are very 
small

• Genotype at a single locus carries very little  
information about phenotype.

• It does not mean that one cannot predict phenotype 
from genotype.

• Accuracy (r2) of an ideal genetic predictor equals 
heritability.

4

BLUP – Best Linear Unbiased 
Predictor
• Infinitesimal model
• Genetic effects are random
• Predict the expected genetic 

effect

5

6

individual at SNP k is the number of one of its alleles ad-
justed by 2pk. Residual effects have mean zero and variance
Is2

e .

Statistical methods

Following Henderson (1973), the breeding value of individ-
ual i can be estimated by BLUP as

ĝi ¼ Gi2ðGþ IlÞ21ðy21m̂Þ;

where Gi2 ¼ z9iZ9 is a vector of genomic relationships be-
tween individual i and the training individuals, z9i is a vector
of adjusted SNP genotype scores of individual i, and
l ¼ s2

e=s
2
b. The overall mean, m, is estimated by generalized

least squares.

The three types of quantitative-genetic information

In pedigree analyses that model LD and cosegregation
explicitly (e.g., Pérez-Enciso 2003), genotype scores are re-
alized values of random processes that start with the sam-
pling of founder alleles and continue with the transmission
of those alleles from generation to generation down the
pedigree. Founder alleles from different loci, but on the
same gamete, are not sampled independently if loci are in
LD; and nonfounder alleles from different loci, but on the
same gamete, are not transmitted independently if loci are
linked. We define the following:

Linkage disequilibrium: Statistical dependency between
alleles at two or more loci on the same gamete. It is
measured only in founders and therefore summarizes
historic population events and describes genetic relation-
ships between founders.

Cosegregation: Deviation from independent segregation of
alleles on the same gamete if loci are linked. In other
words, it describes the inheritance of alleles at linked
loci. Thus, it is unnecessary to measure LD either in
nonfounder generations or within families, because
such LD is sufficiently explained by LD in founders
and cosegregation.

Additive-genetic relationships: Statistical dependency be-
tween alleles from the same locus but from two different
gametes. In genomic BLUP, any SNP can contribute ad-
ditive-genetic relationship information between two indi-
viduals at QTL because, if there is a possibility that the
SNP alleles on the two gametes can be traced back to
a common founder allele, the same would be true at
any QTL.

In pedigree analyses, these principles used to model
dependence between allele states at different loci on
a gamete are analogous to those used to model additive-
genetic covariances between pedigree members, using
a single additive-genetic variance defined in the founders
together with the additive-genetic relationship matrix con-
structed for the pedigree. In many analyses, however, the
pedigree is ignored and only a single value of LD is used to

characterize the dependence between alleles at different
loci. In modeling covariances, this is analogous to ignoring
the pedigree and estimating a single additive-genetic
variance for the entire pedigree, which is not done in
practice. In other situations, LD is defined for each family.
This is analogous to defining a family-specific additive-
genetic variance, which also is not done.

Simulations

The aim was to study contributions of LD, cosegregation,
and additive-genetic relationships to accuracy of GEBVs in
dairy cattle and corn breeding scenarios. Factors analyzed
were SNP density, training data size, extent of LD, and
different relationships between training and validation
individuals.

Designs for analyzing different types of information

Four designs were considered that differ in the types of
genetic information utilized in genomic BLUP. As summa-
rized in Table 1, these designs utilized (1) only founder LD
(LD only), (2) only additive-genetic relationships (RS) (RS
only), (3) additive-genetic relationships and cosegregation
(CS) (RS + CS), and (4) all three sources of information
(RS + CS+ LD). In LD only, training and validation individuals
were unrelated, whereas in all other cases each validation
individual had the same number of relatives in training. In
RS only, QTL were located on different chromosomes than
SNPs to avoid linkage between these two types of loci, and
chromosomes carrying the QTL were simulated indepen-
dently from the chromosomes with SNPs to exclude LD be-
tween QTL and SNPs. In designs with cosegregation or LD,
all loci were located on the same chromosomes to ensure
linkage. In the RS + CS design, QTL and SNPs were in
linkage equilibrium by resampling founder alleles at QTL,
using founder allele frequencies. Importantly, SNPs were
always in LD, because this has a large effect on capturing
information from additive-genetic relationships and cosegre-
gation. In RS + CS + LD, QTL and SNPs were in LD.

Pedigree structure

Two types of pedigrees were simulated as summarized in
Table 2: one represents a cross-validation scenario from
dairy cattle breeding, and the other one is a top-cross design

Table 1 Simulated designs that differ in the quantitative-genetic
information available for genomic prediction

QTL and SNPs are

Design Linked In LDa SNPs are in LDa Relatedb

LD only Yes Yes Yes No
RS only No No Yes Yes
RS + CS Yes No Yes Yes
RS + CS + LD Yes Yes Yes Yes
a LD measured in founders.
b Training and validation individuals are related.

Genomic BLUP decoded 599

6
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Accuracy of polygenic prediction in 
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Figure 3 | Calculation of number of animals in a reference population and 
accuracy of breeding values. a | Number of animals needed in a reference 
population. To achieve an accuracy of 0.7 for estimated genomic breeding values 
(GEBVs) calculated from SNPs requires an increasing number of animals in the 
reference population as the heritability declines or the N

e 
of the population increases. 

b | Accuracy of GEBVs of un-phenotyped individuals with increasing number of 
phenotype records in the reference population used to estimated SNP effects, for 
different heritabilities (h2). N

e
 was 100.

food conversion rate in broilers when genomic predic-
tions of phenotype were used compared with pedigree  
predictions of phenotype.

Some of the statistical methods for genomic selection 
have been reviewed elsewhere54,55. The various meth-
ods make assumptions about the distribution of SNP  
effects on the trait, such as the proportion of the SNPs 
that have any effect on the trait. The best results have 
been obtained by methods that assume that many 
thousands of SNPs have an effect on traits such as milk 
yield48, which is consistent with the results of GWA stud-
ies26 (M.E.G. and B.J.H., unpublished observations). If 

many SNPs have an effect, these effects on average must 
be small. To estimate small effects accurately requires a 
large sample size and, not surprisingly, the accuracy of 
genomic selection increases as sample size increases, at 
least up to a reference population size of 3,500 (REF. 48).

We have developed an analytical method for predict-
ing the accuracy of genomic selection54,56 assuming that 
all SNPs have an effect and these effects are normally 
distributed. The size of the reference population that is 
needed to achieve a given accuracy is shown in FIG. 3.  
Unless the Ne is small, a large sample of animals is 
needed in the reference population if accurate predic-
tion of breeding value is desired. This theory predicts the  
upper limit of the number of animals required. If  
the SNP effects are not normally distributed, with some 
large effects and many SNPs with no effect, the number 
of animals needed is reduced54.

Challenges for genomic selection. The major challenge is 
assembling the large reference population that is required 
to accurately estimate SNP effects. In some cases this 
has been achieved; for example, a project run by the US 
Department of Agriculture has assembled a reference 
population of approximately 6,700 dairy bulls, leading to 
an accuracy of genomic breeding values for young dairy 
bulls of greater than 0.8 (REF. 57). These accuracies are  
sufficiently high that some US breeding companies  
are marketing semen from young bulls on the basis of 
their DNA and pedigree information alone. Smaller ref-
erence populations of dairy bulls have been assembled in 
Australia, New Zealand and the Netherlands, resulting 
in impressive but lower accuracies of genomic breeding 
values50. Another major challenge, particularly in the 
beef cattle and sheep industries, is the involvement of 
multiple breeds. Given the limited extent of LD across 
breeds, large multi-breed reference populations must be 
assembled and genotyped for many (>300,000) SNPs 
before genomic selection can be applied.

There are still several unknowns in the implemen-
tation of genomic selection. For instance, how often 
will the marker effects have to be re-estimated and new 
markers discovered? The cost of genotyping may delay 
implementation in species such as sheep and chickens, in 
which individual animals are less valuable than in cattle. 
However, even in these species, selection in the top lay-
ers of the stud pyramid should prove profitable because 
the benefits can be recouped from a large population 
descended from the genotyped and selected animals.

The future
The benefits from the study of complex traits in domes-
tic species are an increase in scientific knowledge and 
practical improvements in breeding programmes. 
Large populations with recorded phenotypes exist and, 
in some cases, there are males with accurate estimates 
of breeding value for traits that are based on a prog-
eny test, allowing designed mating programmes to be 
implemented. The breeds within a species show a large 
amount of genetic variation owing to deliberate selec-
tion and genetic drift in populations of small Ne. Long-
range LD within a breed, but not between breeds, allows 
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Figure 2. Prevalence of coronary calcium by lipid exposure before age 35 years, by race and sex.
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• An estimate of the long-term risk at birth

• Genetic risk can be combined with biomarkers and clinical 
features 

• Genetics explains about 50% of risk. One cannot predict 
risk any better than that but 50% is a non-trivial 
proportion of risk

Why estimate genetic risk?

13

Applications in humans
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Common polygenic variation contributes to risk of
schizophrenia and bipolar disorder
The International Schizophrenia Consortium*

Schizophrenia is a severe mental disorder with a lifetime risk of
about 1%, characterized by hallucinations, delusions and cognitive
deficits, with heritability estimated at up to 80%1,2. We performed a
genome-wide association study of 3,322 European individuals with
schizophrenia and 3,587 controls. Here we show, using two analytic
approaches, the extent to which common genetic variation underlies
the risk of schizophrenia. First, we implicate the major histocompati-
bility complex. Second, we provide molecular genetic evidence for a
substantial polygenic component to the risk of schizophrenia invol-
ving thousands of common alleles of very small effect. We show that
this component also contributes to the risk of bipolar disorder, but
not to several non-psychiatric diseases.

We genotyped the International Schizophrenia Consortium (ISC)
case-control sample for up to ,1 million single nucleotide poly-
morphisms (SNPs), augmented by imputed common HapMap
SNPs. In the genome-wide association study (GWAS; genomic con-
trol lGC 5 1.09; Supplementary Table 1 and Supplementary Figs
1–3), the most associated genotyped SNP (P 5 3.4 3 1027) was
located in the first intron of myosin XVIIIB (MYO18B) on chro-
mosome 22. The second strongest association comprised more than
450 SNPs on chromosome 6p spanning the major histocompatibility
complex (MHC; Fig. 1). There is some evidence for between-site
heterogeneity in both allele frequencies and odds ratios (Table 1).
We observed associations consistent with previous reports in the
22q11.2 deletion region and ZNF804A (ref. 3) (Supplementary

Table 2, Supplementary Fig. 2 and section 5 and 6 in Supplemen-
tary Information).

The best imputed SNP, which reached genome-wide significance
(rs3130297, P 5 4.79 3 1028, T allele odds ratio 5 0.747, minor allele
frequency (MAF) 5 0.114, 32.3 megabases (Mb)), was also in the
MHC, 7 kilobases (kb) from NOTCH4, a gene with previously
reported associations with schizophrenia4. We imputed classical
human leukocyte antigen (HLA) alleles; six were significant at
P , 1023, found on the ancestral European haplotype5 (Table 1, Sup-
plementary Table 3 and section 3 in Supplementary Information).
However, it was not possible to ascribe the association to a specific
HLA allele, haplotype or region (Supplementary Table 3 and
Supplementary Fig. 4).

We exchanged GWAS summary results with the Molecular
Genetics of Schizophrenia (MGS) and SGENE consortia for geno-
typed SNPs with P , 1023. There were 8,008 cases and 19,077 controls
of European descent in the combined sample (see refs 6, 7 and section
7 in Supplementary Information). Our top genotyped MHC SNP
(rs3130375) had P 5 0.086 and P 5 0.14 in MGS and SGENE, respec-
tively. Considering the combined results for genotyped and imputed
SNPs across the MHC region more broadly, rs13194053 had a
genome-wide significant combined P 5 9.5 3 1029 (ISC, MGS and
SGENE: P 5 3 3 1024, 1 3 1022 and 1 3 1024, respectively; C allele

25.7 32.3
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Figure 1 | Association results across the MHC region. Results are shown as
–log10(P value) for genotyped SNPs. The most associated SNP is shown as a
blue diamond. The colour of the remaining markers reflects r2 with
rs3130375, light pink, r2 . 0.1, red, r2 . 0.8. The recombination rate from
the CEU HapMap (second y axis) is plotted in light blue.

Table 1 | MHC association for the most significant genotyped SNP
rs3130375

a MHC association for rs3130375 by sample

Frequency (rs3130375, A allele)

Sample Ancestry Cases Controls P value

University of Aberdeen Scottish 0.132 0.168 0.0060
University of Edinburgh Scottish 0.137 0.135 0.8930
University College London* British 0.132 0.143 0.4836
Trinity College Dublin Irish 0.110 0.170 0.0012
Cardiff University Bulgarian 0.077 0.084 0.5602
Portuguese Island Collection Portuguese 0.048 0.061 0.3510
Karolinska Institutet (5.0) Swedish 0.043 0.119 0.0004
Karolinska Institutet (6.0) Swedish 0.089 0.142 0.0040

b MHC association for classical HLA alleles with P , 1 3 1023

HLA allele Frequency{ Odds ratio P value

HLA-A*0101 0.103 0.785 4 3 1025

HLA-C*0701 0.113 0.778 5 3 1025

HLA-B*0801 0.068 0.757 3 3 1025

HLA-DRB*0301 0.121 0.768 3 3 1026

HLA-DQB*0201 0.210 0.857 4 3 1024

HLA-DQA*0501 0.205 0.798 6 3 1027

Total sample Cochran–Mantel–Haenszel P 5 4 3 1027; Breslow–Day heterogeneity test
P 5 0.012 (d.f. 5 6).
* SNP failed genotyping quality control in UCL. Allele frequency for UCL based on imputed
genotypes.
{ Frequency is estimated population frequency.

*Lists of authors and their affiliations appear at the end of the paper.

Vol 460 | 6 August 2009 | doi:10.1038/nature08185

748
 Macmillan Publishers Limited. All rights reserved©2009

• LD-prune
• Exclude SNPs of very small effect

14

Extensions of BLUP – multiple variance scales 
and binary phenotypes

MultiBLUP:   Speed and Balding. Genome Research 2014

Bayesian analysis:  MacLeod et al. Genetics 2014

BSLMM:    Zhou et al. PLOS Genetics 2013

GeRSI:    Golan and Rossett. AJHG 2014

15

• Summary statistics are easily available

• Most methods require a separate small individual level dataset to 
tune parameters

16

Methods that work with summary statistics

16

LDPred – a Bayesian method using summary 
statistics

mean centered and standardized to have variance 1. Wemodel the

phenotype as a linear combination of M genetic effects and an in-

dependent environmental effect ε, i.e., Y ¼
PM

i¼1Xibi þ ε, whereXi

denotes the ith genetic variant, bi is its true effect, and ε is the envi-
ronmental and noise contribution. In this setting, the (marginal)

least-squares estimate of an individual marker effect is
bbi ¼ X0iY=N. For clarity, we implicitly assume that we have the

standardized effect estimates available to us as summary statistics.

In practice, we usually have other summary statistics, including

the p value and direction of the effect estimates, from which we

infer the standardized effect estimates. First, we exclude all

markers with ambiguous effect directions, i.e., A/T and G/C

SNPs. Second, from the p values we obtain Z scores and multiply

them by the sign of the effects (obtained from the effect estimates

or effect direction). Finally, we approximate the least-squares esti-

mate for the effect by bbi ¼ siðzi=
ffiffiffiffi
N
p
Þ, where si is the sign, and zi is

the Z score obtained from the p value. If the trait is a case-control

trait, this transformation from the p value to the effect size can be

thought of as being an effect estimate for an underlying quantita-

tive liability or risk trait.35

Unadjusted PRS
The unadjusted PRS is simply the sum of all the estimated marker

effects for each allele, i.e., the standard unadjusted polygenic score

for the ith individual is Si ¼
PM

j¼1Xji
bbj, where Xji denotes the geno-

type for the ith individual and the jth genetic variant.

PþT
In practice, the prediction accuracy is improved if the markers are

LD pruned and p value pruned a priori. Informed LD pruning

(also known as LD clumping), which preferentially prunes the

less significant marker, often yields much more accurate predic-

tions than pruning randommarkers. Applying a p value threshold,

i.e., using onlymarkers that achieve a given significance threshold,

also improves prediction accuracies formany traits and diseases. In

this paper, PþT refers to the strategy of first applying informed LD

pruning with r2 threshold 0.2 and subsequently applying p value

thresholding, where the p value threshold is optimized over a

grid with respect to prediction accuracy in the validation data.

Bpred: Bayesian Approach in the Special Case
of No LD
Under a model, the optimal linear prediction given some statistic

is the posterior mean prediction. This prediction is optimal in the

sense that it minimizes the prediction error variance.36 Under the

linear model described above, the posterior mean phenotype

given GWAS summary statistics and LD is

E
"
Y j ~b; bD

#
¼
XM

i¼1
X0iE

"
bi j ~b; bD

#
:

Here, ~b denotes a vector of marginally estimated least-squares es-

timates obtained from the GWAS summary statistics, and bD refers

to the observed genome-wide LD matrix in the training data, i.e.,

the samples for which the effect estimates are calculated. Hence,

the quantity of interest is the posterior mean marker effect given

LD information from the GWAS sample and the GWAS summary

statistics. In practice, we might not have this information avail-

able to us and are forced to estimate the LD from a reference panel.

In most of our analyses, we estimated the local LD structure in the

training data from the independent validation data. Although this

choice of LD reference panel can lead to small bias when one esti-

mates individual prediction accuracy, this choice is valid when-

ever the aim is to calculate accurate PRSs for a cohort without

knowing the case-control status a priori. In other words, it is an

unbiased estimate for the PRS accuracy when the validation data

are used as an LD reference, which we recommend in practice.

The variance of the trait can be partitioned into a heritable part

and the noise, i.e., VarðYÞ ¼ h2
gQþ ð1% h2

g ÞI, where h2
g denotes the

heritability explained by the genotyped variants, and Q ¼ XX0=M

is the SNP-based genetic relationship matrix. We can obtain a trait

with the desired covariance structure if we sample the betas

independently with mean 0 and variance h2
g=M. Note that if the ef-

fects are independently sampled, then this also holds true for corre-

latedgenotypes, i.e.,when there isLD.However, LDwill increase the

variance of heritability explained by the genotypes as estimated

from the data (as a result of fewer effective independent markers).

If all samples are independent and all markers are unlinked and

have effects drawn from a Gaussian distribution, i.e.,

bi&iidNð0; ðh2
g=MÞÞ, then this is an infinitesimal model,37 where

all markers are causal. Under this model, the posterior mean can

be derived analytically, as shown by Dudbridge15:

E
$
bi j ~b

%
¼ E

$
bi j ~bi

%
¼
 

h2
g

h2
g þ M

N

!
~bi:

Interestingly, with unlinked markers, the infinitesimal shrink

factor times the heritability, i.e.,

 
h2
g

h2
g þ M

N

!
h2
g ;

is the expected squared correlation between the unadjusted PRS

(with unlinked markers) and the phenotype, regardless of the

underlying genetic architecture.38,39

An arguably more reasonable prior for the effect sizes is a non-

infinitesimal model, where only a fraction of the markers are

causal. For this, consider the following Gaussian mixture prior:

bi&iid

8
>><

>>:

N

 
0;

h2
g

Mp

!
with probability p

0 with probability ð1% pÞ;

where p is the probability that a marker is drawn from a Gaussian

distribution, i.e., the fraction of causal markers. Under this model,

the posterior mean can be derived as (see Appendix A)

E
$
bi j ~bi

%
¼

 
h2
g

h2
g þ

Mp

N

!
pi~bi;

where pi is the posterior probability that the i
thmarker is causal and

can be calculated analytically (see Equation A1 in Appendix A).

In our simulations, we refer to this Bayesian shrink without LD as

Bpred.

LDpred: Bayesian Approach in the Presence of LD
If we allow for loci to be linked, then we can derive posterior mean

effects analytically under a Gaussian infinitesimal prior (described

above). We call the resulting method LDpred-inf, and it represents

a computationally efficient special case of LDpred. If we assume

that distantmarkers are unlinked, the posteriormean for the effect

sizes within a small region l under an infinitesimal model is well

approximated by
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Extreme tails in the distributions of genetic risk scores are 
highly predictive LETTERSNATURE GENETICS

traditional analytic strategy for monogenic mutations, we defined 
‘carriers’ as individuals with GPSCAD above a given threshold and 
‘non-carriers’ as all others.

We found that 8% of the population had inherited a genetic  
predisposition that conferred ≥  threefold increased risk for CAD 
(Table 2). Strikingly, the polygenic score identified 20-fold more 
people at comparable or greater risk than were found by familial 
hypercholesterolemia mutations in previous studies6,7. Moreover, 
2.3% of the population (‘carriers’) had inherited ≥  fourfold 
increased risk for CAD and 0.5% (‘carriers’) had inherited ≥  five-
fold increased risk. GPSCAD performed substantially better than 
two previously published polygenic scores for CAD that included 
50 and 49,310 variants, respectively (Supplementary Table 7 and 
Supplementary Fig. 1)17,18.

GPSCAD has the advantage that it can be assessed from the time 
of birth, well before the discriminative capacity emerges for the risk 
factors (for example, hypertension or type 2 diabetes) used in clini-
cal practice to predict CAD. Moreover, even for our middle-aged 
study population, practising clinicians could not identify the 8% of 
individuals at ≥  threefold risk based on GPSCAD using conventional 
risk factors in the absence of genotype information (Supplementary 
Table 8). For example, conventional risk factors such as hypercholes-
terolemia were present in 20% of those with ≥  threefold risk based 
on GPSCAD versus 13% of those in the remainder of the distribution. 
Hypertension was present in 32 versus 28%, and a family history 
of heart disease was present in 44 versus 35%, respectively. Making 
high GPSCAD individuals aware of their inherited susceptibility may 
facilitate intensive prevention efforts. For example, we previously 
showed that a high polygenic risk for CAD may be offset by one of 
two interventions: adherence to a healthy lifestyle or cholesterol-
lowering therapy with statin medications19–21.

Our results for CAD generalized to the four other diseases: 
risk increased sharply in the right tail of the GPS distribution 
(Fig. 3). For each disease, the shape of the observed risk gradi-
ent was consistent with predicted risk based only on the GPS 
(Supplementary Figs. 2 and 3).

Atrial fibrillation is an underdiagnosed and often asymptomatic 
disorder in which an irregular heart rhythm predisposes to blood 
clots and is a leading cause of ischemic stroke22. The polygenic  

0

0.1

0.2

0.3

0.4
a b c

–4 –2 0 2 4

Genome-wide polygenic score for CAD

D
en

si
ty

0

10

20

30

40

50

60

70

80

90

100

Control Case

CAD

P
ol

yg
en

ic
 s

co
re

 p
er

ce
nt

ile

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90 100

Percentile of polygenic score

P
re

va
le

nc
e 

of
 C

A
D

 (
%

)

Odds ratio versus
remainder of population

> threefold (8.0%)
> fourfold (2.3%)
> fivefold (0.5%)

Fig. 2 | Risk for CAD according to GPS. a, Distribution of GPSCAD in the UK Biobank testing dataset (n!= !288,978). The x!axis represents GPSCAD, with values 
scaled to a mean of 0 and a standard deviation of 1 to facilitate interpretation. Shading reflects the proportion of the population with three-, four-, and 
fivefold increased risk versus the remainder of the population. The odds ratio was assessed in a logistic regression model adjusted for age, sex, genotyping 
array, and the first four principal components of ancestry. b, GPSCAD percentile among CAD cases versus controls in the UK Biobank testing dataset.  
Within each boxplot, the horizontal lines reflect the median, the top and bottom of each box reflect the interquartile range, and the whiskers reflect 
the maximum and minimum values within each grouping. c, Prevalence of CAD according to 100 groups of the testing dataset binned according to the 
percentile of the GPSCAD.

Table 2 | Proportion of the population at three-, four- and 
fivefold increased risk for each of the five common diseases

High GPS definition Individuals in testing 
dataset (n)

% of individuals

Odds ratio ≥3.0
 CAD 23,119/288,978 8.0

 Atrial fibrillation 17,627/288,978 6.1
 Type 2 diabetes 10,099 288,978 3.5

 Inflammatory bowel 
disease

9,209 288,978 3.2

 Breast cancer 2,369/157,895 1.5
 Any of the five diseases 57,115/288,978 19.8
Odds ratio ≥4.0

 CAD 6,631/288,978 2.3
 Atrial fibrillation 4,335/288,978 1.5
 Type 2 diabetes 578/288,978 0.2
 Inflammatory bowel 
disease

2,297/288,978 0.8

 Breast cancer 474/157,895 0.3
 Any of the five diseases 14,029/288,978 4.9
Odds ratio ≥5.0

 CAD 1,443/288,978 0.5
 Atrial fibrillation 2,020 288,978 0.7
 Type 2 diabetes 144/288,978 0.05
 Inflammatory bowel 
disease

571/288,978 0.2

 Breast cancer 158/157,895 0.1

 Any of the five diseases 4,305/288,978 1.5

For each disease, progressively more extreme tails of the GPS distribution were compared with the 
remainder of the population in a logistic regression model with disease status as the outcome, and 
age, sex, the first four principal components of ancestry, and genotyping array as predictors. The 
breast cancer analysis was restricted to female participants.
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With some caveats

Martin et al., AJHG  2017
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Linear models for genetic risk prediction

𝑦! = #
"

𝛽" 	𝑥!"

Genetic risk of
individual 𝑖

Effect size of SNP 𝑗

Genotype of SNP 𝑗 and individual 𝑖
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“Polygenic scores” can leverage summary statistics from a large 
GWAS study

'𝑦! = #
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Predicted genetic risk

Estimated effect size
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Causal SNPs

Non-causal SNPs

“Polygenic scores” can leverage summary statistics from a large 
GWAS study
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Sampling error
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Causal SNPs

Non-causal SNPs

“Polygenic scores” can leverage summary statistics from a large 
GWAS study
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P-value Thresholding
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P-value thresholding can be reformulated as “shrinking” 
estimated effect sizes
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The optimal polygenic score can be constructed with 
“conditional mean effects”
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Goddard et al. 2009

Conditional mean effect
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• Correlation between apparent true genetic effects

𝛽$ 𝛽%

𝛽$ 𝛽%Estimated effects:

True effects:

LD effect

SNP

LD block

Accounting for LD in summary data is a major challenge

26

Accounting for LD in summary data is a major challenge

• Correlation between apparent true genetic effects

• Correlation between sampling errors

𝛽$ 𝛽%

𝛽$ 𝛽%Estimated effects:

True effects:

GWAS Controls GWAS Cases
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Our approach (“Non-Parametric Shrinkage” or NPS)

• No explicit specification of genetic architecture prior, thus “non-
parametric”

• Learn conditional mean effects directly from training data

• Fully account for correlation in summary statistics
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• No explicit specification of genetic architecture prior, thus “non-
parametric”

• Learn conditional mean effects directly from training data

• Fully account for correlation in summary statistics

1. How to estimate 𝐸 𝛽" 	|	 .𝛽"  without a Bayesian prior on 𝜷  

2. How to deal with LD

Our approach (“Non-Parametric Shrinkage” or NPS)
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Piecewise linear interpolation on shrinkage curve
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Decorrelating linear projection 𝒫

𝚺 is a local LD matrix and 𝚺 = 𝑸	𝜦	𝑸6  by eigenvalue decomposition
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Accuracy of the 5% tail

Chun et al. AJHG  2020
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Other shrinkage methods: PRS-CS
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Lassosum – extension of LASSO

BayesR

the LD correlation matrix between the genotypes at all markers in the population,
in which the genotypes in the sample are assumed to be a random sample, with bB
an estimate calculated from a population reference that is assumed to closely
resemble the sample used to generate the GWAS summary statistics. Zhu and
Stephens39 discuss further the theoretical properties of a similar likelihood. We
assess the limits of replacing D and B with these approximations through
simulation and real data analysis.

We perform Bayesian posterior inference by assuming a prior on the multiple
regression genetic effects and the posterior

pðβjb;D;BÞ / pðbjβ;D;BÞpðβjD;BÞ: ð5Þ

In this paper we implement the BayesR model24,26, which assumes that

βjjπ; σ
2
β ¼

0 with probability π1;

$ Nð0; γ2σ
2
βÞ with probability π2;

..

.

$ Nð0; γCσ
2
βÞ with probability 1%

PC%1
c¼1 πc;

8
>>>>><

>>>>>:

where C denotes the maximum number of components in the finite mixture model,
which is prespecified. The γc coefficients are prespecified and constrain how the
common marker effect variance σ2

β scales in each distribution. In previous
implementations of BayesR the variance weights γ were with respect to the genetic
variance σ2

g. For example, it is common in the BayesR model to assume C = 4 such
that γ= (γ1, γ2, γ3, γ4)′= (0, 0.0001, 0.001, 0.01)′. This requires the genotypes to be
centred and scaled and equates the genetic variance σ2

g ¼ mσ2
β , where m is the

number of variants. We relax this assumption to disentangle the relationship
between these parameters and to maintain the flexibility of the model to assume
scaled or unscaled genotypes. In this implementation, we let the weights be with
respect to σ2

β and have a default γ= (0, 0.01, 0.1, 1.0)′, which maintains the relative
magnitude of the variance classes as in the original model. Supplementary Notes 2–
4 detail further the hierarchical model and hyperparameter prior specification.
Supplementary Note 3 details the derivation of the Markov chain Monte Carlo
Gibbs sampling routine for sampling of the key model parameters θ ¼
ðβ0;π0; σ2

β; σ
2
ε Þ
0 from their full conditional distributions. We assume that the prior

for σ2
β is a scaled inverse χ2 distribution with density

f σ2
β; νβ; S2

β

! "
¼

S2
βνβ=2

! "νβ=2

Γ νβ=2
! "

exp %νβS2
β=2σ2

β

! "

σ2
β

! "1þνβ=2
;

where S2
β and νβ are the scale parameter and degrees of freedom, respectively. The

residual variance σ2
ε is assumed to have scaled inverse χ2 distribution prior with

distribution

f σ2
e ; νε; S

2
ε

# $
¼

S2
ενε=2

# $νε=2

Γ νε=2ð Þ
exp %νεS2

ε=2σ2
e

# $

σ2
e

# $1þνε=2
:

SNP-based heritability estimation is performed by calculating h2
SNP ¼ σ2

g=ðσ2
ε þ

σ2
gÞ at each iteration i of the MCMC chain, where the genetic variance σ2

g is
estimated via the sample variance of the vector Xβ(i) for each observed β(i) in
iteration i and σ2

ε by the sampled residual variance at the ith iteration (see
Supplementary Notes 3 and 4 for further details). Point estimates of h2

SNP are then
summarised from the generated posterior distribution.

To illustrate why the Gibbs sampling routine proposed lends itself to the use of
summary statistics, we focus on the full conditional distribution of βj under the
proposed multiple regression model. To facilitate the explanation we make the
simplifying assumption that C = 2 and γ= (γ1, γ2) = (0, 1). The full conditional
distribution of βj under this assumption (see Supplementary Note 3) is

f βjjθ%βj0
y

! "
/ exp % 1

2

βj%β̂j

! "2

σ2
ε=lj

2

64

3

75; ð6Þ

where lj ¼ x0jxj þ σ2
ε=σ

2
β

! "
and β̂j ¼ x0j½y % X%jβ%j(=lj ¼ x0jw=lj , where X−j is X

without the jth column. The term lj only involves the diagonal elements of X′X and

is easily calculated from summary statistics via X0Xj ¼ D
1
2BD

1
2. For β̂j , we require

rj ¼ x0jw: ð7Þ

This quantity can be efficiently stored and calculated in each MCMC iteration
via a right-hand side updating scheme. We define the right-hand side X′y corrected
for all current β as

r) ¼ X0y % X0Xβ; ð8Þ

where r∗ is a vector of dimension p × 1. The jth element of r∗ can be used to

calculate

rj ¼ x0jw ¼ r)j þ x0jxjβj: ð9Þ

Therefore, once a variant has been chosen to be in the model its effect is
sampled from Eq. (6), which is the kernel of the normal distribution with mean β̂j

and variance σ2
e=lj . After the effect for variant j has been sampled we update

ðr)Þðiþ1Þ ¼ ðr)ÞðiÞ % X0xjðβ
ðiþ1Þ
j % βðiÞj Þ ð10Þ

Importantly, after the initial reconstruction of X′y = Db from summary
statistics, Eq. (10) only requires X′xj, which is the jth column of X′X. The operation
in Eq. (10) is a very efficient vector subtraction and only requires the subtraction of
the nonzero elements of the shrinkage estimator of the LD correlation matrix from
Wen and Stephens33, which we perform by using sparse vector operations. The
other elements of the Gibbs sampling routine are the same as the individual data
model, except for the sampling of σ2

ε , which is outlined in Supplementary Note 3.

Reference LD matrix construction. The summary statistics methods used require
the construction of a reference LD correlation matrix. Typically this is done
through the use of a fixed 1–10-Mb window approach, as in GCTA-SBLUP or
LDpred, which sets LD correlation values outside this window to zero. Zhu and
Stephens39 detail the reasons for using the shrinkage estimator of the LD matrix33,
which shrinks the off-diagonal entries of the LD correlation matrix towards zero
and is required for the RSS39. Experimentation with different types of sparse LD
correlation matrices led to the conclusion that the shrinkage estimator was the
most stable for SBayesR implementation. Briefly, each element of the reference LD
correlation matrix Bij is shrunk by the factor exp ð%ρij=2mÞ, where m is taken to be
the sample size used to generate the genetic map, ρij is an estimate of the
population-scaled recombination rate between SNPs i and j taken as ρij ¼ 4Necij ,
for Ne the effective population size and cij the genetic distance between sites i and j
in centimorgans as stated in Li and Stephens66. LD matrix entries are set to zero if
exp ð%ρij=2mÞ is less than a user-chosen cutoff.

Genetic distance between sites is derived from the genetic map files containing
interpolated map positions for the CEU population generated from the 1000G
OMNI arrays (Data availability). The calculation of the shrunk LD matrix requires
the effective population sample size, which we set to be 11,400 (as in Zhu and
Stephens39), the sample size of the genetic map reference, which corresponds to the
183 individuals from the CEU cohort of the 1000G and the hard threshold on the
shrinkage value, which we set to 10−3. This threshold gave a good balance between
computational efficiency and accuracy with, on average, each SNP having a
window width of 10.6 Mb (SD = 5.6 Mb) across the autosomes (Supplementary
Fig. 22). The shrunk LD matrix is stored in a sparse matrix format (ignoring matrix
elements equal to 0) for efficient SBayesR computation. Currently, the LD matrix
construction can only be performed with PLINK hard-call genotypes.

The simulation study on chromosomes 21 and 22 established that an LD
reference cohort of 50,000 random individuals from the UKB gave the highest
SBayesR prediction accuracy and lowest bias in h2

SNP estimation (Supplementary
Note 1). The overlap between this random subsample with the 100,000 random
individuals used to generate the simulated phenotypes was 13,967. This same set of
50,000 individuals was used for LD reference calculation in LDpred, SBLUP and for
P + T clumping. For this 50,000-individual UKB cohort, chromosome-wise LD
matrices, that is, all interchromosomal LD is ignored, were built, and the shrinkage
estimator of the LD matrix calculated by using an efficient implementation in the
GCTB software. This was performed for the 1,094,841 HM3 and the 2,865,810
UKB-pruned common variant sets. The total time and memory used to compute
the SBayesR LD reference is not included in the time assessment results in the main
text. The building of the sparse LD reference for SBayesR HM3 variants took in
total 13 1/3 CPU days and ~500 GB of memory. SBayesR can compute the sparse
LD matrix in parallel via dividing each chromosome into genomic chunks. We
used 100 CPUs to compute the LD matrix, which brought the average runtime and
memory for computing each LD matrix chunk to 3.25 h and 5 GB. These
chromosome-wise LD matrices are a once-off computation cost that can be
distributed with the programme and were used for all SBayesR and RSS analysis in
the genome-wide simulation and further analyses using this HM3 variant set.

Genome-wide simulation method initialisation. HEreg was performed using the
GCTA software and requires a genetic relatedness matrix (GRM), which was built
from the 1,094,841 genome-wide HM3 variants in the GCTA software. LDpred was
run genome-wide and we specified h2

SNP to be equal to the true simulated value,
specified the number of SNPs on each side of the focal SNP for which LD should be
adjusted to be 350 and calculated effect size estimates for LDpred-inf and the
following fraction of nonzero effects prespecified parameters: 1, 0.3, 0.1, 0.03, 0.01,
0.003, 0.001, 0.0003 and 0.0001. For RSS, analyses were performed for each
chromosome with the chromosome-wise shrunk LD matrices calculated in GCTB
and stored in MATLAB format. The RSS-BSLMM model was run for 2 million
MCMC iterations with 1 million as burn-in and a thinning rate of 1 in 100 to arrive
at 10,000 posterior samples for each of the model parameters. For each chromo-
some, the posterior mean for the SNP effects and h2

SNP estimates was used. The
chromosome-wise h2

SNP estimates were summed to get the genome-wide estimate.
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LDAK-Bolt-Predict
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There is a great demand for more accurate genetic predic-
tion models of complex traits. Better models will, for
example, improve our ability to investigate genetic archi-

tecture, detect genetic overlap between traits and search for
gene–environment interactions1,2. They will also enable more
widespread use of precision medicine, for example, by enabling us
to better identify subgroups of individuals with elevated risk of
developing a particular disease, or those with lowest chance of
responding to a particular medication3–7.

Many complex traits have high SNP heritability, which justifies
the use of genome-wide, linear, SNP-based prediction models8,9.
The resulting predictions are called polygenic risk scores (PRS).
They take the form P = X1 β1 + X2 β2 +…+ Xm βm, where m is
the total number of SNPs, while Xj and βj denote, respectively, the
genotypes and estimated effect size for SNP j. Tools for con-
structing PRS differ in how they estimate the SNP effect sizes. The
simplest way to construct a PRS is using effect size estimates from
single-predictor regression (classical PRS). However, it is gen-
erally better to use an advanced prediction tool that estimates
effect sizes using a multi-SNP regression model10–14.

Advanced prediction tools start by making prior assumptions
regarding how SNPs contribute toward the phenotype. These
assumptions include specifying a heritability model, which
describes how E[h2

j], the expected heritability contributed by
each SNP, varies across the genome15. Almost all existing
advanced prediction tools automatically assume that E[h2

j] is
constant. We refer to this as the GCTA Model, because it a core
assumption of the software GCTA (Genome-wide Complex Trait
Analysis).(8) In particular, the GCTA Model is assumed by any
prediction tool that uses a multi-SNP regression model and
assigns the same penalty or prior distribution to standardized

SNP effect sizes9,16. However, the GCTA Model is suboptimal.
Recently, we provided a method for comparing different herit-
ability models using summary statistics from genome-wide
association studies17. Across tens of complex traits, the model
that fit real data best was the BLD-LDAK Model, in which E[h2

j]
depends on minor allele frequency (MAF), local levels of linkage
disequilibrium and functional annotations.

In this paper, we construct PRS for a variety of complex traits
using eight new prediction tools. The main difference between
these and existing tools is that they allow the user to specify the
heritability model. We show that for all eight tools, the accuracy
of the PRS improves when we switch from the GCTA Model to
the BLD-LDAK Model. When individual-level genotype and
phenotype data are available, we recommend using our new tool
LDAK-Bolt-Predict (a generalized version of the prediction tool
contained within the existing software Bolt-LMM18). With access
only to summary statistics and a reference panel, we recommend
using our new tool LDAK-BayesR-SS (a generalized version of the
existing prediction tool SBayesR14). Both tools are available in our
software LDAK15 (www.ldak.org).

Results
Overview of methods. Figure 1a classifies our eight new pre-
diction tools based on the form of the prior distribution they
assign to SNP effect sizes. Our four individual-level tools,
big_spLinReg, LDAK-Ridge-Predict, LDAK-Bolt-Predict and
LDAK-BayesR-Predict, use the same prior distribution forms as
the existing individual-level data tools Lasso (least absolute
shrinkage and selection operator)16, BLUP (best linear unbiased
prediction)19, Bolt-LMM18 and BayesR11, respectively. Our four

Double Exponential Distribution

−0.005 −0.0025 0 0.0025 0.005

Effect size of SNP j

big_spLinReg
Lasso

LDAK−Lasso−SS
lassosum

Individual−level data: Summary statistics:

a Single Gaussian Distribution
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Effect size of SNP j
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LDAK−Ridge−SS
sBLUP

Individual−level data: Summary statistics:

Two Gaussian Distributions
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LDAK−Bolt−Predict
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LDAK−Bolt−SS
LDPred

Individual−level data: Summary statistics:

Three Gaussian Distributions + Point Mass
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LDAK−BayesR−SS
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Individual−level data: Summary statistics:

SNP 1
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b
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Existing Tools
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Fig. 1 Prior distributions for SNP effect sizes. a We divide prediction tools based on the form of the prior distribution they assign to SNP effect sizes, and
whether they use individual-level data or summary statistics. For each of our eight new tools (names in blue), there is an existing tool that uses the same
prior distribution form (names in red). b Having selected the form of the effect size prior distribution, most existing prediction tools use the same
parameters for each SNP. Our new tools, by contrast, use SNP-specific prior distribution parameters. To illustrate this difference, we consider lasso-based
prediction tools that assign a double exponential prior distribution to standardized SNP effect sizes. While existing tools might, for example, set the
variance of the prior distribution to 5e−7 (so that E[h2j]=5e−7 for all SNPs), our new tools instead let the variance vary across the genome (allowing
E[h2j] to be set according to the chosen heritability model).
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What makes PRS non-transferrable?

• Differences in allele frequencies between populations

• Differences in LD between populations

• Differences in effect sizes (although likely a minor contribution)

38

38

Slight differences in genetic effects between 
populations

39

Results are reported in Fig. 4a and Supplementary Data 18. λ2

(C) estimates were less than 1 for all 53 tissues and significantly
less than 1 (p < 0.05/53) for 37 tissues, with statistically significant
heterogeneity across tissues (p < 10−20; Methods). The strongest
depletions of squared trans-ethnic genetic correlation were
observed in skin tissues (e.g. λ2(C) = 0.83 (s.e. 0.02) for Skin
Sun Exposed (Lower Leg)), Prostate and Ovary (λ2(C) = 0.84 (s.e.
0.02) for Prostate, λ2(C) = 0.86 (s.e. 0.02) for Ovary) and
immune-related tissues (e.g. λ2(C) = 0.85 (s.e. 0.02) for Spleen),
and the weakest depletions were observed in Testis (λ2(C) = 0.98
(s.e. 0.02); no significant depletion) and brain tissues (e.g. λ2(C)
= 0.98 (s.e. 0.02) for Brain Nucleus Accumbens (Basal Ganglia);
no significant depletion). Results were similar at less stringent and
more stringent shrinkage parameter values (α= 0.0 and α= 1.0;
Supplementary Figs. 23, 24 and Supplementary Data 18).

A comparison of 14 blood-related traits and 16 other traits
yielded highly consistent λ2(C) estimates (R = 0.82; Supplemen-
tary Fig. 25, Supplementary Data 19), confirming that these
findings were not exceedingly disease-specific.

These λ2(C) results were consistent with the higher background
selection statistic30 in Skin Sun Exposed (Lower Leg) (R = 0.17),
Prostate (R = 0.16), and Spleen (R = 0.14) as compared to Testis
(R = 0.02) and Brain Nucleus Accumbens (Basal Ganglia) (R =
0.08) (Supplementary Fig. 26, Supplementary Data 2), and
similarly for CpG content (Supplementary Fig. 27, Supplementary
Data 2). Although these results could in principle be confounded
by gene size33, the low correlation between gene size and
background selection statistic (R = 0.06) or CpG content (R =
−0.20) (in ±100kb regions) implies limited confounding. We note
the well-documented action of recent positive selection on genes

Fig. 3 S-LDXR results for 20 binary functional annotations across 31 diseases and complex traits. aWe report estimates of the enrichment/depletion of
squared trans-ethnic genetic correlation (λ2(C)), as well as population-specific estimates of heritability enrichment, for each binary annotation (sorted by
proportion of SNPs, displayed in parentheses). Results are meta-analyzed across 31 diseases and complex traits. Error bars denote ± 1.96 × standard error.
Red stars (⋆) denote two-tailed p < 0.05/20. Numerical results are reported in Supplementary Data 16. b We report observed λ2(C) vs. expected λ2(C)
based on 8 continuous-valued annotations, for each binary annotation. Results are meta-analyzed across 31 diseases and complex traits. Error bars denote ±
1.96 × standard error of the meta-analyzed λ2(C). P-values are obtained from the standard normal distribution. Annotations for which λ2(C) is significantly
different from 1 (p < 0.05/20) are denoted in color (see legend) or dark gray. The dashed black line (slope=0.57) denotes a regression of observed λ(C)− 1 vs.
expected λ(C)− 1 with intercept constrained to 0. Numerical results are reported in Supplementary Data 17.
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Genetic correlations between populations are close but not equal to 1. 
They are not uniformly distributed along the genome.
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PolyPred

42
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PRS-CS via simulations, using real genotypes or in-sample LD 
from the UK Biobank40. We trained each method using 337,491 
unrelated British-ancestry individuals40 and computed predic-
tions in four target populations: non-British Europeans, south 
Asians, east Asians and Africans. We estimated mixing weights for 
PolyPred, PolyPred-S and PolyPred-P using 500 individuals from 
the target population. We evaluated prediction accuracy using 
held-out individuals from each target population that were not 
included in the training sets: 42,000 non-British Europeans, 7,700 
south Asians, 900 east Asians and 6,200 Africans. We computed 
PRS using 250,963 MAFs ≥ 0.1% SNPs with INFO score ≥ 0.6 on  
chromosome 22.

Generative trait architectures were specified as follows: we simu-
lated traits with polygenicity (genome-wide proportion of causal 
SNPs) either 0.1% (less polygenic) or 0.3% (more polygenic) and 
heritability = 5%. We specified prior causal probabilities for each 
SNP in proportion to per-SNP heritabilities, which we generated for 
each SNP based on its British LD, MAF and functional annotations, 
using the baseline-LF model47. For each causal SNP, we sampled 
ancestry-specific causal effect sizes from a multivariate normal 
distribution assuming cross-population genetic correlations of 0.8 
(refs. 13,30). Other parameter settings were explored in secondary 
analyses (see below).

We computed relative R2 for each method, target population and 
trait architecture, averaged across 100 simulations. In addition to the 
simulations with in-sample LD described below, we also performed  

simulations with reference panel LD (Supplementary Note; see also 
Table 2). Further details of the simulation framework are provided 
in Methods.

The simulation results are reported in Fig. 3 and Supplementary 
Table 1 (see also Table 2). PolyPred was the most accurate method 
in each target population, with relative improvements versus 
BOLT-LMM (respectively P values for improvement) ranging from 
+13% in non-British Europeans (P < 10−16) to +65% in Africans 
(P < 10−16) for the less polygenic architecture, and from +2% in 
non-British Europeans (P = 0.0001) to +17% in Africans (P = 10−8) 
for the more polygenic architecture. PolyPred-S and PolyPred-P 
performed slightly worse than PolyPred, but were substantially and 
significantly more accurate than their corresponding constituent 
methods. Among the remaining methods, BOLT-LMM was consis-
tently the most accurate and P + T the least accurate method, far 
underperforming the other methods (despite its widespread recent 
use11,13–18,23,31,48–52). We note that the higher accuracy of BOLT-LMM 
versus SBayesR and PRS-CS does not imply that BOLT-LMM is a 
superior method, because BOLT-LMM analyzes individual-level 
training data whereas SBayesR and PRS-CS analyze summary 
statistics.

We additionally performed many secondary analyses to investi-
gate the sensitivity of the results to the simulation parameters, the 
SNP set and the functional annotations, and to evaluate the com-
putational cost and memory cost of each method (Supplementary 
Note and Supplementary Tables 1 and 2).

PolyFun-pred effect sizes

PolyFun-pred effect sizes

PolyFun-pred

Small training sample
from target cohort (n = 500)

PolyPred effect sizes

BOLT-LMM

Large European sample
(n > 100,000) BOLT-LMM effect sizes

PolyPred

PolyFun-pred

Small training sample
from target cohort (n = 500)

PolyPred effect sizes

BOLT-LMM

Large European sample
(n > 100,000)

BOLT-LMM effect sizes

Large non-European
sample (n > 100,000)

BOLT-LMM-pop

PolyPred+

a

b

βBOLT-LMM

βPolyFun-pred

βBOLT-LMM

βPolyFun-pred

βBOLT-LMM-pop

ω1βBOLT-LMM

+ ω2βPolyFun-pred

ω1βBOLT-LMM

+ ω2βPolyFun-pred

+ ω3βBOLT-LMM-pop

Fig. 1 | Overview of PolyPred and PolyPred+. a, Overview of PolyPred. PolyPred linearly combines the effect sizes of BOLT-LMM ( β

BOLT-LMM) and 
PolyFun-pred ( β

PolyFun-pred) (trained using European training data). It uses a small training sample from the target population to estimate mixing weights 
(ω

1, ω2) for the constituent methods. b, Overview of PolyPred+. PolyPred+ linearly combines the effect sizes of BOLT-LMM ( β

BOLT-LMM), PolyFun-pred 
( β

PolyFun-pred) (trained using European training data) and BOLT-LMM-pop ( β

BOLT-LMM-pop) (trained using non-European training data from the target 
population). It uses a small training sample from the target population to estimate mixing weights (ω

1, ω2, ω3) for the constituent methods. PolyPred-S and 
PolyPred-P (respectively, PolyPred-S+ and PolyPred-P+) replace all instances of BOLT-LMM with SBayesR or PRS-CS, respectively.
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Forces responsible for genetic change

Mutation µ

Selection s

NeDrift

Population structure FST

1

Mutations

2

Mutation rate in humans and flies

~70 per nt changes genome

2.5x10-8 (Nachman & Crowell) 1.8x10-8 (Kondrashov)

Other events: indels (10-9)

repeat extensions/contractions (10-5)

NGS estimates ~1.2X10-8 per nt changes genome

3

Number of de novo mutations per 
individual

Jonsson et al., Nature 2017

4

Mutation rate is variable along the genome

Regional variation of mutation rate

Context dependence of mutation rate

Replication fidelity DNA damage DNA repair CpG deamination

5

Genetic drift

6
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Drift is a random change of allele 
frequencies

7

Drift depends on population size

8

• In an idealized model, the intensity of 
genetic drift depends on population size 
(mean squared change in allele frequency is 
proportional to 1/Ne)

• In more realistic situations, effective 
population size (Ne) is a parameter 
characterizing intensity of drift

Effective population size

9

Demographic history

10

Tennessen et al. Science 2012 

11

Selection

12
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NeutralDeleterious Advantageous

New 
mutation

Functional

Nonfunctional

Selection indicates functional mutations, whether or 
not the tested trait is under selection

Selective effect of mutation

Most functional mutations are deleterious

13

• Selection coefficient (s) is the expected 
relative loss of fitness due to the 
sequence variant

• Variants with selection coefficients less 
than ~1/Ne are insensitive to selection. 
This is the drift barrier

Selection coefficient

14

0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

Every new mutation eventually will be either fixed or lost 

s – selection coefficient
Ne - effective population size

For humans estimated to be ~ 10 000

Selection coefficient, s

K/K0

Complete 
conservationNeutral 

behavior

10-6 10-5 10-4 10-3

Conservation can be due to very weak 
selection!

15

• Nucleotide diversity (density of nucleotide 
differences between two randomly chosen 
chromosomes) is about 0.001

• Most common SNPs are very old (~300-400K 
years old)

• Protein coding regions are showing clear signs 
of selection (reduced diversity and excess of 
rare alleles)

Basic facts about human genetic variation

16

Methods of mathematical 
population genetics

17

Dynamic of allelic substitution

time
0

1

Mathematically, allele frequency change in a population 
follows a one-dimensional random walk

18
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Diffusion approximation

Random walk that does not jump long distances can be 
approximated by a diffusion process

€ 

∂φ x, p,t( )
∂t

= −
∂Mφ x, p,t( )

∂x
+
1
2
∂2Vφ x, p,t( )

∂x 2

19

Coalescent theory

Instead of modeling a population, we can model our sample

Time goes backwards !

t

20

Signatures of purifying selection

Reduced variation

Excess of rare alleles

21

Commonly used summary statistics 
to characterize variation

22

Number of segregating sites

k – number of sites variable in the sample
density of segregating sites is also frequently used

k is dominated by rare alleles
k strongly depend on sample size

23

Nucleotide diversity

p – the average density of nucleotide differences 
between two sequences 

p is dominated by common alleles

p  is independent of sample size

p – per nucleotide heterozygosity

𝜋 =
2

𝑛(𝑛−1))𝑑!" dij - number of nucleotide differenced 
between sequences i and j

𝜋 = #
#$%

∑2𝑝& (1−𝑝&) pk – allele frequency at site k

24
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Site Frequency Spectrum (SFS)

SFS – expected number of variants at every frequency

25

A standard model of allele frequencies in a 
sample

If every segregating site originated from just a single mutation, the distribution of allele 
frequencies (shape of SFS) does not depend on mutation rate! 

Both p and k depend on mutation rate linearly!

26

Presence of recurrent mutations induces 
dependency of the shape of SFS on mutation 

rate!

l Rapid recent growth of the human population

l Rapid growth of available datasets

Lek et al., Nature 2016
Harpak et al., PLOS Genetics 2016
Agarwal & Przeworski, eLife 2021

27 28

The effect of recurrent mutation

29

Constant Population Size

30
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More generally, we can sum over 
latent mutations

Desai & Plotkin., Genetics 2008

31 32

Predict SFS for high mutation rate sites from 
low mutation rate sites

33

This works very well on real data

 
Figure 3 Accurate per-site mutation rate estimates improve population genetics inference 
a) Estimated demographic history fits the SFS with mutation rate bins at different orders of magnitude. Red 
dots show the observed counts at synonymous sites in gnomAD and black lines show expectations of the 
demographic model with shaded areas giving 95% binomial confidence intervals. Entries 0-40 in the SFS are 
used as is and binned logarithmically with base 3 above that. b) Roulette bins improve fits to the shape of the 
SFS compared to demographic model predictions scaled to either low (1e-09 – 3.3e-09) or high rate (1e-07 – 
3e-07) bins. Average log-likelihoods (per-SNV) are higher for Roulette after subtracting one to account for the 
additional parameter used to refit the mutation rate within each bin. Roulette improves over the model trained 
on sites with low mutation rate (mostly non-recurrent sites) because recurrent mutations change the shape of 
the SFS It also and improves over the high-rate model as one moves away from the mean mutation rate within 
the high-rate bin. c) High mutation rate SNVs are more informative about growth parameters. The expected 
per-SNV log-likelihood relative to the maximum is shown using rare SNVs (1-40 allele counts). The compound 
growth-rate / sample size parameter was chosen to approximate the observed synonymous SFS in gnomAD v2.  
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In order to measure selection, we 
need a good handle on mutation rate!

35

Features of mutation rate variation

Direction of transcription and 
replication (DNA repair recruitment)

Regional variation associated 
with replication timing

Methylation rate (CpG transitions)

Enzymatic demelythation rate (CpG transversions)

Regions mutagenic in arrested oocytes

Mutagenic LINE elements 
Sequence context

Transcription by RNA polymerase III

Transcription factor binding in testis

36
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Deamination and demethylation

First release: 12 August 2021  www.sciencemag.org  (Page numbers not final at time of first release) 9 
 

 

Fig. 4. Cytosine deamination and cytosine demethylation. (A and C) Spectra of components 10 and 11. (B, D) The intensity 
or processes 10 (C) and 11 (D) as function of methylation and hydroxymethylation. (E) Process 10 increases and process 11 
decreases in CpG islands (CGI). (F) Dependency of CpG mutations on methylation within and outside CGI. (G) Mechanisms 
suggested for processes 10 and 11. Oxidation of methylcytosine (5-mC) leads to hydroxymethylcytosine (5-hmC), which is 
removed by glycosylase, leaving an abasic site (AP). If not repaired prior to replication, AP sites are causing CpG>GpG or 
CpG>ApG mutations (H) Fraction of CpG transversions among mosaic mutations, de novo mutations and rare 
polymorphisms. 
 

on August 19, 2021
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

First release: 12 August 2021  www.sciencemag.org  (Page numbers not final at time of first release) 9 
 

 

Fig. 4. Cytosine deamination and cytosine demethylation. (A and C) Spectra of components 10 and 11. (B, D) The intensity 
or processes 10 (C) and 11 (D) as function of methylation and hydroxymethylation. (E) Process 10 increases and process 11 
decreases in CpG islands (CGI). (F) Dependency of CpG mutations on methylation within and outside CGI. (G) Mechanisms 
suggested for processes 10 and 11. Oxidation of methylcytosine (5-mC) leads to hydroxymethylcytosine (5-hmC), which is 
removed by glycosylase, leaving an abasic site (AP). If not repaired prior to replication, AP sites are causing CpG>GpG or 
CpG>ApG mutations (H) Fraction of CpG transversions among mosaic mutations, de novo mutations and rare 
polymorphisms. 
 

on August 19, 2021
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

37

Oocyte-specific clusters

Cluster

<50kb

38

Oocyte-specific process

Clustered de novo mutations 
of maternal origin

39

Roulette: estimating mutation rate 
for each possible human mutation

40

40

41

Maruyama effect (1974): at any frequency advantageous , 
or deleterious alleles are younger than neutral alleles
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At a given frequency deleterious and 
advantageous alleles are younger than 
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42

164



Longer trajectory: 6 jumps

Shorter trajectory: 4 jumps

Frequency 0%

Frequency x

Time

Intuition: shorter trajectories require 
fewer lucky jumps
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Figure 1. Simulation and theoretical results for allelic age and sojourn times. a. Example
trajectories for a neutral and deleterious allele with current population frequencies 3% (indicated by an
arrow). The shaded areas indicate sojourn times at frequencies above 5%. b. Mean ages for neutral and
deleterious alleles at a given population frequency (lines show theoretical predictions, dots show
simulation results with standard error bars). The graph shows that deleterious alleles at a given
frequency are younger than neutral alleles, and that the e↵ect is greater for more strongly selected
alleles. c. Mean sojourn times for neutral and deleterious alleles. Vertical line denotes the current
population frequency of the variant (3%). Mean sojourn times have been computed in bins of 1%. Line
connects theoretical predictions for each frequency bin. Dots show simulation results. The graph
illustrates that deleterious alleles spend much less time than neutral alleles at higher population
frequencies in the past even if they have the same current frequency.

Kiezun et al. PLOS Genetics 2013 
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Neighborhood clock 
(fuzzy clock)
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Ancestral Recombination Graph (ARG) is the 
full representation of the geneology

46

Tree sequencesARTICLES
https://doi.org/10.1038/s41588-019-0483-y

Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK. *e-mail: jerome.kelleher@bdi.ox.ac.uk

The mathematical concept of a tree is fundamental to evolu-
tionary biology. From Darwin’s speculative sketches1 and 
Haeckel’s phylogenetic imagery2 to modern syntheses that 

encompass all species of life3, trees encode and summarize the out-
comes of evolutionary processes. A large number of methods now 
exist to infer trees4, which are used as input for many downstream 
applications5. However, a tree can only be used to describe the 
ancestry of a set of DNA sequences if they are transmitted across 
generations as a single unit. Any process that causes different parts 
of a sequence to have different ancestors results in a history that 
cannot be described by a single tree, but instead requires a network6. 
This presents difficulties when inferring ancestry within a sexually 
reproducing species, in which DNA is inherited from both mother 
and father through recombination.

The need for structures that are more general than trees to 
describe ancestry has long been recognized7. Multiple represen-
tations of phylogenetic networks exist that model non-vertical 
transmission of genetic information, which arises from horizon-
tal gene transfer and hybridization6. The ancestral recombination 
graph (ARG)8,9 models the network that arises from inheritance 
within sexually reproducing species, encoding the recombination 
and common ancestor events in the history of a sample. In prin-
ciple, ARGs contain all knowable information about genetic history 
and are therefore of central importance in population genetics10–13; 
however, practical applications have been limited by the prohibitive 
computational cost of inferring them. The problem of finding an 
ARG with the minimum number of recombination events required 
to explain a set of sample sequences cannot be solved in polyno-
mial time14–17 and, although non-minimal polynomial time algo-
rithms18,19 and various techniques to reduce search space exist9,20,21, 
in practice these are too slow to apply to even moderately sized 
datasets. Several heuristic methods for inferring ARGs have been 
developed10,22–25, although most are limited to tens of samples and a 
few thousand variant sites. The ARGweaver program13 is the current 
state-of-the-art and a substantial advance over earlier methods, as it 
performs statistically rigorous inference of ARGs over tens of thou-
sands of variant sites. However, computational time grows rapidly 

with the number of samples, limiting use to a few tens of samples. 
The widespread use of ARGs is also hindered by the lack of inter-
change standards and community toolkits, despite several efforts to 
standardize26,27. Consequently, the ARG remains a structure that is 
known to be fundamental to our understanding of the ancestry of 
populations, but one that is hardly ever used in practice.

Here we introduce a method—tsinfer—that removes these bar-
riers to the adoption of ARGs in the analysis of genome variation 
data. Notably, tsinfer vastly expands the scale over which ancestry 
can be inferred, simultaneously increasing the number of variant 
sites and sample genomes by several orders of magnitude, with 
accuracy comparable to the current state-of-the-art. Moreover, we 
show that the data structure produced by tsinfer, the succinct tree 
sequence (or tree sequence, for brevity)28,29 has the potential to store 
genetic data for entire populations, using a fraction of the space that 
would be required by current methods. As an encoding of the data 
based on the evolutionary history of the samples, many statistics of 
importance in evolutionary biology and statistical genetics can be 
computed efficiently using this structure. The tree sequence toolkit 
(or tskit) is a free and open source library providing access to these 
algorithms. Thus, the two main practical obstacles to using ARGs 
(the lack of efficient inference methods and software to process the 
output) have been removed. We apply tsinfer to three large-scale 
human datasets (the 1000 Genomes Project (TGP)30, the Simons 
Genome Diversity Project (SGDP)31 and the UK Biobank (UKB)32) 
and show how biological signals can easily be inferred from the 
resulting genealogical representation.

Results
Succinct tree sequences. The tangled web of ancestry that describes 
the genetic history of recombining organisms is conventionally 
encoded by common ancestor and recombination events in an 
ARG. The result of this process is a sequence of marginal trees, each 
encoding the genealogy of a particular segment of DNA16. Moving 
along a chromosome, recombination events alter the trees in a well-
defined manner17, with adjacent trees tending to be highly corre-
lated. The succinct tree sequence is an encoding of recombinant  

Inferring whole-genome histories in large 
population datasets
Jerome Kelleher! !*, Yan Wong, Anthony W. Wohns! !, Chaimaa Fadil! !, Patrick K. Albers! !  
and Gil McVean! !

Inferring the full genealogical history of a set of DNA sequences is a core problem in evolutionary biology, because this his-
tory encodes information about the events and forces that have influenced a species. However, current methods are limited, 
and the most accurate techniques are able to process no more than a hundred samples. As datasets that consist of millions of 
genomes are now being collected, there is a need for scalable and efficient inference methods to fully utilize these resources. 
Here we introduce an algorithm that is able to not only infer whole-genome histories with comparable accuracy to the state-
of-the-art but also process four orders of magnitude more sequences. The approach also provides an ‘evolutionary encoding’ 
of the data, enabling efficient calculation of relevant statistics. We apply the method to human data from the 1000 Genomes 
Project, Simons Genome Diversity Project and UK Biobank, showing that the inferred genealogies are rich in biological signal 
and efficient to process.

Corrected: Publisher Correction

NATURE GENETICS | www.nature.com/naturegenetics

47

Stabilizing selection is the most common 
type of selection on a quantitative trait

Stabilizing selection

Selection may be related or unrelated to the trait

48
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Forces to maintain variation:

Selection

Mutation

Technically, non-neutral genetic variation 
should not exist!

49

Possible theoretical models

Koch & Sunyaev Front. Genet. 2021 

50

Shades of pleiotropy

Koch & Sunyaev Front. Genet. 2021 

51

A highly pleiotropic model

Simons et al., PLOS Biology 2018 
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Functional annotation of 
genes and variants

1

Watch for multiple transcripts!

Watch for conflicting annotations!

Map variants onto genomic annotation

2

One of most significant types of variants usually leading to the 
complete loss of function.

Nonsense variants are enriched in sequencing artifacts

Important considerations: i) location along the gene, ii) does the 
variant cause NMD? iii) is the variant in a commonly skipped exon? 

Tool: LOFTEE

Nonsense variants

3

Change in allele 
frequency =

Mutation Selection Drift= ++

Of the order of 10-8 Demographic history Population structure

Selection inference from frequency of individual 
SNVs

4

Focusing on rare deleterious PTVs

PTV – protein truncating variant 
(a.k.a. nonsense)

Combine all PTVs per gene – we assume that they 
have identical effects

Consider each gene as a bi-allelic locus – PTV / no 
PTV

Focusing on rare deleterious PTVs

5

Change in allele 
frequency =

Mutation Selection Drift= ++

Assuming string selection and a very large population, 
combined frequency of rare deleterious PTVs is expected to be 
Poisson distributed with l=U/hs

Selection inference using combined frequency of 
PTVs

6
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Pðshet; hÞ, from fitting the observed distribution of per-gene
PTV counts,

Pðk; h; n;UÞ ¼
ð

dshetPðshet; hÞPðkjshet; n;UÞ; (1)

where Pðkjshet; n;UÞ denotes the conditional probability of
observing count k given shet. At mutation–selection balance,
Pðkjshet; n;UÞ ¼ Poisðk; nU=shetÞ, with Pois(k; k) denoting
the Poisson distribution of k with parameter k.

Here, we fully accounted for the effects of drift through
incorporation of the allele frequency spectrum, /ðX; shet;UÞ.
In the deterministic case, X is assumed to be fixed at its
expected value U/shet for a gene with mutation rate U and
under selection shet. In contrast, we now explicitly include its
variability:

Pðkjshet; n;UÞ ¼
X

X

Poisðk; nXÞ/ðX; shet;UÞ: (2)

Population allele frequency spectra /ðX; shet;UÞ under the
described demography were produced from simulations for a
dense grid of mutation rates and selection strengths
(Materials and Methods). We maximized the likelihood of
the data over parameters h, fitting the model in equation
(1) to the observed distribution of k in the ExAC NFE sub-
sample (supplementary fig. 2, Supplementary Material on-
line). As we found previously, the inverse Gaussian
distribution provided the best parametric form for the fit
to the distribution Pðshet; hÞ. To obtain gene-specific esti-
mates of selection, ŝhet, we derived the mean of the posterior
distribution (Materials and Methods). Supplementary table 1,
Supplementary Material online, contains the ŝhet values from
the NFE subpopulation for the drift-inclusive and the deter-
ministic case, including 95% posterior probability intervals.

We used the resulting per-gene estimates to understand
the impact of a full demographic model relative to the

deterministic estimates of heterozygous selection coefficients
obtained under mutation–selection balance. Figure 1b shows
the direct comparison between the two scenarios for the NFE
subset. Overall, the incorporation of drift in the model did not
substantially change relative ranks of genes (Spearman rank
correlation coefficient¼ 0.995; supplementary fig. 3,
Supplementary Material online). Estimates for genes under
moderate to strong selection (shet> 0.01, N¼ 10,744 genes,
66%) are very close to the deterministic estimates, only show-
ing a slight downward shift on average. As variance due to
genetic drift partly absorbs the variance of the prior distribu-
tion of selection coefficients, the latter decreased (by$18%).
Genes under weaker selection (shet< 0.01, N¼ 5,535 genes,
34%) appeared with largely the same rank, but showed a
monotonic increase in estimated values of heterozygous se-
lection. The apparent convergence of selection coefficients to
$0.004 for these genes can be explained by the effects of
genetic drift on the conditional probability in equation (2).
For weak negative selection, Pðkjshet; n;UÞ becomes nearly
flat in the regime of very small shet, moving the estimates
closer to the genome-wide mean.

We conclude that even though human demographic his-
tory is complex, a realistic model of recent population expan-
sion suggests that, owing to their deleteriousness, the
evolution of PTVs can be largely described in a deterministic
framework.

Test for Differences between Subpopulations
As an additional way to test the utility and limits of the
deterministic approximation to estimate selection, we used
a data-driven approach. This approach relied on a compari-
son of PTV counts between different human subpopulations,
free from assumptions made in simulations, such as panmixia.
For a given gene, if the same selection coefficient shet acts on
heterozygous PTVs in two subpopulations, we expect

(a) (b)

FIG. 1. Comparison of the deterministic mutation–selection balance model with the model that includes the effects of genetic drift, in the NFE
demography. (a) Fold change in the coefficient of variation (squares) and the mean (crosses) of the number of PTV mutations, k, relative to the
deterministic case, obtained from simulations of a realistic demography of the ExAC NFE sample for different values of heterozygous selection
strength shet. (b) Heat map of gene-specific estimates for all 16,279 tested genes from the NFE sample, showing deterministic (x axis) and drift-
inclusive (y axis) shet estimates. Note the double-logarithmic axes in both panels.
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Abstract

The fate of alleles in the human population is believed to be highly affected by the stochastic force of genetic drift.
Estimation of the strength of natural selection in humans generally necessitates a careful modeling of drift including
complex effects of the population history and structure. Protein-truncating variants (PTVs) are expected to evolve under
strong purifying selection and to have a relatively high per-gene mutation rate. Thus, it is appealing to model the
population genetics of PTVs under a simple deterministic mutation–selection balance, as has been proposed earlier
(Cassa et al. 2017). Here, we investigated the limits of this approximation using both computer simulations and data-
driven approaches. Our simulations rely on a model of demographic history estimated from 33,370 individual exomes of
the Non-Finnish European subset of the ExAC data set (Lek et al. 2016). Additionally, we compared the African and
European subset of the ExAC study and analyzed de novo PTVs. We show that the mutation–selection balance model is
applicable to the majority of human genes, but not to genes under the weakest selection.

Key words: protein-truncating variants, selection inference, genetic drift.

Introduction
In well-adapted populations, the evolutionary dynamics of
genes under purifying selection plays a prominent role.
Early models describing this phenomenon were purely deter-
ministic, that is they assumed infinite effective population size
(Fisher 1930). In particular, the discussion centered around
the concept of mutation–selection balance, when deleterious
variants in the population are replenished by mutation
against the constant purge of negative selection. Supported
by the advent of large sequencing data sets and computer
simulations, however, it became clear that the high amounts
of nonsilent genetic variation observed in real populations
cannot be fully explained by mutation–selection balance
(Wright 1931; Lande 1976; Bürger et al. 1989). Instead,
many mutations are only weakly selected against and many
populations cannot be approximated to be infinitely large.
Both of these factors emphasize the relative importance of
stochastic effects, or genetic drift, compared with mutation
and selection. Therefore, deterministic mutation–selection

balance is not an adequate description of the evolutionary
dynamics of deleterious alleles unless the selection strength is
sufficiently high to dominate genetic drift. The full mutation–
selection–drift balance has been extensively studied using the
diffusion approximation (Kimura 1964). It is now widely ap-
preciated that in humans the complexities of demographic
history and changing population size must be explicitly mod-
eled. This has been incorporated in many recent studies that
estimated the intensity of selection (Williamson et al. 2005;
Tennessen et al. 2012; Do et al. 2015).

One practically important case when effects of selection
are strong in comparison to genetic drift is the dynamics of
protein-truncating variants (PTVs). When assuming that
most PTVs within a gene have similar fitness effects, they
can be analyzed in aggregate. The cumulative number of
new truncating mutations per gene is two orders of magni-
tude higher than the per-site expectation. It is thus appealing
to apply a deterministic approximation to model the popu-
lation genetics of PTVs, as has been proposed by us earlier
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Loss-of-function observed/expected upper 
bound fraction (LOEUF)

• LOEUF is based on the number if segregating sites as the statistic

• LEOUF assumes Poisson distribution for the number of segregating 
sites. It computes the expectation. The constraint metric is based on 
the Poisson likelihood ratio upper bound. 

8

Treating combined PTVs as a bi-allelic locus

• We can use the total frequency of PTVs in the locus

• Theoretically, we can simply treat all PTV variation as a single bi-allelic 
locus with high mutation rate

9

Distribution of selection coefficients
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to fitness of homozygous carriers of the ancestral allele. Coefficients representing selection, s, 
and heterozygosity, h͕ of the variant͛s impact on fitness͕ w, are modeled for heterozygous and 
homozygous carriers of the alternate allele as w=1-hs and 1-s, respectively. Cassa et al23 
developed an approach to model a heterozygous selection coefficient for hs, i.e., shet, by treating 
this parameter as a random variable in a Bayesian joint-probability model alongside gene-specific 
SNV pLOF counts, n, for each gene. Allele counts for stop-gained, splice acceptor, and splice donor 
variants were summed across a gene following stringent filtering for variants that pass QC, 
LOFTEE high confidence͕ and mean depth ш ϮϬ across the gene. The underlying data n is Poisson 
distributed with E΀n΁ с ;NʅͿͬshet, where N is the number of chromosomes in the population 
supplying allele counts͕ and ʅ is a gene-specific mutation rate calculated as described above. 
 
Here, we adapt the model from Cassa et al. and we jointly estimate distributions for the data, 
priors, and values of hyperparameters a and b in a hierarchical manner using pLOF variants with 
gene-wide cumulative MAF ;cMAFͿ фϬ͘ϬϬϭ͘ As in Cassa͛s original formulation͕ we set an inverse 
Gaussian prior on shet. Similarly, we separate the genes into 3 terciles based on mutation rates 
such that each tercile has different values of a and b tailored to low, medium, and high mutability. 
Hyperparameters a and b are modeled alongside shet with inverse Gamma priors (shape=scale=1). 
We perform MCMC sampling with a Bayesian estimator, RStan94 using 30,000 iterations, 
discarding the initial 6,000 samplings, and thinning every 3 for 8,000 final iterations. Our 
application produces results on publicly available ExAC data that closely track the original Cassa 
et al. method in terms of accurately estimating hyperparameters and replicating their estimates, 
giving us confidence that our fully Bayesian formulation is appropriate.  
 

P(n|α୲, β୲, N, μሻ =  නPois(n| s୦ୣ୲, N, μሻInvGauss(s୦ୣ୲|α୲, β୲ሻInvGam(α୲ሻ𝐼𝑛𝑣𝐺𝑎𝑚(β୲ሻds୦ୣ୲ 

P(s୦ୣ୲|α୲, β୲, N, μሻ ∝  Pois(n| s୦ୣ୲, N, μሻInvGauss(s୦ୣ୲|α୲, β୲ሻInvGam(α୲ሻ𝐼𝑛𝑣𝐺𝑎𝑚(β୲ሻ 
 

Population genetics theory suggests that, assuming strong selection and a large population, the 
frequency of rare, deleterious loss-of-function mutations can be estimated as x с μ /(hs)24,95. 
Weghorn et al.24 demonstrates that Bayesian estimates of shet do not introduce additional 
variance compared with the deterministic mutationʹselection balance approximation that 
underlies the Cassa et al. theoretical framework. The authors conclude that shet is robust to the 
effects of genetic drift for most genes, except those under weak levels of selection starting near 
shet around 0.02 and becoming more prominent at shet ч Ϭ͘Ϭϭ͘ Therefore͕ our estimates of shet are 
reasonable for our multi-ethnic, combined cohort analysis.  
 
Gene lists 
Mouse knockout data from IMPC (Data Release 15.0, www.mousephenotype.org)96 and MGI 
were downloaded on 02/07/23; gene and term names were matched with human gene 
synonyms and Mouse Phenotyping Ontology (MPO) terms using downloadable lists available 
from MGI (http://www.informatics.jax.org/downloads/reports/index.html). Data from MGI were 
filtered to nullͬknockout phenotypes and term names including ͞lethality͟ were deemed lethal͘ 
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Distribution of selection coefficients
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What happens if we incorporate drift?

1) The approach fails if selection is weak

2) The approach fails if mutational target is small

3) These considerations are important for regional constraint scores 

4) Overall, the approach is non-informative in case of recessivity

Distribution of selection coefficients
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a burn-in period of ten times the initial population size for equili-

bration, all genes were simulated through a realistic demographic

model for the NFE population with simDoSe version 2.6.3 (see

data and code availability for download details), a custom written

forward-time Wright-Fisher simulator implemented in Python 2.7,

earlier versions of which were used for analysis in Cassa et al.40

and Weghorn et al.43 The model of European demographic history

corresponds to that of Tennessen et al.44 with an increased rate of

exponential growth during the most recent epoch (derived from

ExAC NFE data and previously reported in Weghorn et al.43). This

demography, referred to in simDoSe as the ‘‘super-Tennessen’’

demography, was run with the simDoSe command line options

–demography supertennessen –growthrate 0.03 matching parame-

ters reported in Weghorn et al.43 Diploid selection defined by the

heterozygous selection coefficient shet ¼ hs and the homozygous se-

lection coefficient shom ¼ s was parameterized in terms of the domi-

nance coefficient h and purifying selection coefficient s. All sites

were simulatedwith a single combination of ðh; sÞ for all L bases dur-

ing each run. We simulated unlinked sites with mutation rate m ¼
10$8 across a grid of 17 pairs of selection and

dominance coefficients, comprising all combinations of h˛
f0:0; 0:1; 0:3; 0:5gand s˛f$ 0:1; $0:01; $0:001; $0:0001g and

one point at s ¼ 0, which is identical for all values of h. Sites were

then binomially downsampled to a diploid sample size of 34,429,

representing the sample size of NFE exomes used for calculation

of empirical SFS from the ExAC database.21We combined these sites

into genes, where all sites in each gene have the same single value of

the dominance and selection coefficients ðh; sÞ. These point esti-

mates, rather than a generalized two parameter distribution, were

chosen because general monomodal two dimensional distributions

(i.e., the joint distribution of dominance and selection coefficients

rðh; sÞ) require a minimum of five degrees of freedom for flexible

parameterization. Instead, we focus on putatively homogeneous

loci where the diploid selection coefficients can be approximately

described by a single coordinate ðh; sÞ. This simplification is some-

what justified by restricting to protein-damaging variants (LOF

and damaging missense) within each gene. We randomly sampled

simulated sites with replacement to create 41 simulated genes

from each simulation on a logarithmically spaced grid ranging

from 102 to 106 (i.e., 102; 102:1; 102:2;.; 105:8; 105:9; 106), corre-

sponding to the approximate range of LOF and damaging single

gene target sizes actually observed in the exome (see Figure S2).

We repeated this 1,000 times for each selection anddominance class

to produce a total of 1,000 simulated genes for each of 41 lengths

and 17 selection and dominance classes. We also simulated 109

additional sites not used in any gene for each combination of h

and s. These held-out simulated sites became our ‘‘reference’’ simu-

lations, which we used to calculate the likelihood function as

described below. In total, we simulated 1:71731012 unlinked sites

and used them to create 17 reference simulations and 697;000

simulated genes.

Likelihood calculation and likelihood tests
The likelihood of an observed gene under a given dominance co-

efficient h and selection coefficient s is computed by comparing

the site frequency spectrum observed for that gene to the reference

simulation for that h and s under a Poisson randomfield (PRF) like-

lihood function.45 The SFS FðkÞ is defined as the number of sites

where the derived allele is observed exactly k times in the popula-

tion. For segregating sites, k can take on values from 1 to 2N $ 1,

where N is the diploid population size. The PRF model dictates

that each element of the SFS FðkÞ obeys an independent Poisson

distribution. To calculate the means of these distributions, we first

scaled the reference simulation SFS by the mutational target size

Uobs for a gene with an observed SFS so that it represents the ex-

pected SFS for a region with that target size:

Fscaledðk;h; sÞ¼Uobs

Uref
Fref ðk;h; sÞ

where Uobs and Uref are the mutational target sizes corresponding to

the observed and reference SFSs and Frefðk;h; sÞ is the SFS of the

reference simulation with dominance and selection coefficients h

and s. For simulated genes and the reference simulations, these U

values are exactly known; for empirical SFSs derived from ExAC,

they were estimated as described above. Here, we have assumed

that the SFS is linearly scalable with mutational target size (i.e.,

the shape of the SFS is the same for all mutation rates). This is an

approximation that comes from the infinite sites model and is pred-

icated on linkage equilibrium and the absence of recurrent muta-

tions. This approximation is invalid in the presence of substantial

linkage disequilibrium or when the per population per site muta-

tion rate is high enough to be observed in the sample. Notably,

this restricts the method to panmictic population samples without

recurrent mutations for the mutation spectra analyzed (i.e., non-

CpG mutations). European samples larger than ExAC (na104)

can be recurrent in most mutational classes, and the increased mu-

tation rate of CpGs result in observed recurrent mutations even in

A B Figure 1. Enrichment for genes under
selection with various per-gene metrics
(A and B) Points show enrichment for
genes showing evidence of selection ac-
cording to each per-gene metric, expressed
as log odds ratio. Lines show 95% confi-
dence intervals. The metrics shown
include scores based on population
constraint within humans (ratio of nonsy-
nonymous to synonymous nucleotide di-
versity pns=ps, number of nonsynonymous
segregating sites, and constraint scores
pLI,21 OE,32 RVIS,39 and shet

40), scores
based on conservation between species
(dN/dS score,19,20 phastCons conservation

score22), and a hybrid score that includes both (McDonald-Kreitman neutrality index42). For details of how these scores were processed,
see material and methods. (A) The putatively recessive ConsangBP gene set11 showed either a depletion for genes with evidence of se-
lection or consistency with the genome average in all scores tested. (B) The putatively non-recessive HI80 gene set30 showed either an
enrichment for genes with evidence of selection or consistency with the genomic background in all scores tested.

36 The American Journal of Human Genetics 109, 33–49, January 6, 2022

ARTICLE

Overcoming constraints on the detection
of recessive selection in human genes
from population frequency data

Daniel J. Balick,1,2,3,4,5 Daniel M. Jordan,3,4,5 Shamil Sunyaev,1,2,6,* and Ron Do3,4,6,*

Summary

The identification of genes that evolve under recessive natural selection is a long-standing goal of population genetics research that has

important applications to the discovery of genes associated with disease. We found that commonly used methods to evaluate selective

constraint at the gene level are highly sensitive to genes under heterozygous selection but ubiquitously fail to detect recessively evolving

genes. Additionally, more sophisticated likelihood-basedmethods designed to detect recessivity similarly lack power for a human gene of

realistic length from current population sample sizes. However, extensive simulations suggested that recessive genes may be detectable

in aggregate. Here, we offer a method informed by population genetics simulations designed to detect recessive purifying selection in

gene sets. Applying this to empirical gene sets produced significant enrichments for strong recessive selection in genes previously in-

ferred to be under recessive selection in a consanguineous cohort and in genes involved in autosomal recessive monogenic disorders.

Introduction

Identifying human genes that evolve under recessive natu-
ral selection remains incredibly difficult despite a host of
efforts to characterize the dominance of human traits
and diseases.1–7 Substantial progress has been made to
quantify features of the joint distribution of dominance
and selection coefficients in model organisms such as
Drosophila and yeast.8–10 However, in humans, as with
most long-lived organisms, direct experimentation is not
possible, so the search for recessive selection relies largely
on inference from natural population data. Previous efforts
span from the sequencing of consanguineous cohorts to
inference by analogy to experimental systems.11–16 How-
ever, with the advent of large-scale sequence data, identifi-
cation of at least some subset of recessive natural selection
may be possible with the use of information from observ-
ables such as features of the site frequency spectrum.17,18

Many analytic and computational tools have been
developed to identify natural selection, but in general their
effectiveness is dependent on selection in heterozygous
form.19–22 This is primarily due to the fact that purifying
selection drives variants to low frequencies, making the
probability of randomly forming homozygotes (or com-
pound heterozygotes with similar consequences) vanish-
ingly small. Recessive selection is complicated by the fact
that it appears effectively neutral at these low frequencies
because the formation of homozygotes is improbable, pre-
cluding efficient purifying selection on homozygotes in
outbred populations. Thus, the essential problem in iden-

tifying recessive deleterious variation is not disentangling
it from additive or dominant variation but rather from
neutrality and the genomic background at large. This
also explains why most tools designed to probe purifying
selection, while highly successful at identifying variation
when additive or dominant, are largely insensitive to reces-
sivity, conflating it with neutral variation or weakly delete-
rious additivity.23 Notably, despite proposed methods to
infer these parameters from population frequency data,17

diploid selection coefficients are not yet known for indi-
vidual genes in the human genome.
As there is presently no knowledge of which human

genes evolve under recessive selection, one of the primary
challenges in developing any statistical test for recessive
purifying selection is the lack of appropriate validation
sets. In particular, validation for recessive selection should
not rely on phenotypic annotations, as this precludes the
ability to test for correlation between recessive phenotypes
(e.g., Mendelian recessive disease) and recessive natural se-
lection. While there is a naive expectation that genes asso-
ciated with severe autosomal recessive diseases should
evolve under relatively strong recessive selection, existing
Mendelian disease databases with mode of inheritance an-
notations tend to include many genes associated with less
severe phenotypes (e.g., hearing loss, albinism) that are
presumed to be evolving under comparatively weak natu-
ral selection.7,24 An additional concern in disease data-
bases is the presence of potential false discoveries of disease
associations in years prior to the now requisite application
of rigorous statistical methods.25
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A deep catalog of protein-coding variation in 985,830 individuals 
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such as pLI4 and LOEUF2 are derived based on observed and expected pLOF variant counts against 

background mutation rates but are agnostic to variant allele frequency. A complementary 

approach to quantifying pLOF depletion considers the cumulative frequency of variants in a gene 

to estimate a selection coefficient, s, on relative fitness loss due to heterozygous pLOF variation23 

(see Methods). Using this model, we estimated the indispensability of 16,704 protein-coding 

genes based on the observed number of pLOF variants per gene with cumulative alternate allele 

frequency (AAF) <0.1% (Supplementary Table 2). 

 

Mean shet in RGC-ME for canonical transcripts is 0.065 [0.037, 0.109] (median shet=0.019; 

Fig. 2A), which is comparable to a mean shet of 0.059 originally computed with the ExAC dataset 

(n~60K)23. The larger number of samples in our cohort (n~824k) helps to accurately quantify rare 

pLOF variants and compute more precise constraint scores than the previously published values 

based on 60,000 samples. This finding is best illustrated in known haploinsufficient (HI) genes, 

which are expected to be more constrained and thus have larger shet values relative to all genes 

(Supplementary Fig. 3). Compared with previously published values from ExAC, shet values for HI 

genes in RGC-ME are higheƌ on aǀeƌage ;ѐ𝑠̅heƚ= 0.15, p=2.2x10-21) and have smaller 95% highest 

posterior density (HPD) ranges despite those larger means ;ѐ𝑠̂heƚ = -0.038, p=1.2x10-28). Of the 

233 HI genes with shet estimates in both RGC-ME and ExAC, 135 are constrained in both datasets 

with mean shet >0.07 and lower bound >0.02; 39 genes are classified as constrained only in RGC-

ME, while 7 are constrained only in ExAC (Supplementary Table 2). Estimates for all genes were 

more precise in 824k samples compared to a randomly down-sampled set of 60K samples from 

RGC-ME (Supplementary Fig. 4A), where mean and median 95% HPD ranges were 6.3 and 4.1-

fold larger, respectively. Improving shet estimates is most valuable for shorter genes which were 

previously difficult to capture at smaller sample sizes. RGC-ME allows more precise estimation of 

shet for the smallest quantiles of gene coding sequence length (Fig. Supplementary 4B) and 

derives more informative constraint metrics. 

 

 

 

 

 

 

 

 

 

   

 

 

shet has been shown to be higher in genes associated with Mendelian diseases23,24 

(Supplementary Fig. 3) and differentiates between groups of genes with different essentiality and 

disease associations (Fig. 2B). We used shet to identify highly constrained genes in RGC-ME by 

comparing shet scores in the canonical transcripts of high constraint (haploinsufficient, autosomal 

dominant in developmental disorders, and lethal in mouse models) and low constraint categories 

of genes (haplosufficient and genes with rare homozygous pLOF variants; Supplementary Fig. 5). 

t

Heterozygous selection coefficient, shet

Figure 2: Gene-level constraint 

estimates representing heterozygous 

selection coefficients on fitness, shet, 

from RGC-ME

A. Mean shet probability density for 

16,704 canonical transcripts with 95% 

confidence intervals calculated with 

10,000 bootstrapped samples from 

means of individual genes.

B. Odds ratio for genes with shet cutoff 

> 0.075 to be included in each gene 

category listed on y-axis.

Figure 2
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Abstract Causal loss- of- function (LOF) variants for Mendelian and severe complex diseases 
are enriched in 'mutation intolerant' genes. We show how such observations can be interpreted in 
light of a model of mutation- selection balance and use the model to relate the pathogenic conse-
quences of LOF mutations at present to their evolutionary fitness effects. To this end, we first infer 
posterior distributions for the fitness costs of LOF mutations in 17,318 autosomal and 679 X- linked 
genes from exome sequences in 56,855 individuals. Estimated fitness costs for the loss of a gene 
copy are typically above 1%; they tend to be largest for X- linked genes, whether or not they have a 
Y homolog, followed by autosomal genes and genes in the pseudoautosomal region. We compare 
inferred fitness effects for all possible de novo LOF mutations to those of de novo mutations identi-
fied in individuals diagnosed with one of six severe, complex diseases or developmental disorders. 
Probands carry an excess of mutations with estimated fitness effects above 10%; as we show by 
simulation, when sampled in the population, such highly deleterious mutations are typically only 
a couple of generations old. Moreover, the proportion of highly deleterious mutations carried 
by probands reflects the typical age of onset of the disease. The study design also has a discern-
ible influence: a greater proportion of highly deleterious mutations is detected in pedigree than 
case- control studies, and for autism, in simplex than multiplex families and in female versus male 
probands. Thus, anchoring observations in human genetics to a population genetic model allows 
us to learn about the fitness effects of mutations identified by different mapping strategies and for 
different traits.
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estimates themselves are somewhat less congruent (R = 0.72); this is to be expected as the previous 
approach relied on a smaller sample and the grid of selection coefficients led to a ridge of estimates 
near hs = 0.4% (see Appendix 1—figure 5).

As is clear from the posterior distributions, the 95% credible interval of hs often spans multiple 
orders of magnitude. In other words, there is substantial uncertainty around our estimates for any 
given gene, arising from sampling noise as well as the effects of genetic drift (Figure 1B). Even for 
genes with large point estimates, there can be substantial probability mass on much weaker selection 
(e.g., hs < 10–4): for example, of the 9987 genes for which the point estimate is indicative of strong 
selection (hs > 10–2), ~35% have at least 5% of their probability mass on quite weak selection (hs < 

Figure 1. Estimating hs for loss- of- function (LOF) across human genes. (A) Schematic of the approach to infer heterozygous selection coef!cients 
(hs) for each gene. We assume prior distributions log10(s)~U(–6,0) and h~U(0,1). We further assume a mutation rate μ to LOF alleles per gene and a 
demographic model speci!ed by parameters  θ , which describe changes in the effective population size Ne at time points in the past. These parameters 
are used in forward population genetic simulations based on a Wright–Fisher model of selection (see 'Materials and methods'). For each iteration 
i, the simulation generates a frequency qi of LOF alleles, which is then compared to the observed LOF frequency q for a given gene. The proposed 
value of (hs)i is retained if within a tolerance ı, which is decreased over time, or rejected otherwise. For each ı, this procedure is repeated until there 
are 50,000 acceptances, providing a sample from the posterior distribution of the probability of hs given the observed frequency q of LOF variants for 
a gene (as well as the mutation rate and demographic model). (B) The cumulative distribution of the estimated heterozygous selection coef!cient hs 
for each autosomal gene. Black dots represent the point estimate of hs for each gene, based on the maximum a posteriori estimate (i.e., the mode) of 
the posterior distribution. Horizontal lines represent the 95% credible intervals for each gene and are colored according to the width of the interval on 
a log10 scale. (C) A similar plot, but for non- pseudoautosomal region (PAR) X- linked genes, with sex- averaged selection on the loss of a copy on the X 
calculated as the average of s and hs (see 'Materials and methods').

14

Figure 1: Limitations of LOEUF and schematic for inferring shet using GeneBayes. A) Stacked histogram of
the expected number of unique LOFs per gene, where the distribution for genes considered unconstrained (respectively
constrained) by LOEUF are colored in red (respectively blue). Genes with LOEUF < 0.35 are considered constrained,
while all other genes are unconstrained (Methods). The plot is truncated on the x-axis at 100 expected LOFs. B)
Scatterplot of the observed against the expected number of unique LOFs per gene. The dashed line denotes observed =
expected. Each point is a gene, colored by its LOEUF score; genes with LOEUF > 1 are colored as LOEUF = 1. C)
Schematic for estimating shet using GeneBayes, highlighting the major components of the model: prior (blue boxes)
and likelihood (red boxes). Parameters of the prior are learned by maximizing the likelihood (red arrow). Combining
the prior and likelihood produces posteriors over shet (purple box). See Methods for details.
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Abstract

Measures of selective constraint on genes have been used for many applications including
clinical interpretation of rare coding variants, disease gene discovery, and studies of genome
evolution. However, widely-used metrics are severely underpowered at detecting constraint
for the shortest ⇠25% of genes, potentially causing important pathogenic mutations to be over-
looked. We developed a framework combining a population genetics model with machine
learning on gene features to enable accurate inference of an interpretable constraint metric,
shet. Our estimates outperform existing metrics for prioritizing genes important for cell essen-
tiality, human disease, and other phenotypes, especially for short genes. Our new estimates
of selective constraint should have wide utility for characterizing genes relevant to human
disease. Finally, our inference framework, GeneBayes, provides a flexible platform that can
improve estimation of many gene-level properties, such as rare variant burden or gene expres-
sion differences.
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Figure 2: Separation of disease genes and clinical cases by mode of inheritance. [a] The distribution of genes 
associated with exclusively autosomal dominant (AD, N=867) disorders versus autosomal recessive (AR, N=1,482) 
disorders as annotated by the Clinical Genomics Database (CGD). Logarithmic bins are ordered from greatest to 
smallest !"#$ values. [b] Overall, AD genes have significantly higher !"#$ values than AR genes [Mann-Whitney p-
value 3.14x10-64]. [c] Similarly, in solved Mendelian clinical exome sequencing cases (Baylor)22, !"#$ values can help 
discriminate between AR and AD disease genes, as annotated by clinical geneticists. [d] A !"#$ value of 0.04 can be 
used as a simple classification threshold for AD genes with a PPV of 96%. [e] This finding is replicated in a separately 
ascertained sample from UCLA. Box plots range from 25th-75th percentile values and whiskers include 1.5 times the 
interquartile range. 
 
In a set of 504 clinical exome cases that resulted in a Mendelian diagnosis22, we find a similar 
enrichment of cases by MOI and selection value (Figure 2[c]). We find that 90.4% of novel, 
dominant variants are associated with heterozygous fitness loss greater than 0.04 (Figure 2[d]). 
Among disease variants, a cutoff of !"#$ > 0.04 provides a 96% positive predictive value for 
discriminating between AD and AR modes of inheritance.  
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To test the generalizable utility of !"#$ values in prioritizing candidate genes in Mendelian 
sequencing studies, we compared the overall prevalence of genes with !"#$ > 0.04 to the 
corresponding fraction in an independently ascertained dataset of new dominant Mendelian 
diagnoses (Figure 2[e])23. This analysis suggests that restricting to genes with !"#$ > 0.04 would 
provide a three-fold reduction of candidate variants, given the overall distribution of !"#$ values. 
Thus, initial effort in clinical cases can be focused on just a few genes for functional validation, 
familial segregation studies, and patient matching. We summarize the classification accuracy for 
all possible thresholds (AUC 0.9312) and probabilities for the mode of inheritance in each gene, 
generated using the full set of clinical sequencing cases (Supplementary Figure 2 and 
Supplementary Table 2). 
 
Beyond mode of inheritance, we find that !"#$ can help predict phenotypic severity, age of onset, 
penetrance, and the fraction of de novo variants in a set of high-confidence haploinsufficient 
disease genes (Figure 3). In broader sets of known disease genes, !"#$ estimates significantly 
correlate with the number of references in OMIM MorbidMap and the number of HGMD disease 
“DM” variants (Supplementary Figure 3).  

Figure 3: Enrichments of !"#$ in known haploinsufficient disease genes of high confidence (ClinGen Project). In 
(N=127) autosomal genes, we annotate the !"#$ scores of genes associated with each disease category and 
classification. Higher !"#$ values are associated with increased phenotypic severity (Mann-Whitney p-value 4.87x10-

3), earlier age of onset (p=1.46 x10-2), high or unspecified penetrance (p=1.79 x10-2), and a larger fraction of de novo 
variants (p=8x10-5). Box plots range from 25th-75th percentile values and whiskers include 1.5 times the interquartile 
range. 
 
Gene-specific fitness loss values allow us to plot the distribution of selective effects for different 
disorders. This provides information about the breadth and severity of selection associated with 
various disorder groups using both well-established genes (Figure 4[a]) and new findings from 
Mendelian exome cases (Figure 4[b]). Overall, genes involved in neurologic phenotypes and 
congenital heart disease appear to be under more intense selection when compared with other 
disorder groups, tolerated knockouts in a consanguineous cohort, or in all genes (Figure 
4[c,d])24. Interestingly, genes recessive for these disorders appear to have only partially 
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Concordance with mouse knockout dataviability, while those with the lowest !"#$ estimates are depleted for embryonic lethality [Mann-
Whitney p=2.95x10-28] (Figure 5[a,b]).  
 

  
Figure 5: High-throughput screens of gene essentiality in mice and cell assays. [a] Proportion of orthologous mouse 
knockout genes by phenotype, from a neutrally-ascertained set of genes generated by the International Mouse 
Phenotyping Consortium (IMCP). Logarithmic bins are ordered from greatest to smallest !"#$ values. [b] ICMP mice 
are separated into viable (N=1,057), sub-viable (N=211) and lethal knockouts (N=477), and lethal knockouts have 
significantly higher !"#$ values than viable [Mann-Whitney p-value 2.95x10-28]. [c] Cell-essential genes as reported by 
Wang et al. from genome-wide KBM-7 tumor cell CRISPR assay (N=1,740) have significantly higher !"#$ values [p-
value 5.13x10-16] and [d] as do genes that were characterized as essential in a gene trap assay (N= 1,081) [p-value = 
4.90x10-18]. In the CRISPR assay, all genes with adjusted p-values < 0.05 and negative assay scores are included, 
and genes with gene trap scores < 0.4 or lower are included. Box plots range from 25th-75th percentile values and 
whiskers include 1.5 times the interquartile range. 
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[c] Cell-Essential by KBM7 CRISPR Assay
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exhibit at least moderate selection against pLoF variation, and that 
the distribution of the observed/expected ratio is not dichotomous, 
but continuous (Extended Data Fig. 7a). For downstream analyses, 
unless otherwise specified, we use the 90% upper bound of this confi-
dence interval, which we term the loss-of-function observed/expected 
upper bound fraction (LOEUF) (Extended Data Fig. 7b, c), and bin 19,197 
genes into deciles of approximately 1,920 genes each. At current sample 
sizes, this metric enables the quantitative assessment of constraint 
with a built-in confidence value, and distinguishes small genes (for 
example, those with observed = 0, expected = 2; LOEUF = 1.34) from 
large genes (for example, observed = 0, expected = 100; LOEUF = 0.03), 
while retaining the continuous properties of the direct estimate of the 
ratio (Supplementary Information). At one extreme of the distribu-
tion, we observe genes with a very strong depletion of pLoF variation 
(first LOEUF decile aggregate observed/expected approximately 6%) 
(Extended Data Fig. 7e), including genes previously characterized as 
high pLI (Extended Data Fig. 7f). By contrast, we find unconstrained 
genes that are relatively tolerant of inactivation, including many that 
contain homozygous pLoF variants (Extended Data Fig. 7g).

We note that the use of the upper bound means that LOEUF is a 
conservative metric in one direction: genes with low LOEUF scores 
are confidently depleted for pLoF variation, whereas genes with high 
LOEUF scores are a mixture of genes without depletion, and genes that 
are too small to obtain a precise estimate of the observed/expected 
ratio. In general, however, the scale of gnomAD means that gene length 
is rarely a substantive confounder for the analyses described here, 
and all downstream analyses are adjusted for the length of the coding 
sequence or filtered to genes with at least ten expected pLoFs (Sup-
plementary Information).

Validation of the LoF-intolerance score
The LOEUF metric allows us to place each gene along a continuous 
spectrum of tolerance to inactivation. We examined the correlation of 

this metric with several independent measures of genic sensitivity to 
disruption. First, we found that LOEUF is consistent with the expected 
behaviour of well-established gene sets: known haploinsufficient genes 
are strongly depleted of pLoF variation, whereas olfactory receptors are 
relatively unconstrained, and genes with a known autosomal recessive 
mechanism, for which selection against heterozygous disruptive vari-
ants tends to be present but weak9, fall in the middle of the distribution 
(Fig. 3a). In addition, LOEUF is positively correlated with the occur-
rence of 6,735 rare autosomal deletion structural variants overlapping 
protein-coding exons identified in a subset of 6,749 individuals with 
whole-genome sequencing data in this manuscript11 (r = 0.13; P = 9.8 × 
10−68) (Fig. 3b).

This constraint metric also correlates with results in model sys-
tems: in 389 genes with orthologues that are embryonically lethal 
after heterozygous deletion in mouse21,22, we find a lower LOEUF 
score (mean = 0.488), compared with the remaining 18,808 genes 
(mean = 0.962; t-test P = 10−78) (Fig. 3c). Similarly, the 678 genes that are 
essential for human cell viability as characterized by CRISPR screens23 
are also depleted for pLoF variation (mean LOEUF = 0.63) in the gen-
eral population compared to background (18,519 genes with mean 
LOEUF = 0.964; t-test P = 9 × 10−71), whereas the 777 non-essential genes 
are more likely to be unconstrained (mean LOEUF = 1.34, compared to 
remaining 18,420 genes with mean LOEUF = 0.936; t-test P = 3 × 10−92) 
(Fig. 3d).

Biological properties of constraint
We investigated the properties of genes and transcripts as a func-
tion of their tolerance to pLoF variation (LOEUF). First, we found 
that LOEUF correlates with the degree of connection of a gene in 
protein-interaction networks (r = −0.14; P = 1.7 × 10−51 after adjusting 
for gene length) (Fig. 4a) and functional characterization (Extended 
Data Fig. 8a). In addition, constrained genes are more likely to be ubiq-
uitously expressed across 38 tissues in the Genotype-Tissue Expression 
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Fig. 3 | The functional spectrum of pLoF impact. a, The percentage of genes 
in a set of curated gene lists represented in each LOEUF decile. 
Haploinsufficient genes are enriched among the most constrained genes, 
whereas recessive genes are spread in the middle of the distribution, and 
olfactory receptor genes are largely unconstrained. b, The occurrence of 6,735 
rare LoF deletion structural variants (SVs) is correlated with LOEUF (computed 

from SNVs; linear regression r = 0.13; P = 9.8 × 10−68). Error bars represent 95% 
confidence intervals from bootstrapping. c, d, Constrained genes are more 
likely to be lethal when heterozygously inactivated in mouse and cause cellular 
lethality when disrupted in human cells (c), whereas unconstrained genes are 
more likely to be tolerant of disruption in cellular models (d). For all panels, 
more constrained genes are shown on the left.
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Evidence for 28 genetic disorders discovered 
by combining healthcare and research data

Joanna Kaplanis1,40, Kaitlin E. Samocha1,40, Laurens Wiel2,3,40, Zhancheng Zhang4,40, Kevin J. Arvai4,  
Ruth Y. Eberhardt1, Giuseppe Gallone1, Stefan H. Lelieveld2, Hilary C. Martin1, Jeremy F. McRae1,  
Patrick J. Short1, Rebecca I. Torene4, Elke de Boer5, Petr Danecek1, Eugene J. Gardner1,  
Ni Huang1, Jenny Lord1,6, Iñigo Martincorena1, Rolph Pfundt5, Margot R. F. Reijnders2,7,  
Alison Yeung8,9, Helger G. Yntema5, Deciphering Developmental Disorders Study*,  
Lisenka E. L. M. Vissers5, Jane Juusola4, Caroline F. Wright10, Han G. Brunner5,7,11,12,  
Helen V. Firth1,13, David R. FitzPatrick14, Jeffrey C. Barrett1, Matthew E. Hurles1,41ಞᅒ,  
Christian Gilissen2,41 & Kyle Retterer4,41

De novo mutations in protein-coding genes are a well-established cause of developmental  
disorders1. However, genes known to be associated with developmental disorders 
account for only a minority of the observed excess of such de novo mutations1,2. Here, 
to identify previously undescribed genes associated with developmental disorders, 
we integrate healthcare and research exome-sequence data from 31,058 parent–
o"spring trios of individuals with developmental disorders, and develop a simulation- 
based statistical test to identify gene-speci#c enrichment of de novo mutations. We 
identi#ed 285 genes that were signi#cantly associated with developmental disorders, 
including 28 that had not previously been robustly associated with developmental 
disorders. Although we detected more genes associated with developmental disorders,  
much of the excess of de novo mutations in protein-coding genes remains unaccounted  
for. Modelling suggests that more than 1,000 genes associated with developmental 
disorders have not yet been described, many of which are likely to be less penetrant 
than the currently known genes. Research access to clinical diagnostic datasets will be 
critical for completing the map of genes associated with developmental disorders.

It has previously been estimated that around 42–48% of patients with 
a severe developmental disorder (DD) have a pathogenic de novo 
mutation (DNM) in a protein-coding gene1,2. However, most of these 
patients remain undiagnosed despite the identification of hundreds 
of DD-associated genes. This indicates that there are more DD-relevant 
genes to find. Existing methods to detect the gene-specific enrichment 
of damaging DNMs do not incorporate all of the available information 
about which variants are more likely to be disease-associated; missense 
variants and protein-truncating variants (PTVs) vary in their impact on 
protein function3–6. Known dominant DD-associated genes are strongly 
enriched in the minority of genes that exhibit strong selective con-
straint on heterozygous PTVs7. To identify additional DD-associated 
genes, we need to increase our power to detect gene-specific enrich-
ments of damaging DNMs by both increasing sample sizes and improv-
ing our statistical methods. In previous studies of pathogenic copy 
number variations, the use of healthcare data has been key to achieve 
larger sample sizes than would be possible in a research setting alone8,9.

 
Identification of 285 DD-associated genes
Following clear consent practices and only using aggregate, deidenti-
fied data, we pooled DNMs from patients with a DD from three centres: 
GeneDx (a US-based diagnostic testing company), the Deciphering 
Developmental Disorders study and Radboud University Medical 
Center. We performed stringent quality control on variants and samples 
to obtain 45,221 coding and splicing DNMs in 31,058 individuals (Sup-
plementary Fig. 1 and Supplementary Table 1), including data on 24,348 
trios that have not previously been published. These DNMs included 
40,992 single-nucleotide variants (SNVs) and 4,229 insertions or dele-
tions (indels). The three cohorts have similar clinical characteristics, 
male-to-female ratios, enrichments of DNMs by mutational class and 
prevalences of known disorders (Supplementary Fig. 2).

To detect gene-specific enrichments of damaging DNMs, we devel-
oped a method named DeNovoWEST (de novo weighted enrichment 
simulation test; https://github.com/queenjobo/DeNovoWEST). 
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DeNovoWEST – a method to identify significant recurrent de novo mutations 
controlling for mutation rate, weighting genes with shet and 
weighting variants using variant effect predictors
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However, despite extremely large CVE and LFVE, this class of vari-
ants had a smaller LFVE/CVE ratio than that of non-synonymous 
variants inside genes predicted to be under weak selection (Fig. 5), 
a surprising result that appears to suggest a smaller ∣ ∣sdn  (Fig. 6b) 
despite the extremely large value of π del. We performed additional 
forward simulations to show that a larger ∣ ∣sdn  does not produce 
larger LFVE/CVE ratios for annotations with extremely large values 
of π del, for which the ratio between the proportion of low-frequency 

variants that are deleterious and the proportion of common variants 
that are deleterious is reduced to 1 (Supplementary Fig. 12).

Although our focus is primarily on low-frequency variants 
(0.5%≤  MAF < 5%), we also used our forward simulation frame-
work to draw inferences about rare variant (MAF < 0.5%) architec-
tures of non-coding functional annotations, based on LFVE and 
CVE estimates from UK Biobank (Fig. 4a). Specifically, we com-
pared the mean squared per-allele effect size of rare causal vari-
ants in annotations mimicking functional non-coding variants and 
non-synonymous variants, respectively. We inferred disproportion-
ate causal effects of rare variants in annotations under very strong 
selection (sdn =  − 0.003, similar to non-synonymous variants13), with 
mean squared causal effect sizes 11× , 26× , and 60×  larger than 
annotations with sdn =  − 0.0006, sdn =  − 0.0003, and sdn =  − 0.0002, 
respectively (Fig. 6d and Supplementary Table 12; similar results 
for different choices of π , Supplementary Fig. 13). These results 
indicate that an annotation with large CVE needs to have even 
larger LFVE (for example, LFVE/CVE ratio ≥ 2× , corresponding to 
sdn ≤  − 0.0006; Fig. 6b) in order to harbor rare causal variants with 
substantial mean squared effect sizes (for example, only an order 
of magnitude smaller than rare causal non-synonymous variants;  
Fig. 6d). Unfortunately, most of the non-brain CTS annotations that 
we analyzed do not achieve this ratio (Fig. 4a), motivating further 
work on more precise non-coding annotations (see Discussion).

Discussion
In this study, we partitioned the heritability of both low-frequency 
and common variants in 40 UK Biobank traits across numerous 
functional annotations, employing an extension of stratified LD 
score regression5,23 to low-frequency and common variants, which 
produces robust (unbiased or slightly conservative) results. Meta-
analyzing functional enrichments across 27 independent traits, we 
highlighted the critical impact of low-frequency non-synonymous 
variants (17.3% of hlf

2, LFVE =  38.2× ) compared to common non-
synonymous variants (2.1% of hc

2, CVE =  7.7× ). Other annotations 
previously linked to negative selection, including non-synonymous 
variants with high PolyPhen-2 scores29, non-synonymous variants 
in genes under strong selection31, and LD-related annotations23, 
were also significantly more enriched for hlf

2 compared to hc
2. Finally, 

at the trait level, we observed that CTS annotations6,8 also domi-
nate the low-frequency architecture and that significant CVE tend 
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protective, the gene would be lost. Indeed, pLoF variants in constrained 
genes are associated with childlessness in UK Biobank39. Moreover, 
a standard approach in severe psychiatric and neurodevelopmental 
disorders is to aggregate pLoFs across a set of candidate genes40–42 (this 
approach cannot be used to estimate burden heritability, as not all can-
didate genes are causal). We calculated the genome-wide mean minor 
allele effect of ultrarare pLoFs on each trait (Supplementary Table 7). 
These values were uncorrelated with the corresponding synonymous 
effects, indicating that they are not driven by minor-allele-biased popu-
lation stratification (Extended Data Fig. 3 and Methods). Traits with 
large mean minor-allele effect sizes tended to have a strong burden 
heritability enrichment in constrained genes (Extended Data Fig. 7), 
consistent with the hypothesis that these traits are directly under selec-
tion (but not providing evidence against the importance of pleiotropic 
selection43).

Burden genetic correlations
Exome-sequencing studies often aggregate pLoF and damaging mis-
sense variants to maximize power6,44, raising the question of whether 
damaging missense variants generally act through loss of function. 
We used BHR to compute burden genetic correlations between pLoF 
and damaging missense variants (Fig. 5a,  Methods and Supplemen-
tary Table 18). We observed a mean burden genetic correlation of 0.64 

(s.e. = 0.10), implying that pLoF and missense variants in the same 
genes often have divergent phenotypic effects. One explanation is 
that deleterious missense variants frequently act through mecha-
nisms other than partial loss of function. Alternatively, PolyPhen2 
predicted-damaging variants may approximate pLoFs in some genes 
but not others.

Common-variant effect sizes are often correlated across traits, pro-
viding evidence of shared biological mechanisms12. We estimated pair-
wise burden genetic correlations from ultrarare pLoF variants among 
an extended group of 37 traits (Supplementary Table 5). A total of 197 
correlations passed a nominal threshold for statistical significance, 
and 55 passed a Bonferroni threshold (Supplementary Table 19). For the 
same group of UK Biobank traits, we also computed common-variant 
genetic correlations using linkage disequilibrium score regression 
(LDSC)12 (Methods and Supplementary Table 19). Both common and 
rare variants had correlated effects within clusters of closely related 
traits (for example, LDL/triglycerides/high cholesterol, calcium/albu-
min and neuroticism/depression) and also within less obvious trait 
pairs (forced vital capacity (FVC)/BMI and osteoarthritis/depression) 
(Fig. 5b; for all 37 traits, see Extended Data Fig. 8).

More generally, rare-variant genetic correlations were concordant 
with those from common variants, but they were stronger by 1.6× on 
average (Fig. 5c). A potential explanation is that pleiotropic genes are 
more strongly constrained43, which would dampen common-variant 
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Selection in the present-day population

E½X1" ¼ E½X2" ¼ U=shet. Here Xi denotes the cumulative PTV
allele frequency in subpopulation i. The PTV allele count in
subsample i was modeled as ki $ PoisðniU=shetÞ, where ni is
the number of chromosomes sampled.

We tested whether this deterministic approximation was
violated by comparing the NFE (i¼ 1) and African (AFR,
i¼ 2) ExAC subsamples using the C-test (Przyborowski and
Wilenski 1940). Given k1 þ k2 ( k, the distribution of k1

conditional on the total count k is binomial with success
probability P ¼ n1=ðn1 þ n2Þ. We then computed the
two-sided binomial P-value of the observed value of k1 for
all genes in the set. Since the k1 are discrete random variables,
their P-values are not uniformly distributed. Therefore, in or-
der to account for multiple testing, we compared the ob-
served genome-wide distribution of binomial P-values to
the P-value distribution obtained from a simulation under
the null assumption. We generated 500 instances of simu-
lated binomial PTV counts for each gene and computed the
false discovery rate (FDR) conservatively, as the fraction of
genes that is expected by chance to have a P-value equal to or
less than a certain threshold. We then measured the number
of genes with FDR below 5%, xsig.

Table 1 shows the results for different intervals of the de-
terministic shet estimates, as well as the total number of genes
in each interval, xtot, and significant fraction. We found that a
total of 870 out of 15,865 tested genes (5.5%) show a signif-
icant deviation from the assumption of Poisson distributed
counts with equal expected values in the two subpopulations.
Of all 870 significant genes, 49% have ŝhet ) 0:01. Unlike our
simulations, this data-driven approach is not expected to be
contingent on assumptions about demographic structure or
aspects of the population history.

Prediction of De Novo Fraction Using ŝhet
Some of the PTVs detected in a sample are de novo muta-
tions rather than segregating alleles inherited from the paren-
tal generation. With increasing strength of negative selection,
the population allele frequency, and thus the chance of inher-
iting a deleterious allele, is reduced and more of the observed
deleterious mutations arise de novo. The fraction of de novo
out of all PTVs equals shet for genes under negative selection
in the deterministic limit. As shown in Materials and
Methods, this result is also valid across a wide range of param-
eters at mutation–selection-drift balance (supplementary fig.
4, Supplementary Material online).

We collected de novo and inherited PTVs in autism-
spectrum disorder (ASD) probands from $4,000 parent–
child trios (Kosmicki et al. 2017). For each gene, we computed
the observed fraction of de novo PTVs, f̂ , and compared it to
the deterministic estimate of the heterozygous selection co-
efficient, ŝhet. This analysis provides another independent and
data-driven approach to test the validity of the shet estimates.
Figure 2 shows the observed relation between ŝhet and f̂ . We
find good agreement between ŝhet and f̂ across a wide range
of selection coefficients (̂shet * 0:002). We repeated this anal-
ysis for the deterministic shet estimates obtained from the
entire ExAC data set (Cassa et al. 2017), which delivered

comparable results (supplementary fig. 5, Supplementary
Material online).

Comparison of ŝhet to Other Measures of Protein
Constraint
Beyond the theoretical importance, evaluating selection on
deleterious PTVs has practical applications in human genet-
ics. Population-based measures of constraint, such as pLI (Lek
et al. 2016) and RVIS (Petrovski et al. 2013), have been suc-
cessfully used to prioritize genes in studies of neuropsychiatric

Table 1. Fraction, xsig=xtot, of Genes with Significant, FDR-Corrected
Two-Sided Binomial P-value According to the C-test across the NFE
and AFR Subpopulations (out of N¼ 15,865 genes), in Intervals of
Deterministic ŝhet Values Derived from the NFE Subpopulation of the
ExAC Data Set.

ŝhet Interval xsig xtot xsig=xtot

[0.000, 0.005] 220 1,690 0.124
[0.005, 0.010] 202 2,315 0.086
[0.010, 0.020] 148 2,744 0.052
[0.020, 0.050] 140 3,275 0.041
[0.050, 0.200] 102 4,050 0.029
[0.200, 0.500] 58 1,765 0.028
[0.500, 1.000] 0 26 0.000

NOTE.—FDR was controlled at 0.05.

FIG. 2. In the strong selection limit, shet is a predictor of the fraction of
de novo PTVs, f. De novo fraction of PTV mutations was estimated for
6,203 (out of 16,279) genes with at least one PTV (de novo or trans-
mitted) in an ASD cohort of $4,000 parent–child trios (y axis) and
compared with the deterministic ŝhet derived from the NFE sample (x
axis). Red dots denote individual genes (genes with f̂ ¼ 0 were
assigned f̂ ¼ 2+ 10,4 for illustration purposes). Black squares con-
nected by black lines denote the mean in bins along the x axis of
logarithmic width D log½̂shet" ¼ 0:25 (number of genes per bin from
left to right: {1, 10, 43, 148, 400, 811, 1,117, 1,158, 870, 597, 359, 360,
236, 90, 3}). Vertical error bars show the standard error of the mean
per bin for f̂ . Corresponding error bars for ŝhet are smaller than the
marker size. Gray line denotes the diagonal.
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Reduced reproductive success is associated 
with selective constraint on human genes

Eugene J. Gardner1,6, Matthew D. C. Neville1, Kaitlin E. Samocha1, Kieron Barclay2,3,4, 
Martin Kolk3, Mari E. K. Niemi1, George Kirov5, Hilary C. Martin1 & Matthew E. Hurles1ಞᅒ

Genome-wide sequencing of human populations has revealed substantial variation 
among genes in the intensity of purifying selection acting on damaging genetic 
variants1. Although genes under the strongest selective constraint are highly 
enriched for associations with Mendelian disorders, most of these genes are not 
associated with disease and therefore the nature of the selection acting on them is 
not known2. Here we show that genetic variants that damage these genes are 
associated with markedly reduced reproductive success, primarily owing to 
increased childlessness, with a stronger e!ect in males than in females. We present 
evidence that increased childlessness is probably mediated by genetically associated 
cognitive and behavioural traits, which may mean that male carriers are less likely to 
"nd reproductive partners. This reduction in reproductive success may account for 
20% of purifying selection against heterozygous variants that ablate protein-coding 
genes. Although this genetic association may only account for a very minor fraction 
of the overall likelihood of being childless (less than 1%), especially when compared 
to more in#uential sociodemographic factors, it may in#uence how genes evolve 
over time.

The most damaging genetic variants, gene deletions and protein- 
truncating variants (PTVs), are removed from the population by 
selection with strength that varies substantially from gene to gene1,3. 
The strength of selection against heterozygous PTVs has been esti-
mated using the selection coefficient, shet, which exhibits a continuous 
spectrum across human genes2,4, although most attention has been 
focused on a subset of around 3,000 genes with the highest probability 
of loss-of-function intolerance1 (pLI).

The selection pressures acting on these most selectively con-
strained genes have not been fully characterized, but could include 
natural selection against variants increasing pre-reproductive mor-
tality or decreasing fertility and sexual selection acting on mate 
choice or intra-sexual competition5. Gene deletions and PTVs in 
these genes have been shown to be associated with lower educational 
attainment6,7 and general intelligence8, as well as increased risk of 
intellectual disability and some psychiatric disorders9. Moreover, 
these constrained genes are strongly enriched for associations with 
dominant early-onset Mendelian diseases (including neurodevel-
opmental disorders), many of which are associated with increased 
pre-reproductive mortality, indicating that natural selection prob-
ably makes a substantive contribution to this selective constraint. 
However, the majority (65%) of highly constrained genes (pLI ≥ 0.9) 
have not yet been associated with a Mendelian disease. This raises 
the fundamental question of whether natural selection represents 
the sole mechanism imposing this form of selective constraint on 
human genes.

 
Genetic association testing
To explore the nature of selection acting on these genes we iden-
tified PTVs and genic deletions in UK Biobank10 data on largely 
post-reproductive individuals (median age at recruitment: 58 years, 
range: 39–73 years, birth years: 1934–1970; Supplementary Fig. 1), and 
investigated the association with reproductive success. We called large 
copy number variants (deletions and duplications) from SNP genotyp-
ing array data on 340,925 unrelated participants of European genetic 
ancestry (Supplementary Fig. 2), and identified PTVs from exome 
sequencing among a subset of 139,477 participants11 (Supplementary 
Fig. 3). For each participant, we then calculated the cumulative bur-
den of private (only observed in one individual), heterozygous genic 
deletions and PTVs by combining shet selection coefficients of each 
autosomal gene affected by these variants (under the assumption 
that fitness is multiplicative; Methods), which we term their shet bur-
den. The distribution of shet burden was statistically indistinguishable 
between males and females: for participants with only genic deletion 
data available, 0.56% and 0.55%, respectively had an shet burden ≥ 0.15 
(Kolmogorov–Smirnov P = 1.00; Fig. 1c), and for participants with both 
genic deletion and PTV data available, the analogous proportions were 
4.60% and 4.59%, respectively (Kolmogorov–Smirnov P = 0.52; Fig. 1d).

We assessed the relationship between shet burden and number of chil-
dren using a linear regression correcting for age, genetic ancestry and 
birth cohort (Fig. 1a, Supplementary Table 1; Methods). We observed 
that an shet burden of 1 (the highest possible burden) is associated with 
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a decrease in the overall total number of children for males (0.26 fewer 
children (95% confidence interval 0.18–0.34), P = 6.5 × 10−10) but not 

females (0.05 fewer children (95% confidence interval −0.02 to 0.11), 
P = 0.20) when combining results from deletion and PTV-based analyses.

To determine whether the observed association of shet burden with 
reproductive success was primarily linked to an increased likelihood 
of remaining childless, we performed two analyses. First, we evaluated 
childlessness using logistic regression and again observed a marked 
sex difference in participants’ probability of having any children given 
their shet burden, for both PTVs and genic deletions (Fig. 1b). Combining 
the analyses of genic deletions and PTVs, we found that an shet burden 
of 1 is associated with a lower probability of males having any children 
(odds ratio = 0.32 (95% confidence interval 0.24–0.41), P = 4.9 × 10−17) 
much more than females (odds ratio = 0.64 (95% confidence interval 
0.49–0.84), P = 1.2 × 10−3). We also observed that private duplications 
and probably damaging private missense variants exhibit similar but 
weaker associations with childlessness (Extended Data Fig. 1). Second, 
if we remove childless individuals from the analysis, shet burden ceases 
to have a significant correlation with the number of offspring (Extended 
Data Fig. 2). This is supported by the observation that when we stratify 
individuals with children by the number of children, the shet distribution 
does not vary and confirms that the observed association with reproduc-
tive success relates primarily to increased childlessness (Supplementary 
Fig. 4). This observation is consistent with studies that have associated 
demographic factors with reproductive success, which have also observed 
that associations are weakened or disappear when childless individuals 
are removed from the analysis (for example, in Barthold et al.12).

We also considered whether ascertainment biases or differences in 
fertility between the UK Biobank sample and the UK population as a 
whole could affect these results. As UK Biobank participants included in 
these analyses are enriched for females (54%), the observed sex differ-
ence is not owing to having greater statistical power to detect an effect 
on reproductive success in males. Similarly, fertility rates between the 
UK Biobank population and the UK population as a whole are highly 
similar; the total fertility rate in the UK from 1983–2000 (where data are 
available for both males and females), when UK Biobank participants 
would have been reproductively active, was 1.78 ± 0.07 (mean ± s.e.m). 
for males13 and 1.76 ± 0.05 for females14, which is very similar to that 
observed among UK Biobank participants (average number of children 
for males = 1.77, for females = 1.80).

We observed a consistent sex difference in the association of shet bur-
den with childlessness when performing this analysis in different ways, 
including: (1) limiting analyses to carriers of private genic deletions or 
PTVs in the genes under most selective constraint (following thresh-
olds set by the authors of the indicated publications: pLI ≥ 0.9 (ref. 1) 
or shet ≥ 0.15 (ref. 2) (Supplementary Fig. 5); (2) extending analysis to 
more frequent, but still rare genic deletions and PTVs (Supplementary 
Fig. 6); (3) excluding genes known to be associated with a disease (male 
odds ratio = 0.33 (95% confidence interval 0.24–0.46), P = 4.1 × 10−11; 
female odds ratio = 0.68 (95% confidence interval 0.49–0.94), nominal 
P = 0.02; Methods); and (4) restricting analysis to individuals in specific 
birth cohorts (Extended Data Fig. 3).

Evaluating different hypotheses
We evaluated three hypotheses that could account for the association 
with increased childlessness: (1) impaired fertility (for example, inability 
to produce viable gametes), (2) adverse health conditions, and (3) cogni-
tive and behavioural factors (which may be associated with decreased 
chances of finding a reproductive partner or increased voluntary child-
lessness). We observed that shet burden is not significantly associated 
(after correcting for multiple testing) with an increased risk of male 
(odds ratio = 6.37 (95% confidence interval 1.07–37.87), nominal P = 0.04) 
or female infertility (odds ratio = 0.83 (95% confidence interval 0.33–
2.09), P = 0.70) as defined on the basis of combined health outcomes 
data for all UK Biobank participants (combined hospital episode statis-
tics, primary care records, self-reported conditions, and death records). 
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Fig. 1 | Differences in male and female reproductive success as a function of 
cumulative rare deleterious genetic variation. a, b, Effect size/odds ratio 
estimates for the association of cumulative deleterious variation for deletions 
(dels; N = 90,349 males, 102,511 females), single nucleotide variants (SNVs) and 
insertion–deletion PTVs (N = 60,614 males, 72,846 females), and a combined 
meta-analysis with number of children (meta; N = 150,963 males, 175,357 
females) (a) and childlessness (b) separated for males (green) and females 
(purple). Number of individuals included in each analysis is indicated by the 
size of the point. Asterisks indicate significant associations after Bonferroni 
correction for 20 tests (P < 2.5 × 10−3; Methods). The arrow in b indicates  
that the confidence interval stretches beyond the limits of the y axis.  
c, d, Proportion of individuals in 0.15 shet bins for deletions (c) and PTVs (d).  
e, f, Percentage of individuals with children; data are binned on the basis of shet 
burden for deletions (e) and PTVs (f). Error bars in c–f show 95% confidence 
interval calculated on the proportion of the population.
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a decrease in the overall total number of children for males (0.26 fewer 
children (95% confidence interval 0.18–0.34), P = 6.5 × 10−10) but not 

females (0.05 fewer children (95% confidence interval −0.02 to 0.11), 
P = 0.20) when combining results from deletion and PTV-based analyses.

To determine whether the observed association of shet burden with 
reproductive success was primarily linked to an increased likelihood 
of remaining childless, we performed two analyses. First, we evaluated 
childlessness using logistic regression and again observed a marked 
sex difference in participants’ probability of having any children given 
their shet burden, for both PTVs and genic deletions (Fig. 1b). Combining 
the analyses of genic deletions and PTVs, we found that an shet burden 
of 1 is associated with a lower probability of males having any children 
(odds ratio = 0.32 (95% confidence interval 0.24–0.41), P = 4.9 × 10−17) 
much more than females (odds ratio = 0.64 (95% confidence interval 
0.49–0.84), P = 1.2 × 10−3). We also observed that private duplications 
and probably damaging private missense variants exhibit similar but 
weaker associations with childlessness (Extended Data Fig. 1). Second, 
if we remove childless individuals from the analysis, shet burden ceases 
to have a significant correlation with the number of offspring (Extended 
Data Fig. 2). This is supported by the observation that when we stratify 
individuals with children by the number of children, the shet distribution 
does not vary and confirms that the observed association with reproduc-
tive success relates primarily to increased childlessness (Supplementary 
Fig. 4). This observation is consistent with studies that have associated 
demographic factors with reproductive success, which have also observed 
that associations are weakened or disappear when childless individuals 
are removed from the analysis (for example, in Barthold et al.12).

We also considered whether ascertainment biases or differences in 
fertility between the UK Biobank sample and the UK population as a 
whole could affect these results. As UK Biobank participants included in 
these analyses are enriched for females (54%), the observed sex differ-
ence is not owing to having greater statistical power to detect an effect 
on reproductive success in males. Similarly, fertility rates between the 
UK Biobank population and the UK population as a whole are highly 
similar; the total fertility rate in the UK from 1983–2000 (where data are 
available for both males and females), when UK Biobank participants 
would have been reproductively active, was 1.78 ± 0.07 (mean ± s.e.m). 
for males13 and 1.76 ± 0.05 for females14, which is very similar to that 
observed among UK Biobank participants (average number of children 
for males = 1.77, for females = 1.80).

We observed a consistent sex difference in the association of shet bur-
den with childlessness when performing this analysis in different ways, 
including: (1) limiting analyses to carriers of private genic deletions or 
PTVs in the genes under most selective constraint (following thresh-
olds set by the authors of the indicated publications: pLI ≥ 0.9 (ref. 1) 
or shet ≥ 0.15 (ref. 2) (Supplementary Fig. 5); (2) extending analysis to 
more frequent, but still rare genic deletions and PTVs (Supplementary 
Fig. 6); (3) excluding genes known to be associated with a disease (male 
odds ratio = 0.33 (95% confidence interval 0.24–0.46), P = 4.1 × 10−11; 
female odds ratio = 0.68 (95% confidence interval 0.49–0.94), nominal 
P = 0.02; Methods); and (4) restricting analysis to individuals in specific 
birth cohorts (Extended Data Fig. 3).

Evaluating different hypotheses
We evaluated three hypotheses that could account for the association 
with increased childlessness: (1) impaired fertility (for example, inability 
to produce viable gametes), (2) adverse health conditions, and (3) cogni-
tive and behavioural factors (which may be associated with decreased 
chances of finding a reproductive partner or increased voluntary child-
lessness). We observed that shet burden is not significantly associated 
(after correcting for multiple testing) with an increased risk of male 
(odds ratio = 6.37 (95% confidence interval 1.07–37.87), nominal P = 0.04) 
or female infertility (odds ratio = 0.83 (95% confidence interval 0.33–
2.09), P = 0.70) as defined on the basis of combined health outcomes 
data for all UK Biobank participants (combined hospital episode statis-
tics, primary care records, self-reported conditions, and death records). 

P = 3.5 × 10–6*

P = 4 × 10–6*

P = 0.26

P = 0.38

P = 6.5 × 10–10*
P = 0.2 Meta

PTVs

Dels

0–0.25–0.50–0.75
Effect size at shet burden = 1

a

P = 6.7 × 10–8*

P = 4.3 × 10–11*

P = 0.42

P = 1.4 × 10–3*

P = 4.9 × 10–17*
P = 1.2 × 10–3* Meta

PTVs

Dels

Female Male

No. of individuals

25,000 100,000 175,000

b

0.001

0.01

0.1

1

10

100

P
ro

po
rt

io
n 

of
in

di
vi

du
al

s 
(%

)

0

25

50

75

100

0

0–
0.1

5

0.1
5–

0.3

0.3
–0

.45

0.4
5–

0.6 >0.6

Deletion shet burden

P
ro

po
rt

io
n 

of
 in

di
vi

du
al

s
w

ith
 c

hi
ld

re
n 

(%
)

PTV shet burden

c d

e f

0–0.25–0.50–0.75

Odds ratio at shet burden = 1

0.001

0.01

0.1

1

10

100

Female Male

0

25

50

75

100

0

0–
0.1

5

0.1
5–

0.3

0.3
–0

.45

0.4
5–

0.6 >0.6

Fig. 1 | Differences in male and female reproductive success as a function of 
cumulative rare deleterious genetic variation. a, b, Effect size/odds ratio 
estimates for the association of cumulative deleterious variation for deletions 
(dels; N = 90,349 males, 102,511 females), single nucleotide variants (SNVs) and 
insertion–deletion PTVs (N = 60,614 males, 72,846 females), and a combined 
meta-analysis with number of children (meta; N = 150,963 males, 175,357 
females) (a) and childlessness (b) separated for males (green) and females 
(purple). Number of individuals included in each analysis is indicated by the 
size of the point. Asterisks indicate significant associations after Bonferroni 
correction for 20 tests (P < 2.5 × 10−3; Methods). The arrow in b indicates  
that the confidence interval stretches beyond the limits of the y axis.  
c, d, Proportion of individuals in 0.15 shet bins for deletions (c) and PTVs (d).  
e, f, Percentage of individuals with children; data are binned on the basis of shet 
burden for deletions (e) and PTVs (f). Error bars in c–f show 95% confidence 
interval calculated on the proportion of the population.
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• We assume a constant fitness landscape: what is good for 
fish is good for human!

• We can estimate whether the mutation fits the pattern of 
amino acid changes.

• We can also estimate rate of evolution at the amino acid site

Does the mutation fit the pattern of past 
evolution?

7

• Most of pathogenic mutations are important for stability (good news?).

• DDG is difficult to estimate.

• Unfolded protein response pathway has to be taken into account. 

• Heuristic structural parameters help but less than comparative genomics.

Protein structure view

8

www.genetics.bwh.harvard.edu/pph2            Adzhubei, et al. Nature Methods 2010

PolyPhen2

9

SIFT is based on multiple sequence alignment
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Umbrella methods - CADD
D888 Nucleic Acids Research, 2019, Vol. 47, Database issue

Figure 1. The CADD framework. (A) Training a CADD model requires the identi!cation of variants that are !xed or nearly !xed in human populations,
but are absent in the inferred genome sequence of the human-ape ancestor (proxy-neutral variants). The sequence composition of this variant set is used
to draw a matching set of proxy-deleterious variants. Using more than 60 diverse annotations, a machine learning model is trained to classify variants as
proxy-neutral versus proxy-deleterious. All potential SNVs of the human reference genome are annotated using the same features, and raw CADD scores are
calculated. A PHRED conversion table is derived from the relative ranking of these model scores. (B) Users provide variant sets in VCF, and CADD uses
the chromosome, position, reference allele and alternative allele columns from these !les. Scores are either retrieved from pre-scored !les, or else variants
are fully annotated and the CADD score is calculated. The PHRED-scaled score is then looked up in the conversion table, and both scores returned to the
user. Users may request output !les containing variant annotations.

compared across models with distinct annotation combi-
nations, training sets or tuning parameter choices. However,
raw scores do have relative meaning, in the sense that higher
values indicate that a variant is more likely to have derived
from the proxy-deleterious than the proxy-neutral variant
set, and is therefore more likely to have deleterious effects.
‘PHRED-scaled’ scores are normalized to all potential ∼9
billion SNVs, and thereby provide an externally compara-
ble unit for analysis. For example, a scaled score of 10 or
greater indicates a raw score in the top 10% of all possible
reference genome SNVs, and a score of 20 or greater indi-
cates a raw score in the top 1%, regardless of the details of
the annotation set, model parameters, etc.

Raw scores offer superior resolution across the en-
tire spectrum, and preserve relative differences between
scores that may otherwise be rounded away in the scaled
scores (only six signi!cant digits are retained in the scaled
scores). For example, the bottom 90% (∼7.7 billion) of
all GRCh37/hg19 reference SNVs (∼8.6 billion) are com-
pressed into scaled CADD units of 0 to 10, while the next
9% (top 10% to top 1%, spanning ∼774 million SNVs)
occupy CADD-10 to CADD-20, etc. As a result, many
variants that have substantively different raw scores may
have very similar, or even the same, scaled scores; and
scaled scores accurately resolve differences between vari-
ants’ scores only at the extreme top end. Thus, when com-
paring distributions of scores between groups of variants
(e.g. variants seen in cases versus variants seen in con-

trols), raw scores should be used. However, when discov-
ering causal variants or !ne-mapping variants within as-
sociated loci, scaled scores are advantageous as they allow
the user a direct interpretation in terms of the estimated
pathogenicity relative to all possible SNVs in the reference
genome.

It is tempting to declare a single universal cut-off value
for CADD scores, above which a variant is declared
‘pathogenic’ (or ‘functional’ or ‘deleterious’) as opposed to
‘benign’ (or ‘non-functional’ or ‘neutral’) across all datasets.
However, we believe that such an approach is "awed for at
least two reasons. First, a substantial loss of information
would result from binarizing continuous-valued CADD
scores. Second, the choice of cut-off would naturally depend
on a number of analysis-speci!c factors, such as the sever-
ity of the phenotype, whether the variant is dominant or re-
cessive, and the amount of time and resources available for
curation or experimental follow-up of variants. Therefore,
we recommend ranking all variants by CADD score, and
then further investigating the top-ranked variants to the ex-
tent that is meaningful within the given study design or al-
lowed by the available resources for follow-up assessment.
However, for an alternative view on this topic, we refer the
reader to recent methods that use CADD scores in conjunc-
tion with hard cutoffs; see GAVIN (23) and MSC (24). We
also note that for better or worse, the binary classi!cation
of variants as pathogenic versus benign is still the standard
practice (and perhaps the expectation) in the medical genet-
ics !eld.
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Umbrella methods - REVEL

advantages for genome-wide NGS applications because
they provide scores for noncoding and regulatory variants
that are on the same scale as for coding variants.
The improved performance of REVEL relative to other

ensemble methods was greatest for discriminating be-
tween disease and rare neutral variants. This result might
be partly explained by the fact that REVEL was trained
on rare neutral variants with AF < 1% and did not rely
on AF as a predictive feature. To our knowledge, one other
ensemble predictor, KGGSeq,24 was similarly trained on
rare neutral variants. KGGSeq uses many of the same
component predictors as REVEL, except for MutPred, and
also includes CADD as a predictive feature. However,
KGGSeq adaptively selects an optimal subset of features
rather than using all features to predict the pathogenicity
of each variant, in part to allow exclusion of features
with missing data. Possible explanations for the improved
performance of REVEL over KGGSeq include use of all fea-
tures for all variants by first imputing missing scores,
importance of MutPred as a predictive feature, and use of
a random forest approach rather than logistic regression.
REVEL also outperformed its individual constituent pre-

diction tools, as expected for ensemble methods.19–28 The
top-performing individual tools on our training dataset
were VEST,15 FATHMM,14 and MutPred,8 consistent with
their high importance in the REVEL random forest. VEST
predictions are based on a particularly large set of 86 basic
genomic and protein annotations and had the best perfor-
mance among the individual tools. FATHMMuses a hidden
Markov modeling approach to analyze multiple sequence
alignments and alignments of conserved protein domain

families to compute position-specific amino acid probabili-
ties. The uniqueness of this method might contribute to
the low correlation between FATHMM and other prediction
tools and high importance in REVEL.28 Finally, the strong
performance of MutPred could be because its predictions
are based on a particularly detailed model of protein struc-
tural and functional properties, including secondary struc-
ture, solvent accessibility, functionaldomains,methylation,
phosphorylation, and glycosylation, with quantitative esti-
mates of the probability of losing each property as a result
of a particular amino acid change.
In conclusion, REVEL is an ensemble method that out-

performs existing tools for distinguishing disease variants
from rare neutral variants. REVEL can be used to prioritize
the most likely clinically or functionally relevant variants
among the sea of rare variants that are increasingly discov-
ered as sequencing studies expand in scale. For example,
REVEL scores have been used by the International
Consortium of Prostate Cancer Genetics as weights for
combining variants discovered by exome sequencing in
gene-level case-control studies. Pre-computed REVEL path-
ogenicity scores for all possible human missense variants,
based on GENCODE v9 gene annotations54 for hg19, are
available for download (see Web Resources). To aid inter-
pretation, we also provide estimates of REVEL sensitivity
and specificity for different score thresholds and the quan-
tiles of the REVEL score in over one million ESVs observed
in KGP, ESP, and ARIC. Future studies might explore the
application of REVEL to specific genes to evaluate its
clinical utility for interpreting variants of unknown signif-
icance for a broad spectrum of clinical conditions.
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(A) Distribution of REVEL scores for 6,182 disease (red) and 123,706 neutral (blue) training variants and 1,125,160 ESVs (black). REVEL
scores were computed with only the OOB predictions for training variants.
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(black). REVEL scores were computed with only the OOB predictions for training variants.
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Umbrella methods

• VEST4 – also an umbrella method using Random Forest

• VARITY – a new method using Gradient Boosting and focusing on de 
novo mutations and ultra rare variants 

13

• Multiple independent lines of evidence suggest abundance of weakly 
deleterious alleles in humans

• Weakly deleterious variants may occur in highly conserved positions

• Weakly deleterious alleles probably contribute to complex phenotypes but 
not to simple Mendelian phenotypes

Weakly deleterious mutations
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Compensatory mutations
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Ridges on the fitness landscape
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Dobzhansky-Muller incompatibility
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Looking at vertebrate species
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Many human pathogenic mutations are found in 
vertebrates
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• Model of Bardet-Biedl 
Syndrome (obesity, renal 
failure, vision loss)

• Caused by defects in primary 
cilium

• Embryonic convergence / 
extension phenotype in 
zebrafish

• Easily scorable phenotype

Normal

Class I

Class II

Images: Phoebe 
Liu

Zebrafish model
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No injection

Knockdown

Rescue with 
human gene

Human gene with 
disease mutant 

Double mutant 
(no suppression)

Double mutant 
(full suppression)

Images: Phoebe 
Liu

Testing double mutants
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Clinical features
Global developmental delay
microcephaly
feeding issues 
failure to thrive 

abnormal muscle tone 
low immunoglobulins 
frequent respiratory infections 

Clinical testing
normal female microarray
metabolic testing – negative
extensive genetic testing –
negative

BTG2 
De novo

NOS2
De novo

TTN
Compound het

LAMA1
Compound het

-
001

-
002

-
004

-
003

-
004

Erica DavisStephan Frangakis

A newly identified gene
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We enrolled a 17-month-old female with an undiagnosed neuroa-
natomical condition hallmarked by microcephaly (Fig. 4a). We filtered
WES data for non-synonymous and splice variants with a minor allele
frequency of ,1%, and we conducted a proband-centric trio analysis
that yielded four candidates: de novo missense changes in BTG2 and
NOS2; and recessive missense variants in TTN and LAMA1. Testing of
an unaffected sibling excluded LAMA1; TTN, a known dominant car-
diomyopathy locus27, is an unlikely driver.

To investigate the pathogenicity of the BTG2 (p.V141M) and NOS2
(p.P795A) protein-encoding changes, we studied btg2 and nos2 in
zebrafish. Reciprocal use of Basic Local Alignment Search Tool
(BLAST) between Homo sapiens and Danio rerio identified a single
zebrafish btg2 orthologue and two zebrafish nos2 orthologues. We
injected splice-blocking MO (sb-MO) or translational-blocking MO
(tb-MO) (Extended Data Fig. 3) into zebrafish embryos (3 ng; n 5 80
embryos per injection) and scored for head size defects at 4 days post-
fertilization (dpf) by measuring the anterior–posterior distance
between the forebrain and the hindbrain (Fig. 4b). For nos2a/b MO-
injected embryos, we saw no differences at the highest dose injected
(8 ng for nos2a/b sb-MOs; Supplementary Table 10). By contrast, we
found a significant reduction of anterior structures in btg2 morphants
(P , 0.0001; Fig. 4b, c). Co-injection of wild-type human BTG2
mRNA with tb-MO resulted in significant rescue (P , 0.0001;
Fig. 4c). In contrast, injection of mRNA harbouring 141M was signifi-
cantly worse at rescue than wild type (P , 0.0001; Fig. 4c).

BTG2 is a regulator of cell cycle checkpoint in neuronal cells28 and is
strikingly intolerant to variation in humans (Exome Variant Server
(EVS)). To test the pathogenicity of 141M by a different assay, we
performed antibody staining at 2 dpf (a time before the manifestation
of microcephaly). We marked post-mitotic neurons in the forebrain
with antibodies against neuronal HuC/HuD antigens, and we scored
(blind, triplicate) on the basis of an established paradigm29. btg2
morphants displayed a significant decrease in HuC/HuD staining
(P , 0.0001; Extended Data Fig. 4). This defect was rescued with
wild-type BTG2 mRNA (P , 0.05); but could not be ameliorated by
141M-encoded mRNA co-injection (Extended Data Fig. 4).
Importantly, co-injection of btg2 tb-MO with two rare control EVS
alleles (p.A126S and p.R145Q) resulted in rescue, providing evidence
for assay specificity (Extended Data Fig. 4b). As a third test, we stained

whole embryos with a phospho-histone H3 (PH3) antibody that marks
proliferating cells. We counted the number of positive cells in a defined
anterior region of embryos. We saw a significant reduction in cell
proliferation in the heads of 2 dpf btg2 morphants (P , 0.0001); this
defect was likewise rescued by co-injection of wild-type mRNA, while
141M mutant rescue was indistinguishable from btg2 tb-MO alone
(P 5 0.38; Fig. 4b, d). Combined, all three assays indicated that
BTG2 p.V141M is pathogenic and that haploinsufficiency of this gene
probably contributes to the microcephaly of the proband.

Despite our functional and genetic data for p.V141M, this allele was
predicted computationally to be benign. A likely reason is that, with
the exception of primates, most BTG2 orthologues encode Met at the
orthologous position (Fig. 4f). These data suggested that V141 might
represent a CPD site in primates that branched from the ancestral
methionine. To test this possibility, we identified nine BTG2 sites that
co-evolved with 141M (Supplementary Table 11), which we mutagen-
ized into the human construct encoding 141M. We then injected
embryos with btg2 MO; MO plus wild-type human BTG2 mRNA;
MO plus 141M-encoding mRNA; or MO plus 141M in cis with one
of the nine candidate complementing alleles. Seven of the alleles had
no effect (Supplementary Table 11). However, R80K- or L128V-
encoded mRNA on the 141M backbone rescued the number of
PH3-positive cells to wild-type levels (Fig. 4e and Extended Data
Fig. 2c); both alleles were benign on their own (Supplementary
Table 11). Taken together, our data indicated that 141M is deleterious
in the human background, but the protection of this residue conferred
by either Lys 80 or by Val 128 can explain .90% (54/59) of species
encoding 141M (Fig. 4f).

To improve the scalability of detecting CPDs, we used our model of
CPD evolution to develop a computational predictor for distinguish-
ing variants that are unlikely to be CPDs from those that might be
CPDs, and to identify candidate compensations to aid experimental
design (http://genetics.bwh.harvard.edu/cpd/). Initial testing of this
tool intimated high negative predictive values but modest positive
predictive values, probably due to the dearth of known CPDs
(Supplementary Note).

Our results contrast with some previous studies that claim that
epistasis is ubiquitous7,10; or that it is practically nonexistent9; or that
it is commonly of higher order12,13. The most likely explanation for this

Nature nature14497.3d 12/6/15 17:38:33

0.0015 

0.0035 

0.0055 

0.0075 

0.0095 

0.0115 

0.0135 

0.0155 

490 510 530 550 570 590 610 630 650 670 690 

a

–001 –002

–003 –004

WT WT

WT c.421G>A; p.V141M

DM048 BTG2

d

b c

e f
BTG2 R80 L128 Q140 V141 L142

H. sapiens R L Q V L
P. troglodytes • • • • •

G. gorilla • • • • •
M. musculus K V • M M

R. norvegicus K V • M M
H. glaber • V • M M

S. domesticus K V • M M
B. primigenius K V • M M

E. ferus caballus K V • M M
F. catus K V • M M

C. lupus familiaris K V • M M
D. novemcinctus K V • M M

G. gallus K P • M M

btg2 MO

Control
Control
btg2 MO
btg2 MO + WT mRNA
btg2 MO + p.V141M mRNA
BTG2 WT mRNA
BTG2 p.V141M mRNA

Width (+m)

N
um

be
r o

f e
m

br
yo

s 
(a

.u
.)

btg2 MO
WT RNA

V141M RNA
Complement

allele
R80K L128V

–
–
–

+
–
–
–

–
–

+
+

–
+
–
+

+
–
+

+
–
+–

0

200

400

600

C
el

l c
ou

nt

P < 0.001
P < 0.001

Control btg2 MO

MO + WT RNA MO + V141M

Figure 4 | A de novo BTG2 p.V141M-encoding allele causes microcephaly.
a, Pedigree DM048. Chromatograms show a de novo c.421G.A nucleotide
change. WT, wild type. b, Suppression of btg2 leads to head size defects. Dorsal
view of uninjected control and btg2 MO-injected zebrafish embryos at 4 dpf.
White arrows show the distance measured from forebrain to hindbrain. Red
line shows the protrusion of the pectoral fins in uninjected controls.
c, Distribution of head size measurements at 4 dpf (Supplementary Table 10;

white arrows in b), a.u., arbitrary units. d, 2 dpf zebrafish embryos stained for
PH3. Human RNA containing the V141M mutation is unable to rescue the
reduced proliferation of btg2 morphants. e, Quantification of PH3-positive
cells: human RNA with mutations V141M and either R80K or L128V can
rescue knockdown of btg2. Error bars represent standard deviation. f, The
141M allele is fixed in 59/87 species besides primates, examples displayed here.
See Supplementary Table 11 for PH3 quantification.
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The mutation is a reversal to the mammalian 
ancestral state

1

• Machine learning techniques have the potential to solve the epistasis problem

• Measures of population level constraint have the potential to solve the 
problem of distinguishing between strongly and weakly deleterious mutations.

New methods directions

2

EVE – Variational Autoencoder

92 | Nature | Vol 599 | 4 November 2021

Article

of overfitting clinical labels) and is as accurate as predictions from 
high-throughput experiments.

Predicting pathogenicity from evolution
Our method—EVE—learns the propensity of human missense variants 
to be pathogenic from the distribution of sequence variation across 
species (Fig. 1, Extended Data Fig. 1). In the first step, we captured 
constraints from natural sequences across evolution, including com-
plex dependencies between positions, by learning the distribution 
of amino acid sequences for each protein using an expressive deep 
generative model, a variational autoencoder (VAE)29,30. VAEs have been 
successful in learning complex high-dimensional distributions across 
multiple domains including prediction of protein function31 (Supple-
mentary Methods). For each human protein of interest, a Bayesian VAE 
was trained on a multiple sequence alignment retrieved by searching 
approximately 250 million protein sequences in UniRef32 (Supplemen-
tary Methods, Supplementary Table 1). After training on evolutionary 
sequences, we estimated the relative likelihood of each single amino 
acid variant with respect to the wild type—what we call the ‘evolution-
ary index’—by sampling from the approximate posterior distribution 
learned by the VAE. We performed a thorough architecture and hyper-
parameter search to ensure stability and performance across proteins, 
and demonstrate its superiority over previous methods31 (Extended 
Data Fig. 2). When comparing this evolutionary index against clinical 
labels, the value that separates pathogenic from benign labels was nota-
bly consistent across proteins (Extended Data Fig. 3a), suggesting that 
we may use unsupervised methods to infer pathogenicity. Therefore, 
in the second step, rather than using (semi-)supervised learning to 
map scores to label categories, we fitted a two-component global-local 

mixture of Gaussian mixture models on the distributions of evolution-
ary indices for all single amino acid variants across proteins (Extended 
Data Fig. 3b, Supplementary Methods). The output of this process is 
both the EVE score—a continuous pathogenicity score defined over 
the interval [0,1], with zero being most benign and one being most 
pathogenic—and class assignments. For these assignments, we used 
the predictive entropy of the Gaussian mixture model as a measure of 
classification uncertainty, and binned variants into one of three cat-
egories: benign, uncertain or pathogenic (Supplementary Methods).

We applied EVE to a set of 3,219 human genes that have been associ-
ated with disease in ClinVar3 (Supplementary Methods). Our model 
is predictive of clinical significance for all labelled variants across all 
genes (average area under the curve (AUC) of 0.91) (Fig. 2b, Supple-
mentary Table 2) including 60 ‘clinically actionable’ genes33 (average 
AUC of 0.92) (Extended Data Fig. 4a). Furthermore, the performance 
of EVE is robust to the number of labels per protein (Fig. 2b), suggest-
ing generalizability to genes with less (or no) annotation, as we would 
expect from an unsupervised approach.

EVE outperforms all supervised and unsupervised methods at pre-
dicting known clinical labels (Fig. 2c, x axis, Supplementary Table 3). 
This is despite a large fraction of these labels being used in training 
the top-performing methods, as well as, in some cases, being used 
extensively in defining labels. As a second benchmark that avoids 
some of these circularities, we compared the model predictions 
against 40,000 experimentally measured variants across 10 proteins 

We sample from the
approx. posterior

Inferring constraints at each position by learning
the distribution of sequences in evolutionary data

For each protein

Bayesian variational autoencoder

Evolutionary index Gaussian mixture model

Computing EVE pathogenicity scores and
!ltering out most uncertain predictions 

One-hot encoding of
MSA sequences

Approximating the
negative log-likelihood

ratio of mutant versus wild type

VAE reconstruction

Uncertain

Ev ~ −log
P(xv|T)

P(xWT|T)

Fig. 1 | Modelling strategy. For each protein, a Bayesian VAE (top) learns a 
distribution over amino acid sequences in a multiple sequence alignment 
(MSA) of evolutionary data. This enables the computation of the evolutionary 
index (bottom left) for each single-variant sequence, which approximates the 
negative log-likelihood ratio of variant (Xv) versus wild-type (XWT) sequences.  
A global-local mixture of a Gaussian mixture model (bottom right) separates 
variants into benign (blue dashed line) and pathogenic (red) clusters based on 
that index. The outcome of the model is both a continuous score that reflects 
pathogenicity propensity, and probabilistic assignment to benign and 
pathogenic classes (blue and red shaded areas, respectively) below a 
user-defined uncertainty threshold (Extended Data Figs. 1, 3).
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Fig. 2 | EVE accurately predicts disease-causing variants. a, Distribution of 
the AUC for EVE scores computed over known clinical labels from ClinVar, on all 
3,219 proteins covered by our study (dark blue) and for the subset of proteins 
with at least five benign and five pathogenic known labels (pale blue).  
b, Trade-off between the accuracy of EVE and the uncertainty threshold 
(percentage of variants set as ‘uncertain’) or the total number of variants given a 
class assignment. Accuracy was computed over all labels for proteins with at 
least three (five or ten) benign labels and three (five or ten) pathogenic labels.  
c, Performance comparison of EVE to state-of-the-art computational variant 
effect predictors: seven unsupervised and eight supervised. Performance was 
estimated against known clinical labels (average AUC over disease genes in 
ClinVar (x axis)), and against high-throughput functional assays developed to 
assess the clinical effect of variants (average spearman correlation (y axis)) 
(Supplementary Note 2, Extended Data Fig. 4, Supplementary Tables 2–4). 
DMS, deep mutational scan.
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Large Language Models (VariPred) 
 
 
W.Lin et al. 

 

10 

 Fig 2 Schema of workflow for training VariPred. A) In the first step, each wild-type protein sequence and the corresponding mutant 
protein sequence are fed into the PLM separately. The PLM generates a per-residue embedding for each amino acid. The output is the 
matrix of sequence embedding, with dimensions sequence length x embedding dimension. B) Only the embeddings of the amino acids at 
the mutated position are used and joined giving an embedding dimension of 2560. The concatenated embeddings for each observation are 
combined to give an embedding matrix with dimensions dataset size x 2560. C. The embedding matrix is fed as the input into a Feedforward 
Neural Network (FNN), and two probabilities are then output identifying if the given variant belongs to the pathogenic or benign group. Note 
that if the LLR feature is appended the input matrix is dataset size X 2561. 
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Fig 3 Comparison between models under different testing situations. Comparison of the LLR and embedding features for three protein language models. The 

baseline is using ‘Only LLR’ to predict pathogenicity of variants; For ‘Only embeddings’ we used amino acid embeddings as input to a shallow FNN to predict the 

pathogenicity of variants; ‘LLR + embeddings’ concatenates the LLR feature as the last column of the amino acid embedding matrix, and then performs variant 

classification by using this extended matrix as input to the FNN. 

 

Fig 4 Comparing the performance of pathogenicity predictors using the ClinVar validation set. A) AUC-ROC curve plot for the four 
predictors. B) The Confusion matrix comparison for predictors. Note that EVE has a smaller test set size due to the problems with data 
availability. Consequently, the distribution of actual positives and actual negatives is different from the other predictors. All overlaps of mutant 
protein sequences, between the training set and this test set have been removed. C) MCC score for the predictors being tested in this study. 
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Applications

• Mendelian genetics

• Rare variant association studies

7

ControlDisease

This is a direct association!Rare variant collapsing study

8

ControlDisease

This is a direct association!

Neutral variantsFunctional variants

Rare variant collapsing study

9

Predicting functional consequences increases 
power

• Inclusion of neutral variants reduces power of the test

• Combining variants with vastly different effect sizes reduces power of the 
test

• Most groups limit the tests to nonsense, splicing and missense variants that 
are predicted functional

• Assigning quantitative weights is probably a better approach, but nobody 
uses it in practice

10

Damaging missense variants (as predicted by PrimateAI-3D) are 
enriched among de novo mutations in developmental disorders Submitted Manuscript: Confidential 
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Fig. 5. Enrichment of de novo mutations in the neurodevelopmental disorder cohort over 
expectation. (A) Enrichment of DNMs from Kaplanis et al. (87) across all genes. Enrichment 
ratios are given for synonymous, all missense, and protein-truncating variants (PTV), along with 5 
missense split by PrimateAI-3D score into benign (<0.821) and pathogenic (>0.821). (B) 
Enrichment of benign and pathogenic missense above expectation at varying PrimateAI-3D 
thresholds for classifying pathogenic missense. 
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Burden heritability is significant for damaging 
missense variants (as predicted by PolyPhen2)
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Article

using LD score regression (Methods). A much larger fraction of phe-
notypic variance is explained by common variants (median, 13%), and 
common-variant and burden heritability are highly correlated (Fig. 2c 
and Supplementary Table 10).

Inflation in exome association test statistics due to uncorrected 
population stratification is a major concern, especially when estimating 
heritability. The BHR intercept quantifies the inflation in burden test 
statistics due to sampling variation and most forms of confounding 
(analogous to the LD score regression intercept10), as well as overdisper-
sion (fixing the intercept at 1/n resulted in inflated burden heritability 
estimates; Supplementary Fig. 1). We evaluated the robustness of this 
approach in three analyses. First, we quantified minor-allele-biased 
population stratification, which could produce upward bias in BHR, by 
calculating the mean minor-allele effect size of synonymous variants 
(Methods). This effect was non-zero but very small, and we quantified 
the resulting bias in our heritability estimates (0.005% on average; 
Extended Data Fig. 3). Second, we computed null pLoF burden statistics 
by randomly permuting the major and minor alleles; as expected, BHR 
produced heritability estimates that were not significantly different 
from zero (Extended Data Fig. 4). Third, we computed the correlation 
between pLoF burden scores and synonymous burden statistics, and 
they were uncorrelated, as expected (Supplementary Fig. 2).

Accordingly, we used the BHR intercept to quantify the amount 
of residual population stratification in the burden test statistics. For 
ultrarare pLoF variants, on average across traits, confounding and 

overdispersion explained 4% of variance in the test statistics, sampling 
variation explained 85% and genuine burden heritability explained 
the remaining 10% (Fig. 2d and Supplementary Table 6). For ultrarare 
synonymous variants, burden heritability explained 0% of variance; 
confounding and overdispersion explained 4% of variance and sam-
pling variation explained 94% (Supplementary Table 6). The estimated 
amount of inflation due to population stratification (around 4%) implies 
a family-wise error rate of more than 0.05 but less than 0.1 for most 
traits (Supplementary Table 6).

We performed three additional sensitivity analyses. First, we consid-
ered frequency-dependent burden weights, motivated by the known 
dependence of common-variant effect sizes on allele frequency28; 
estimates were nearly identical (Supplementary Fig. 3). Second, we 
performed a joint regression with a shared intercept for different fre-
quency bins and functional categories; again, the results were nearly 
identical (Supplementary Fig. 4). Third, we varied the number of gene 
constraint bins, and no change was observed with more than five bins 
(the number we use) (Supplementary Fig. 5).

Two recent papers reported that rare variants from whole-genome 
sequencing data are an important source of heritability for complex 
traits. It was reported24 that the heritability explained by rare and 
low-frequency variants (MAF = 1 × 10−4–0.01) is 0.3 (s.e. = 0.1) for height 
and 0.29 (s.e. = 0.25) for BMI; ref. 29 similarly reported that rare variants 
explain a large fraction of heritability for smoking phenotypes, with 
large s.e. values. In contrast to our burden estimates, these estimates 
include non-coding SNPs and SNPs at intermediate allele frequencies 
(0.001–0.01), and they do not aggregate variants by gene. Owing to 
these differences, our rare variant heritability estimates are smaller but 
much better powered: 0.037 (s.e. = 0.001) for height, 0.012 (s.e. = 0.001) 
for BMI and 0.006 (s.e. = 0.001) for smoking status (Supplementary 
Tables 8 and 11).

Concentration within significant genes
In GWAS, a consistent observation has been that common traits are 
highly polygenic, with numerous loci of small effect30,31. By contrast, 
most rare genetic diseases are caused by large-effect mutations in a 
much smaller number of genes, and it is unclear whether the rare-variant 
genetic architecture of common diseases is highly polygenic like com-
mon variants or more oligogenic like rare diseases. We quantified the 
proportion of burden heritability that is explained by exome-wide 
significant genes (Methods), and we compared the extent to which 
common- and rare-variant heritability is concentrated in large-effect 
genes and regions of the genome.

A total of 17 out of 22 traits had at least one significantly associated 
gene in Genebass5 (Methods), and they had a median of 6 significant 
genes per trait (Supplementary Tables 12 and 13). These genes explained 
a substantial proportion of the burden heritability (median, 19%; 
Fig. 3a), after partially correcting for the winner’s curse32 (Methods and 
Supplementary Fig. 6). For low-density lipoprotein (LDL) cholesterol 
levels, APOB alone explained 39% (s.e. = 4%) of burden heritability and, 
for diabetes, GCK explained nearly 15% (s.e. = 4%).

By contrast, individual common-variant associations are substan-
tially smaller as a fraction of common-variant heritability (Fig. 3b and 
Supplementary Table 14). Even aggregating common-variant herit-
ability across large LD blocks (most >1 Mb), top rare-variant associated 
genes (out of 17,318) explain a much larger fraction of heritability than 
top LD blocks (out of 1,651) (Extended Data Fig. 5 and Supplementary 
Table 15). The difference in common-variant versus rare-variant poly-
genicity can be explained by ‘flattening’ due to negative selection, as 
we previously hypothesized19 (Discussion).

We sought to reconcile the difference in polygenicity with the 
observation that rare-variant associations are strongly enriched near 
GWAS loci3. For traits with at least five significant genes, we quantified 
the fraction of common variant heritability mediated by those genes 
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Experimental technologies – deep mutational 
scanning (DMS)

Hanna et al., 2021; Seuma et al., 2021). Genetic interaction patterns
and the underlying biophysical mechanisms have been revealed for
both between genes (Diss and Lehner, 2018; Lite et al., 2020; Faure
et al., 2022) and within the same gene (Olson et al., 2014; Li et al., 2016;
Puchta et al., 2016; Sarkisyan et al., 2016; Baeza-Centurion et al., 2019;
Yoo et al., 2020; Faure et al., 2022). Also, using the positional genetic
interaction scores generated from DMS experiments, protein
structures can be accurately predicted (Rollins et al., 2019;
Schmiedel and Lehner, 2019). The release of the DMS data on
SARS-Cov2 spike protein RBD within a year of the SARS-Cov2
outbreak (Starr et al., 2020) demonstrates that DMS is a powerful
technique to address pressing questions in a relatively short period.
The data accurately captured some SARS-Cov2 mutations that became
prevalent in the later stage of the pandemic (Starr et al., 2020; Starr
et al., 2022). Furthermore, DMS data on immune-escape mutants of
various SARS-Cov2 variants (Greaney et al., 2021a; Greaney et al.,
2021b; Javanmardi et al., 2022) guides better vaccine design.

A typical DMS experiment involves three steps: 1) generating a
genetic mutant library; 2) performing a high-throughput phenotyping
assay; 3) and deep sequencing and data analysis. Several good reviews on
designing DMS experiments were published (Fowler and Fields, 2014;

Shin and Cho, 2015; Starita and Fields, 2015; Matuszewski et al., 2016; Cao
et al., 2022) in the early days of DMS. However, many more technical
options became available in DMS thanks to the fast-developing
technology in gene synthesis, sequencing technologies and high-
throughput phenotyping methods since the reviews. The recent
reviews (Weile and Roth, 2018; Kemble et al., 2019; Kinney and
McCandlish, 2019; Narayanan and Procko, 2021; Hanning et al.,
2022) in light of the DMS boom mostly focus on specific biological
insights—for example, how the technique enabled breakthroughs in
human genetics (Weile and Roth, 2018), on transcriptional factors
(TF) and cis-regulatory elements (CRE) (Kinney and McCandlish,
2019), on viral protein and receptors (Narayanan and Procko, 2021)
or therapeutic antibody engineering (Hanning et al., 2022). Kemble et al.
gave a comprehensive overview of genotype-phenotype mapping
(Kemble et al., 2019) enabled by DMS technology. While the DMS
strategy is straightforward, each step of the technique can be tricky and
complicated to generate clean and meaningful data, as it involves various
synthetic biology and massive parallel assays. In addition, genetic variants
from DMS experiments are of low complexity but are of a big amount that
needs special attention for statistical analysis. We notice a lack of such up-
to-date reviews on the insights in technical aspects.

FIGURE 1
An overview of the DMS procedure (A) A mutant DNA library is transformed into cell types of interest to generate a mutant cell library. Then, the mutant
cell library goes through high-throughput phenotypingwhere cells carrying functional variants are enriched (cells filledwith blue) while thosewith detrimental
variants are depleted (cells filled with red or purple). Genetic variants are extracted and sequenced to calculate the relative enrichment changes before and
after selection. Finally, the enrichment scores are analysed as the functional scores ofmutations (B) Protein-Fragment Complementation Assay (PCA) (C)
The underlying assumption is that the concentrations of functional DHFR are linearly related to cell survival (fitness) (D) BindingPCA captures mutational
effects on both stability and protein-protein interactions without distinguishing them (E) AbundancePCA captures mutational effects on stability (F) ddPCA
combines BindingPCA and AbundancePCA and enables the inference of the bbphysical effects ofmutations by quantifying and comparing phenotypic effects.
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et al., 2022). Furthermore, DMS data on immune-escape mutants of
various SARS-Cov2 variants (Greaney et al., 2021a; Greaney et al.,
2021b; Javanmardi et al., 2022) guides better vaccine design.

A typical DMS experiment involves three steps: 1) generating a
genetic mutant library; 2) performing a high-throughput phenotyping
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throughput phenotyping methods since the reviews. The recent
reviews (Weile and Roth, 2018; Kemble et al., 2019; Kinney and
McCandlish, 2019; Narayanan and Procko, 2021; Hanning et al.,
2022) in light of the DMS boom mostly focus on specific biological
insights—for example, how the technique enabled breakthroughs in
human genetics (Weile and Roth, 2018), on transcriptional factors
(TF) and cis-regulatory elements (CRE) (Kinney and McCandlish,
2019), on viral protein and receptors (Narayanan and Procko, 2021)
or therapeutic antibody engineering (Hanning et al., 2022). Kemble et al.
gave a comprehensive overview of genotype-phenotype mapping
(Kemble et al., 2019) enabled by DMS technology. While the DMS
strategy is straightforward, each step of the technique can be tricky and
complicated to generate clean and meaningful data, as it involves various
synthetic biology and massive parallel assays. In addition, genetic variants
from DMS experiments are of low complexity but are of a big amount that
needs special attention for statistical analysis. We notice a lack of such up-
to-date reviews on the insights in technical aspects.
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An overview of the DMS procedure (A) A mutant DNA library is transformed into cell types of interest to generate a mutant cell library. Then, the mutant
cell library goes through high-throughput phenotypingwhere cells carrying functional variants are enriched (cells filledwith blue) while thosewith detrimental
variants are depleted (cells filled with red or purple). Genetic variants are extracted and sequenced to calculate the relative enrichment changes before and
after selection. Finally, the enrichment scores are analysed as the functional scores ofmutations (B) Protein-Fragment Complementation Assay (PCA) (C)
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Figure 1. Gain-of-Function MC4R Variants Are Associated with Protection from Obesity and Its Complications
(A and B) Maximal efficacy of (A) NDP-aMSH-induced cAMP production and (B) b-arrestin recruitment for mutant MC4Rs. Data represented as mean (95%CI) of

4–12 independent experiments; each mutant expressed as % WT. Variants classified as GoF (orange), LoF (blue), or WT-like (gray) based on statistically

significant differences between WT and mutant (unpaired single-sample t test).
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Deletion of Ultraconserved Elements
Yields Viable Mice
Nadav Ahituv1,2¤, Yiwen Zhu1, Axel Visel1, Amy Holt1, Veena Afzal1, Len A. Pennacchio1,2, Edward M. Rubin1,2*

1 Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America, 2 United States Department of Energy Joint Genome Institute,

Walnut Creek, California, United States of America

Ultraconserved elements have been suggested to retain extended perfect sequence identity between the human,
mouse, and rat genomes due to essential functional properties. To investigate the necessities of these elements in
vivo, we removed four noncoding ultraconserved elements (ranging in length from 222 to 731 base pairs) from the
mouse genome. To maximize the likelihood of observing a phenotype, we chose to delete elements that function as
enhancers in a mouse transgenic assay and that are near genes that exhibit marked phenotypes both when completely
inactivated in the mouse and when their expression is altered due to other genomic modifications. Remarkably, all four
resulting lines of mice lacking these ultraconserved elements were viable and fertile, and failed to reveal any critical
abnormalities when assayed for a variety of phenotypes including growth, longevity, pathology, and metabolism. In
addition, more targeted screens, informed by the abnormalities observed in mice in which genes in proximity to the
investigated elements had been altered, also failed to reveal notable abnormalities. These results, while not inclusive
of all the possible phenotypic impact of the deleted sequences, indicate that extreme sequence constraint does not
necessarily reflect crucial functions required for viability.

Citation: Ahituv N, Zhu Y, Visel A, Holt A, Afzal V, et al. (2007) Deletion of ultraconserved elements yields viable mice. PLoS Biol 5(9): e234. doi:10.1371/journal.pbio.0050234

Introduction

Evolutionary conservation has become a powerful means
for identifying functionally important genomic sequences
[1,2]. Ultraconserved elements have been defined as a group
of extremely conserved sequences that show 100% identity
over 200 bp or greater between the human, mouse, and rat
genomes [3]. This category of extreme evolutionary sequence
conservation is represented by 481 sequences in the human
genome, of which over half show no evidence of tran-
scription. Further analysis of the distribution of these
noncoding ultraconserved elements demonstrates that they
tend to cluster in regions that are enriched for transcription
factors and developmental genes [3], and a limited number of
functional studies suggest a role for some of these noncoding
elements in gene regulation [4–6].

Several hypotheses have been proposed to explain the
extreme sequence constraint of ultraconserved elements,
including strong negative selective pressure and/or reduced
mutation rates [3]. The negative selection hypothesis postu-
lates that crucial functions such as vital gene regulatory
information is embedded within these sequences, while the
reduced mutation rate hypothesis suggests that these sequen-
ces exist in a hyperrepaired or hypomutable state [3]. Recent
analysis of human variation in these noncoding ultracon-
served elements provides compelling evidence supporting
negative selection as contributing to their extreme evolu-
tionary conservation [7]. Furthermore, noncoding ultracon-
served elements have also been shown to be significantly
depleted in human segmental duplications and copy number
variants, suggesting that disruption of their normal copy
number may lead to reduced fitness [8]. In this study, we
removed four carefully chosen noncoding ultraconserved
elements in the mouse genome to directly explore a
functional role for these elements in vivo.

Results

Generation and General Characterization of
Ultraconserved Knockout Mice
To increase the probability of observing an associated

phenotype in the ultraconserved null mice, we employed a
variety of criteria in selecting the noncoding ultraconserved
elements for deletion. We chose elements that showed tissue-
specific in vivo enhancer activity in a mouse transgenic
reporter assay that tended to recapitulate aspects of the
expression pattern found in genes that were in their
proximity (Figure 1) [6]. Other factors that were taken into
account in prioritizing elements for deletion included their
proximity to genes whose inactivation or alteration in
expression result in specific phenotypes that we could screen
for in the ultraconserved element deletion mice (Table 1).
Elements meeting most of these criteria were chosen for
removal and included: uc248, uc329, uc467, and uc482 (Figure
1) [3], representing 222, 307, 731, and 295 bp, respectively, of
100% identity between human, mouse, and rat.
All four noncoding ultraconserved elements were deleted

from the mouse genome using standard mouse genetic
engineering techniques, and removal was confirmed by PCR
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Evolutionary constraint and innovation across
hundreds of placental mammals
Matthew J. Christmas† and Irene M. Kaplow† et al.

INTRODUCTION: Amajor challenge in genomics
is discerning which bases among billions alter
organismal phenotypes and affect health and
disease risk. Evidence of past selective pressure
on a base, whether highly conserved or fast
evolving, is amarker of functional importance.
Bases that are unchanged in all mammalsmay
shape phenotypes that are essential for orga-
nismal health. Bases that are evolving quickly
in some species, or changed only in species that
share an adaptive trait, may shape phenotypes
that support survival in specific niches. Identi-
fying bases associatedwith exceptional capacity
for cellular recovery, such as in species that
hibernate, could inform therapeutic discovery.

RATIONALE: The power and resolution of evo-
lutionary analyses scale with the number and
diversity of species compared. By analyzing ge-
nomes for hundreds of placental mammals, we
can detect which individual bases in the genome
are exceptionally conserved (constrained) and
likely to be functionally important in both cod-
ing and noncoding regions. By including species
that represent all orders of placental mammals
and aligning genomes using amethod that does
not require designating humans as the reference
species,we exploreunusual traits in other species.

RESULTS: Zoonomia’smammalian comparative
genomics resources are themost comprehensive

and statistically well-powered produced to date,
with a protein-coding alignment of 427 mam-
mals and a whole-genome alignment of 240
placentalmammals representing all orders.We
estimate that at least 10.7%of the humangenome
is evolutionarily conserved relative to neutrally
evolving repeats and identify about 101 million
significantly constrained single bases (false dis-
covery rate < 0.05). We cataloged 4552 ultra-
conserved elements at least 20 bases long that
are identical in more than 98% of the 240 pla-
cental mammals.
Many constrainedbases have no known func-

tion, illustrating thepotential for discovery using
evolutionary measures. Eighty percent are out-
side protein-coding exons, and half have no
functional annotations in the Encyclopedia of
DNAElements (ENCODE) resource.Constrained
bases tend to vary less within human popula-
tions, which is consistent with purifying se-
lection. Species threatened with extinction have
few substitutions at constrained sites, possibly
because severely deleterious alleles have been
purged from their small populations.
By pairing Zoonomia’s genomic resources

with phenotype annotations, we find genomic
elements associated with phenotypes that differ
between species, including olfaction, hiberna-
tion, brain size, and vocal learning.We associate
genomic traits, such as the number of olfactory
receptor genes, with physical phenotypes, such
as the number of olfactory turbinals. By compar-
ing hibernators and nonhibernators, we impli-
cate genes involved in mitochondrial disorders,
protection against heat stress, and longevity in
this physiologically intriguing phenotype. Using
a machine learning–based approach that pre-
dicts tissue-specific cis-regulatory activity in
hundreds of species using data from just a few,
we associate changes in noncoding sequence
with traits for which humans are exceptional:
brain size and vocal learning.

CONCLUSION: Large-scale comparative genomics
opens new opportunities to explore how ge-
nomes evolved as mammals adapted to a wide
range of ecological niches and to discover what
is shared across species and what is distinc-
tively human. High-quality data for consistently
defined phenotypes are necessary to realize this
potential. Throughpartnershipswith researchers
in other fields, comparative genomics can ad-
dress questions in human health and basic
biology while guiding efforts to protect the bio-
diversity that is essential to these discoveries.▪
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Heritability enrichment

results explain the lower SNP-h2 for constraint
in mammals and demonstrate increased in-
formativeness when combining information
from primates and mammals. We observed
consistently higher h2 enrichment for SNPs
that are constrained in bothmammals and pri-

mates when stratifying by genomic function
(i.e., coding regions, promoters, and enhancers),
but that constraint is more informative in pri-
mates than in mammals only for noncoding
variants (Fig. 2E). This confirms that the in-
formativeness of our constraint annotations

does not only reside in their high overlap with
exonic bases (see also fig. S5). We observed
that constrained SNPs defined as nonfunc-
tional (see SM, section 6) were still enriched
in h2 (>2.67-fold with P < 1.22 × 10−4, except
for SNPs constrained only in mammals or
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Fig. 2. SNP-h2 analyses of variants at constrained positions in human
complex traits and diseases. (A) Heritability enrichment of common SNPs
in the top percentiles of constraint scores in placental mammals (phyloP
positions) and primates (phastCons elements). (B) Heritability enrichment as a
function of the distance to a constrained base. (C) Heritability enrichment of
constrained annotations in 11 blood and immune traits and nine brain diseases
(light color) versus other types of traits (dark color). *P < 0.05 and **P < 0.05
after Bonferroni correction. (D) Heritability enrichment of constrained and
functional annotations (left) and corresponding significance of the conditional
effect while considered in a joint model with 106 annotations (right). GERP,
genomic evolutionary rate profiling. (E) Heritability enrichment of constrained

annotations intersected together and stratified by their genomic function.
(F) Squared transancestry genetic correlation enrichment (left) with corresponding
significance (right) for seven annotations with significant depletion of squared
transancestry genetic correlations. H3K27ac, histone H3 acetylated at lysine 27.
(G) Standardized squared effect sizes as a function of AF. Results are meta-
analyzed across, 63 independent GWASs [(A), (B), (D), and (E)], 31 independent
traits with GWASs available in European and Japanese populations [(F)], and
27 independent UK Biobank traits [(G)]. Dashed red lines represent a null
enrichment of 1 [(A) to (E)] and a null squared transancestry genetic correlation
(F). Error bars are 95% confidence intervals. Numerical results are reported
in data S2 to S4, S6 to S8, and S11.
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results explain the lower SNP-h2 for constraint
in mammals and demonstrate increased in-
formativeness when combining information
from primates and mammals. We observed
consistently higher h2 enrichment for SNPs
that are constrained in bothmammals and pri-

mates when stratifying by genomic function
(i.e., coding regions, promoters, and enhancers),
but that constraint is more informative in pri-
mates than in mammals only for noncoding
variants (Fig. 2E). This confirms that the in-
formativeness of our constraint annotations

does not only reside in their high overlap with
exonic bases (see also fig. S5). We observed
that constrained SNPs defined as nonfunc-
tional (see SM, section 6) were still enriched
in h2 (>2.67-fold with P < 1.22 × 10−4, except
for SNPs constrained only in mammals or
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Fig. 2. SNP-h2 analyses of variants at constrained positions in human
complex traits and diseases. (A) Heritability enrichment of common SNPs
in the top percentiles of constraint scores in placental mammals (phyloP
positions) and primates (phastCons elements). (B) Heritability enrichment as a
function of the distance to a constrained base. (C) Heritability enrichment of
constrained annotations in 11 blood and immune traits and nine brain diseases
(light color) versus other types of traits (dark color). *P < 0.05 and **P < 0.05
after Bonferroni correction. (D) Heritability enrichment of constrained and
functional annotations (left) and corresponding significance of the conditional
effect while considered in a joint model with 106 annotations (right). GERP,
genomic evolutionary rate profiling. (E) Heritability enrichment of constrained

annotations intersected together and stratified by their genomic function.
(F) Squared transancestry genetic correlation enrichment (left) with corresponding
significance (right) for seven annotations with significant depletion of squared
transancestry genetic correlations. H3K27ac, histone H3 acetylated at lysine 27.
(G) Standardized squared effect sizes as a function of AF. Results are meta-
analyzed across, 63 independent GWASs [(A), (B), (D), and (E)], 31 independent
traits with GWASs available in European and Japanese populations [(F)], and
27 independent UK Biobank traits [(G)]. Dashed red lines represent a null
enrichment of 1 [(A) to (E)] and a null squared transancestry genetic correlation
(F). Error bars are 95% confidence intervals. Numerical results are reported
in data S2 to S4, S6 to S8, and S11.
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The sequences of 150,119 genomes in the UK 
Biobank

Bjarni V. Halldorsson1,2ಞᅒ, Hannes P. Eggertsson1, Kristjan H. S. Moore1, Hannes Hauswedell1, 
Ogmundur Eiriksson1, Magnus O. Ulfarsson1,3, Gunnar Palsson1, Marteinn T. Hardarson1,2, 
Asmundur Oddsson1, Brynjar O. Jensson1, Snaedis Kristmundsdottir1,2, 
Brynja D. Sigurpalsdottir1,2, Olafur A. Stefansson1, Doruk Beyter1, Guillaume Holley1, 
Vinicius Tragante1, Arnaldur Gylfason1, Pall I. Olason1, Florian Zink1, Margret Asgeirsdottir1, 
Sverrir T. Sverrisson1, Brynjar Sigurdsson1, Sigurjon A. Gudjonsson1, Gunnar T. Sigurdsson1, 
Gisli H. Halldorsson1, Gardar Sveinbjornsson1, Kristjan Norland1, Unnur Styrkarsdottir1, 
Droplaug N. Magnusdottir1, Steinunn Snorradottir1, Kari Kristinsson1, Emilia Sobech1, 
Helgi Jonsson4,5, Arni J. Geirsson4, Isleifur Olafsson4, Palmi Jonsson4,5, Ole Birger Pedersen6, 
Christian Erikstrup7,8, Søren Brunak9, Sisse Rye Ostrowski10,11, DBDS Genetic Consortium*, 
Gudmar Thorleifsson1, Frosti Jonsson1, Pall Melsted1,3, Ingileif Jonsdottir1,5, Thorunn Rafnar1, 
Hilma Holm1, Hreinn Stefansson1, Jona Saemundsdottir1, Daniel F. Gudbjartsson1,3, 
Olafur T. Magnusson1, Gisli Masson1, Unnur Thorsteinsdottir1,5, Agnar Helgason1,12, 
Hakon Jonsson1, Patrick Sulem1 & Kari Stefansson1ಞᅒ

Detailed knowledge of how diversity in the sequence of the human genome a!ects 
phenotypic diversity depends on a comprehensive and reliable characterization of 
both sequences and phenotypic variation. Over the past decade, insights into this 
relationship have been obtained from whole-exome sequencing or whole-genome 
sequencing of large cohorts with rich phenotypic data1,2. Here we describe the analysis 
of whole-genome sequencing of 150,119 individuals from the UK Biobank3. This 
constitutes a set of high-quality variants, including 585,040,410 single-nucleotide 
polymorphisms, representing 7.0% of all possible human single-nucleotide 
polymorphisms, and 58,707,036 indels. This large set of variants allows us to 
characterize selection based on sequence variation within a population through a 
depletion rank score of windows along the genome. Depletion rank analysis shows 
that coding exons represent a small fraction of regions in the genome subject to 
strong sequence conservation. We de"ne three cohorts within the UK Biobank: a large 
British Irish cohort, a smaller African cohort and a South Asian cohort. A haplotype 
reference panel is provided that allows reliable imputation of most variants carried by 
three or more sequenced individuals. We identi"ed 895,055 structural variants and 
2,536,688 microsatellites, groups of variants typically excluded from large-scale 
whole-genome sequencing studies. Using this formidable new resource, we provide 
several examples of trait associations for rare variants with large e!ects not found 
previously through studies based on whole-exome sequencing and/or imputation.

The UK Biobank (UKB)3 documents phenotypic variation of 500,000 
participants across the UK, with a healthy volunteer bias4. The UKB 
whole-genome sequencing (WGS) consortium is sequencing the whole 
genomes of all the participants to an average depth of at least 23.5×. Here 
we report on the first data release consisting of a vast set of sequence 
variants, including single-nucleotide polymorphisms (SNPs), short inser-
tions or deletions (indels), microsatellites and structural variants (SVs), 

based on WGS of 150,119 individuals. All variant calls were performed 
jointly across individuals, allowing for consistent comparison of results. 
The resulting dataset provides an unparalleled opportunity to study 
sequence diversity in humans and its effect on phenotype variation.

Previous studies of the UKB have produced genome-wide SNP 
array data5 and whole-exome sequencing (WES) data6,7. Although SNP 
arrays typically only capture a small fraction of common variants in 
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ARTICLE

Extreme purifying selection against point mutations
in the human genome
Noah Dukler1,3, Mehreen R. Mughal1,3, Ritika Ramani1, Yi-Fei Huang 2 & Adam Siepel 1✉

Large-scale genome sequencing has enabled the measurement of strong purifying selection

in protein-coding genes. Here we describe a new method, called ExtRaINSIGHT, for mea-

suring such selection in noncoding as well as coding regions of the human genome. ExtRa-

INSIGHT estimates the prevalence of “ultraselection” by the fractional depletion of rare

single-nucleotide variants, after controlling for variation in mutation rates. Applying ExtRa-

INSIGHT to 71,702 whole genome sequences from gnomAD v3, we find abundant ultra-

selection in evolutionarily ancient miRNAs and neuronal protein-coding genes, as well as at

splice sites. By contrast, we find much less ultraselection in other noncoding RNAs and

transcription factor binding sites, and only modest levels in ultraconserved elements. We

estimate that ~0.4–0.7% of the human genome is ultraselected, implying ~ 0.26–0.51 strongly

deleterious mutations per generation. Overall, our study sheds new light on the genome-wide

distribution of fitness effects by combining deep sequencing data and classical theory from

population genetics.
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A genome-wide mutational constraint map quantified from variation in 76,156 human genomes 
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Abstract 
 
The depletion of disruptive variation caused by purifying natural selection (constraint) has been widely 
used to investigate protein-coding genes underlying human disorders, but attempts to assess constraint 
for non-protein-coding regions have proven more difficult. Here we aggregate, process, and release a 
dataset of 76,156 human genomes from the Genome Aggregation Database (gnomAD), the largest public 
open-access human genome reference dataset, and use this dataset to build a mutational constraint map 
for the whole genome. We present a refined mutational model that incorporates local sequence context 
and regional genomic features to detect depletions of variation across the genome. As expected, protein-
coding sequences overall are under stronger constraint than non-coding regions. Within the non-coding 
genome, constrained regions are enriched for known regulatory elements and variants implicated in 
complex human diseases and traits, facilitating the triangulation of biological annotation, disease 
association, and natural selection to non-coding DNA analysis. More constrained regulatory elements 
tend to regulate more constrained protein-coding genes, while non-coding constraint captures additional 
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To investigate whether enrichment in h2
g from all SNPs at

known loci was consistent with the genome-wide esti-
mates, we partitioned the h2

g explained by SNPs within 1
Mb of published GWAS loci for each trait (NHGRI GWAS
catalog;11 see Web Resources) (Figure S13). Because some

traits had a small number of loci, the DHS component
was jointly analyzed with only a single other component
containing all non-DHS SNPs. We again observed a highly
significant DHS enrichment in imputed data and a sig-
nificant difference between the genotyped and imputed

Figure 3. Functional Partitioning of SNP Heritability across 11 Traits
(Top panels) Joint estimates of the percentage of h2

g from six functional components are shown in filled bars (meta-analyzed over 11
traits). The null expectation, equal to the percentage of SNPs in each category, is shown by dashed, unfilled bars, and p values report
the difference from this expectation. Fold enrichment relative to the null expectation is shown in parentheses below each category.
The left panel shows results from analyses of genotyped SNPs only, and the right panel shows analysis of genotyped and 1000 Genomes
imputed SNPs. Error bars show 1.963 SE after adjustment for shared controls.
(Bottom panels) Partitioned h2

g in simulations of a ‘‘realistic’’ trait where DHS and coding variants explained 79% and 8% of h2
g , respec-

tively (with no enrichment elsewhere). Filled bars show the mean inferred percentage of h2
g from genotyped (left) and imputed (right)

SNPs over 100 simulations. Patterned bars show the simulated true partition. Error bars show 1.963 SE (on average, SEs on imputed data
were 2.23 higher than SEs on genotype data as a result of the abundance of new variants).
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top −log10 (P value) based on results for the real data sets analyzed 
below (Online Methods). In the simulations in which at least one cell 
type group reached significance, we found that the top cell type group 
was the cell type group simulated to be causal 99% of the time (Fig. 3). 
Next, we simulated weaker enrichment, calibrated so that only 50% of 
replicates included a significant cell type group. In these simulations, 
the cell type group simulated to be causal was the top cell type group in 
95% of simulations with at least one significant cell type group, and a 
cell type group with r2 >0.5 with the causal group was the top cell type 
group in half of the remaining simulations with at least one significant 
cell type group (Fig. 3). Results separated by the ten individual cell 
type groups are displayed in Supplementary Figure 5.

We next repeated these simulations with a cell type–specific 
mark—H3K4me3 in fetal brain cells—instead of a cell type group as 
the simulated causal category. There are many more pairs of cell types 
that are highly correlated than there are highly correlated pairs of 
cell type groups, and we are testing all cell types every time 
(Supplementary Fig. 6). We found that, when the level of enrich-
ment was calibrated to give a realistic −log10 (P value) (based on 

results for the real data sets analyzed below; Online Methods), the 
simulated causal cell type was the most significant cell type in 78% of 
simulations, a cell type with r2 > 0.5 with the causal cell type was most 
significant in 20% of simulations and there was no significant cell type 
in 2% of simulations. In simulations with weak enrichment—again 
calibrating so that 50% of simulations had at least one significant cell 
type—we found that, of the simulations with at least one significant 
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Figure 4 Enrichment estimates for the 24 main annotations, averaged over nine independent traits. Annotations are ordered by size. Error bars 
represent jackknife standard errors around the estimates of enrichment, and an asterisk indicates significance at P < 0.05 after Bonferroni correction 
for the 24 hypotheses tested. Negative point estimates, significance testing and the choice of nine independent traits are discussed in the Online 
Methods and Supplementary Note. TFBS, transcription factor binding site. DGF, digital genomic footprint.
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Figure 3 Simulation results for ranking cell type groups and cell types. 
For each cell type group, 500 simulations were performed with baseline 
enrichment and either realistic enrichment or low enrichment in that 
cell type group. Results for the left two columns are aggregated over 
the ten cell type groups; results for individual groups are displayed 
in Supplementary Figure 5. The right two columns represent 500 
simulations each of realistic or low enrichment of a single cell type–
specific annotation—H3K4me3 in fetal brain cells.

Finucane et al., Nature Genetics, 2015
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Application – function informed fine-mapping

• Estimate heritability enrichment and convert the estimates into prior 
probabilities

• Use these prior in fine-mapping (with SuSiE or FINEMAP)
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Genome-wide association studies (GWAS) of complex traits 
have been extremely successful in identifying loci harboring 
causal variants, but less successful in identifying the under-

lying causal variants, making the development of fine-mapping 
methods a key priority1,2. The power of fine-mapping methods3–12

is limited due to strong linkage disequilibrium (LD), but it can be 
increased by prioritizing variants in functional annotations that are 
enriched for complex trait heritability7,8,10,13–17. However, previous 
functionally informed fine-mapping methods18–20 have computa-
tional limitations and can use only genome-wide-significant loci 
to estimate functional enrichment (or can incorporate only a small 
number of functional annotations10), severely limiting the benefit of 
functional data.

We propose PolyFun, a computationally scalable framework 
for functionally informed fine-mapping that makes full use of 
genome-wide data by specifying prior causal probabilities for 
fine-mapping methods such as SuSiE21 and FINEMAP22,23. PolyFun 
estimates functional enrichment using a broad set of coding, con-
served, regulatory, minor allele frequency (MAF) and LD-related 
annotations from the baseline-LF model24–26.

We show in simulations with in-sample LD that PolyFun is well 
calibrated and more powerful than previous fine-mapping meth-
ods, with a >20% power increase over nonfunctionally informed 
fine-mapping methods. In simulations with mismatched reference 
LD, PolyFun remains well calibrated when reducing the maximum 
number of assumed causal SNPs per locus. We apply PolyFun to 
49 complex traits from the UK Biobank27 (average n = 318,000) 
with in-sample LD and identify 3,025 fine-mapped variant–trait 
pairs with posterior causal probability >0.95, spanning 2,225 

unique variants. Of these variants, 223 were fine-mapped for mul-
tiple genetically uncorrelated traits, indicating pervasive pleiotropy. 
We further used the posterior mean per-SNP heritabilities from 
PolyFun + SuSiE to perform polygenic localization, finding sets of 
common SNPs causally explaining 50% of common SNP heritability 
that range in size across many orders of magnitude, from dozens to 
millions of SNPs.

Results
Overview of methods. PolyFun prioritizes variants in enriched 
functional annotations by specifying prior causal probabilities 
in proportion to predicted per-SNP heritabilities and provid-
ing them as input to fine-mapping methods such as SuSiE21 and 
FINEMAP22,23. For each target locus, PolyFun robustly specifies 
prior causal probabilities for all SNPs on the corresponding odd 
(respectively even) target chromosome by: (1) estimating func-
tional enrichments for a broad set of coding, conserved, regulatory 
and LD-related annotations from the baseline-LF 2.2.UKB model25

(187 annotations; Methods and Supplementary Table 1) using an 
L2-regularized extension of S-LDSC17, restricted to even (respec-
tively odd) chromosomes; (2) estimating per-SNP heritabilities 
for SNPs on odd (respectively even) chromosomes using the func-
tional enrichment estimates from step 1; (3) partitioning all SNPs 
into 20 bins of similar estimated per-SNP heritabilities from step 
2; (4) re-estimating per-SNP heritabilities for all SNPs on the tar-
get chromosome by applying S-LDSC to the 20 bins, restricted to 
odd (respetively even) chromosomes excluding the target chromo-
some; and (5) setting prior causal probabilities for SNPs on the tar-
get chromosome proportional to per-SNP heritabilities from step 4. 

Functionally informed fine-mapping and polygenic 
localization of complex trait heritability
Omer Weissbrod! !1�ᅒ, Farhad Hormozdiari! !1, Christian Benner2, Ran Cui3, Jacob Ulirsch! !3,4, 
Steven Gazal! !1, Armin P. Schoech1, Bryce van de Geijn1, Yakir Reshef1, Carla Márquez-Luna5, 
Luke O’Connor3, Matti Pirinen! !2,6,7, Hilary K. Finucane! !3,8 and Alkes L. Price! !1,3�ᅒ

Fine-mapping aims to identify causal variants impacting complex traits. We propose PolyFun, a computationally scal-
able framework to improve fine-mapping accuracy by leveraging functional annotations across the entire genome—not just 
genome-wide-significant loci—to specify prior probabilities for fine-mapping methods such as SuSiE or FINEMAP. In simula-
tions, PolyFun!+!SuSiE and PolyFun!+!FINEMAP were well calibrated and identified >20% more variants with a posterior causal 
probability >0.95 than identified in their nonfunctionally informed counterparts. In analyses of 49 UK Biobank traits (aver-
age n!=!318,000), PolyFun!+!SuSiE identified 3,025 fine-mapped variant–trait pairs with posterior causal probability >0.95, a 
>32% improvement versus SuSiE. We used posterior mean per-SNP heritabilities from PolyFun!+!SuSiE to perform polygenic 
localization, constructing minimal sets of common SNPs causally explaining 50% of common SNP heritability; these sets ranged 
in size from 28 (hair color) to 3,400 (height) to 2 million (number of children). In conclusion, PolyFun prioritizes variants for 
functional follow-up and provides insights into complex trait architectures.

NATURE GENETICS | VOL 52 | DECEMBER 2020 | 1355–1363 | www.nature.com/naturegenetics 1355
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GWAS peak

Controlled model system

Biochemistry

Translating GWAS findings into mechanistic 
models
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Human Genetics all the way

20

G

Mediation

E P

G

Reverse causation

P E

Independent effects

G
E

P

Causality

21

G

Same causal variant

E P

Distinct variants

G1 E

PG2

LD

Co-localization

22

-l
o
g
 L

(c
a
u
sa

l 
S
N

P
 :

=
 i
)

Genomic Position (Mbp)

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

��

�

�

�

�

��

�

�

��
�
�

�
�

�

�

�

�

�

�
�
���

�

�

�

�

��
�

�

�

�

��

����

�

�

�

�

�

�

�

�

�

�

���

��

�

�

�
�
���
����

��

�

�

�

�

�

�

�

�

����

�

�

�

�

�

�
�

�

�

�

�����

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

��

�

�

�

��

�

�

�
��

�

��

�

�

�
�

��

�

�

�
�

���

��

��

�

�

���

���������

�

2.5

5

7.5

233.80 233.85 233.90

�

�

�

�

��

�
�

�

�

�

�

�

�

�

�

��

�

�

�

�

�
�

�

�

�

�

�

��

�
�
�

�

�

�
�

�

�
�

�

�

�

��

�

�

�

�

�

�

�

�
��
�

�

�

�

�

���

�
�
�

�

�

�

�

�
�

�

��
�

�

�
���

�

�
�

��

�
��
�
��
��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

��

��

�

���

�

�

�
�
��
�
�

�

�

�

��
�

�

�

� ���

�

�

��

�
��
�
�
�
���������

�
�������

���������
�

�

�

�

�

������
�

�0

2

4

6

233.80 233.85 233.90

�

�

-l
o
g
 L

(c
a
u
sa

l 
S
N

P
 :

=
 i
)

�

�

Causal SNPs

LD neighbor of lead SNP for trait #1 

All other SNPs

-l
o
g
 L

(c
a
u
sa

l 
S
N

P
 :

=
 i
)

Genomic Position (Mbp)

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

��

�

�

�

�

��

�

�

��
�
�

�
�

�

�

�

�

�

�
�
���

�

�

�

�

��
�

�

�

�

��

����

�

�

�

�

�

�

�

�

�

�

���

��

�

�

�
�
���
����

��

�

�

�

�

�

�

�

�

����

�

�

�

�

�

�
�

�

�

�

�����

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

��

�

�

�

��

�

�

�
��

�

��

�

�

�
�

��

�

�

�
�

���

��

��

�

�

���

���������

�

2.5

5

7.5

233.80 233.85 233.90

�

�

�

�

��

�
�

�

�

�

�

�

�

�

�

��

�

�

�

�

�
�

�

�

�

�

�

��

�
�
�

�

�

�
�

�

�
�

�

�

�

��

�

�

�

�

�

�

�

�
��
�

�

�

�

�

���

�
�
�

�

�

�

�

�
�

�

��
�

�

�
���

�

�
�

��

�
��
�
��
��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

��

��

�

���

�

�

�
�
��
�
�

�

�

�

��
�

�

�

� ���

�

�

��

�
��
�
�
�
���������

�
�������

���������
�

�

�

�

�

������
�

�0

2

4

6

233.80 233.85 233.90

�

�

-l
o
g
 L

(c
a
u
sa

l 
S
N

P
 :

=
 i
)

�

�

Causal SNPs

LD neighbor of lead SNP for trait #1 

All other SNPs

M4

H
ig

he
r 

lo
g 

lik
el

ih
oo

d

-l
o
g
 L

(c
a
u
sa

l 
S
N

P
 :

=
 i
)

Genomic Position (Mbp)

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

��

�

�

�

�

��

�

�

��
�
�

�
�

�

�

�

�

�

�
�
���

�

�

�

�

��
�

�

�

�

��

����

�

�

�

�

�

�

�

�

�

�

���

��

�

�

�
�
���
����

��

�

�

�

�

�

�

�

�

����

�

�

�

�

�

�
�

�

�

�

�����

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

��

�

�

�

��

�

�

�
��

�

��

�

�

�
�

��

�

�

�
�

���

��

��

�

�

���

���������

�

2.5

5

7.5

233.80 233.85 233.90

�

�

�

�

��

�
�

�

�

�

�

�

�

�

�

��

�

�

�

�

�
�

�

�

�

�

�

��

�
�
�

�

�

�
�

�

�
�

�

�

�

��

�

�

�

�

�

�

�

�
��
�

�

�

�

�

���

�
�
�

�

�

�

�

�
�

�

��
�

�

�
���

�

�
�

��

�
��
�
��
��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

��

��

�

���

�

�

�
�
��
�
�

�

�

�

��
�

�

�

� ���

�

�

��

�
��
�
�
�
���������

�
�������

���������
�

�

�

�

�

������
�

�0

2

4

6

233.80 233.85 233.90

�

�

-l
o
g
 L

(c
a
u
sa

l 
S
N

P
 :

=
 i
)

�

�

Causal SNPs

LD neighbor of lead SNP for trait #1 

All other SNPs

-l
o
g
 L

(c
a
u
sa

l 
S
N

P
 :

=
 i
)

Genomic Position (Mbp)

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

��

�

�

�

�

��

�

�

��
�
�

�
�

�

�

�

�

�

�
�
���

�

�

�

�

��
�

�

�

�

��

����

�

�

�

�

�

�

�

�

�

�

���

��

�

�

�
�
���
����

��

�

�

�

�

�

�

�

�

����

�

�

�

�

�

�
�

�

�

�

�����

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

��

�

�

�

��

�

�

�
��

�

��

�

�

�
�

��

�

�

�
�

���

��

��

�

�

���

���������

�

2.5

5

7.5

233.80 233.85 233.90

�

�

�

�

��

�
�

�

�

�

�

�

�

�

�

��

�

�

�

�

�
�

�

�

�

�

�

��

�
�
�

�

�

�
�

�

�
�

�

�

�

��

�

�

�

�

�

�

�

�
��
�

�

�

�

�

���

�
�
�

�

�

�

�

�
�

�

��
�

�

�
���

�

�
�

��

�
��
�
��
��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

��

��

�

���

�

�

�
�
��
�
�

�

�

�

��
�

�

�

� ���

�

�

��

�
��
�
�
�
���������

�
�������

���������
�

�

�

�

�

������
�

�0

2

4

6

233.80 233.85 233.90

�

�

-l
o
g
 L

(c
a
u
sa

l 
S
N

P
 :

=
 i
)

�

�

Causal SNPs

LD neighbor of lead SNP for trait #1 

All other SNPs

Tr
ai

t #
1

Tr
ai

t #
2

Co-localization problem

23

Coloc

eCAVIAR

JLIM

Methods

24

183



Genetic variants differ between Mendelian 
and complex traits

• Complex trait variants

• Small effect size
• Extremely large number of loci
• Mostly non-coding (regulatory)

• Mendelian & somatic cancer 
variants

• Large effect sizes
• Small number of loci
• Mostly coding
• Are in “putatively causative” 

genes

25
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The basic model

By now we know that most complex trait loci never harbor mutations of large effect

1

Hypothesis

• Most genes involved in Mendelian components of complex traits are 
also causative for cognate common forms.

• Variants involved in common forms alter regulatory sequence of 
these genes.

• This in turn induces changes in gene expression; regulatory variants 
are eQTLs.

2

Genes and phenotypes
(for complex traits, GWAS is restricted to non-coding variants)

Overall, 139 genes

89 (64%) fall under a GWAS peak 
of a cognate complex trait

Examples include: 

LDL Receptor under 
a GWAS peak for LDL Cholesterol

Estrogen receptor under
a GWAS peak for breast cancer 

These genes are highly likely to
mediate the effects of regulatory variants

3

Statistical methods to locate the causative 
gene under GWAS peak

• Closest gene to peak

• Colocalization methods
• JLIM
• Coloc
• eCAVIAR

• Transcriptome-wide association
• FUSION

• Chromatin marks
• Fine-mapping using SuSiE
• Locate fine-mapped variants under chromatin modification peaks

4

Distance of fine-mapped SNPs (by SuSiE) to the 
closest gene 

5

Colocalization of GWAS and eQTLs

6
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Transcriptome-wide association (TWAS) 

7

Results

Connally et al., eLife, 2022

8

Our curated genes rarely 

colocalize

● This is true across all tested traits

● We also tried a chromatin method
○ It worked better

○ In large part because it favors the
closest gene

9

But why?

Are eQTLs specific to…

● certain cell types?
● certain developmental stages?

● certain environmental conditions?

Are there inconsistent relationships…

● between gene expression and protein levels?
● between rate of transcription and gene expression?

10

I find it highly surprising that

• A context independent large change in expression of LDLR due to a 
nonsense mutation leads to a large phenotypic change

• A smaller change in expression does not affect LDL levels, while non-
coding effect on LDLR does

11
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In the past decade, GWAS studies have shown that most 
disease-associated variants lie in noncoding regions of the 
genome1–3, leading to the hypothesis that regulation of gene 

expression levels is the primary biological mechanism through 
which genetic variants affect complex traits, and motivating 
large-scale eQTL studies4,5. Many statistical methods have been 
developed to integrate eQTL data with GWAS data to gain func-
tional insight into the genetic architecture of disease. These meth-
ods include colocalization tests, which have shown that many genes 
have eQTLs that colocalize with GWAS loci6–10; transcriptome-wide 
association studies, which have shown that many genes exhibit 
significant cis genetic correlations between their expression 
and disease11–24; and partitioning of disease heritability, which has 
shown that eQTLs as a whole are significantly enriched for disease 
heritability25–28.

Despite these findings, the extent to which eQTLs from available 
studies capture mechanistic effects of gene expression on disease 
remains unclear9,29–31. In particular, eQTLs from the largest available 
gene expression reference panels5,32 are measured in bulk tissues in 
steady-state cellular conditions, which may not reflect the specific 
cell types or cellular contexts in which gene expression is causal for 
disease33–35. In addition, several different causal scenarios can result 
in similar patterns of enrichment/overlap between GWAS loci and 
eQTLs, as summarized in Fig. 1a: (1) mediation, (2) pleiotropy and 
(3) linkage. Of these three scenarios, only scenario (1) is informa-
tive for the mechanism of action of SNPs on disease, but existing 
methods are unable to consistently distinguish scenarios (2) and (3) 
from scenario (1). Colocalization tests can sometimes rule out link-
age as an explanation for overlap between eQTLs and disease SNPs, 
but cannot rule out pleiotropy13,36. Transcriptome-wide association 
studies cannot rule out either pleiotropy or linkage13,29. Among the 
methods that partition disease heritability, some aim to rule out 
linkage through fine mapping of eQTLs27, but none aim to rule out 
pleiotropy. Thus, it remains unclear whether enrichment/overlap 
between eQTLs and disease SNPs usually reflects mediation, or 

whether it more commonly reflects pleiotropy and/or linkage9,29. 
For example, in the case of autoimmune diseases, most instances of 
overlap between significant disease loci and immune cell eQTLs are 
driven by linkage9, suggesting that linkage may be more prevalent 
than mediation31.

In this study, we aim to quantify the proportion of disease heri-
tability mediated in cis by assayed expression levels (scenario (1) 
from above). We first define expression-mediated heritability 
under a generative model featuring both mediated and nonmedi-
ated (including pleiotropic and linkage) effects of SNPs on the trait. 
This definition can accommodate ‘assayed’ gene expression levels 
measured in a tissue or cellular context that are not necessarily 
causal for the disease. We introduce a method, MESC, to estimate 
expression-mediated heritability from GWAS summary statistics, 
linkage disequilibrium (LD) scores and eQTL effect sizes obtained 
from external expression panels. Intuitively, MESC distinguishes 
mediated from nonmediated effects in a set of genes via the idea 
that mediation (unlike pleiotropy and linkage) induces a linear rela-
tionship between the magnitude of eQTL effect sizes and disease 
effect sizes. We applied MESC to GWAS summary statistics for 42 
diseases and complex traits and cis-eQTL data for 48 tissues from 
the GTEx consortium5 to quantify the proportion of disease heri-
tability mediated by the expression levels of all genes as a whole, as 
well as by various functional gene sets.

Results
Definition of expression-mediated heritability. We briefly define 
heritability mediated by the cis genetic component of gene expres-
sion levels (h2med

I
). Cis-eQTL effects multiplied by gene-trait effects 

form an expression-mediated component of each SNP effect on 
trait (Fig. 1b). This component is then squared and summed 
across all SNPs to obtain h2med

I
(Fig. 1c,d). Our definition of h2med

Iadditionally has two forms: h2med;causal
I

, in which cis-eQTL effect 
sizes are hypothetically obtained in the causal cell types and con-
texts for the disease, and h2med;assayedðTÞ

I
, in which cis-eQTL effect 

Quantifying genetic effects on disease mediated 
by assayed gene expression levels
Douglas W. Yao! !1�ᅒ, Luke J. O’Connor! !1,2,3, Alkes L. Price! !2,3,4 and Alexander Gusev! !3,5,6�ᅒ

Disease variants identified by genome-wide association studies (GWAS) tend to overlap with expression quantitative trait loci 
(eQTLs), but it remains unclear whether this overlap is driven by gene expression levels ‘mediating’ genetic effects on disease. 
Here, we introduce a new method, mediated expression score regression (MESC), to estimate disease heritability mediated 
by the cis genetic component of gene expression levels. We applied MESC to GWAS summary statistics for 42 traits (aver-
age N!=!323,000) and cis-eQTL summary statistics for 48 tissues from the Genotype-Tissue Expression (GTEx) consortium. 
Averaging across traits, only 11!±!2% of heritability was mediated by assayed gene expression levels. Expression-mediated 
heritability was enriched in genes with evidence of selective constraint and genes with disease-appropriate annotations. 
Our results demonstrate that assayed bulk tissue eQTLs, although disease relevant, cannot explain the majority of disease 
heritability.
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Feature Review

Where Are the Disease-Associated eQTLs?
Benjamin D. Umans,1,* Alexis Battle,2,3,* and Yoav Gilad1,4,*

Most disease-associated variants, although located in putatively regulatory
regions, do not have detectable effects on gene expression. One explanation
could be that we have not examined gene expression in the cell types or conditions
that are most relevant for disease. Even large-scale efforts to study gene expres-
sion across tissues are limited to human samples obtained opportunistically or
postmortem, mostly from adults. In this review we evaluate recent findings and
suggest an alternative strategy, drawing on the dynamic and highly context-
specific nature of gene regulation. We discuss new technologies that can extend
the standard regulatory mapping framework to more diverse, disease-relevant
cell types and states.

Molecular QTL Annotation as a Strategy for Interpreting Disease Genetics
The vast majority of the thousands of genetic loci associated with human disease are located
outside coding regions, putatively in genomic regions that participate in gene regulation [1–3].
In most cases it remains unclear how disease-associated genetic variants in noncoding regions
function to alter disease risk between individuals. Indeed, although the biochemical conse-
quences of mutations in protein-coding sequences can sometimes be predicted from the genetic
code and protein structure, predicting the effects of mutations in regulatory DNA remains highly
challenging. In fact, without additional functional data it is challenging to even predict which
genes are regulated by any given noncoding regulatory mutation. Hence, if most disease-
associated variants influence pathogenic risk by altering gene regulation, complementary func-
tional information is necessary to interpret the impact of such mutations.

Regulatory quantitative trait locus (QTL) mapping is a powerful approach that can connect
disease-associated variants to gene regulatory mechanisms (Box 1). Because gene expres-
sion is an intermediate link between DNA sequence and organismal phenotype (the central
dogma of molecular biology), regulatory associations may provide key insights into the function
of disease-associated variants by pointing to the genes and networks they affect. Regulatory
associations are particularly crucial when the target gene regulated by a disease locus is not
the closest gene [4]. For example, mutations strongly associated with obesity are located in
the first intron of the FTO gene, but their pathogenic mechanism does not appear to involve
FTO protein. Instead, chromatin conformation and regulatory QTL mapping data have demon-
strated that this intronic locus harbors enhancers that regulate the expression of the transcrip-
tion factor gene IRX3, which is located several megabases away [5]. In other words, genetic
variants associated with obesity in FTO are regulatory QTLs that are associated with IRX3
expression. Mouse experiments have confirmed that deletion of Irx3 in the hypothalamus,
and in developing adipocytes, protects against obesity, pointing to a causal relationship
between regulatory variation and disease [5,6]. Thus, regulatory QTL mapping can enable
efforts to understand the biological mechanisms of disease alleles (Figure 1). In addition, iden-
tifying the regulatory targets of mutations can shorten the list of candidate genes that require
functional follow-up. Regulatory associations can also help to uncover shared mechanisms
underlying diseases with different associated disease variants [7,8].

Highlights
Mapping of regulatory quantitative trait
loci (QTLs) has emerged as a powerful
tool to functionally annotate noncoding
DNA variants that are associated with
disease risk.

Large surveys of gene expression varia-
tion in healthy, adult, steady-state tissues
have discovered at least one cis expres-
sion QTL (eQTL) for nearly every human
gene.

The properties of standard eQTLs may
be inconsistent with mutations that are
associatedwith a fitness cost, in contrast
to what might be expected for mutations
associated with disease.

Regulatory QTL mapping during
dynamic cellular processes such as
differentiation and perturbation response
can reveal otherwise hidden regulatory
variation that may be especially relevant
for disease.

New platform technologies, including
in vitro differentiated cell types and
single-cell profiling, extend the scope of
dynamic eQTL studies.
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Abstract

Most signals in genome-wide association studies (GWAS) of complex traits point to noncod-
ing genetic variants with putative gene regulatory effects. However, currently identified expres-
sion quantitative trait loci (eQTLs) explain only a small fraction of GWAS signals. By analyzing
GWAS hits for complex traits in the UK Biobank, and cis-eQTLs from the GTEx consortium,
we show that these assays systematically discover different types of genes and variants: eQTLs
cluster strongly near transcription start sites, while GWAS hits do not. Genes near GWAS hits
are enriched in numerous functional annotations, are under strong selective constraint and have
a complex regulatory landscape across different tissue/cell types, while genes near eQTLs are
depleted of most functional annotations, show relaxed constraint, and have simpler regulatory
landscapes. We describe a model to understand these observations, including how natural se-
lection on complex traits hinders discovery of functionally-relevant eQTLs. Our results imply
that GWAS and eQTL studies are systematically biased toward different types of variants, and
support the use of complementary functional approaches alongside the next generation of eQTL
studies.
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