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Genome-wide association studies (GWAS)

Two individuals

Person1  ACCTGTGTGCCCAATGGCGTCCCATACTATCGG
ACCTGTGCGCCCAATGGCGTCCCATACTATCGG

Person2  ACCTGTGCGCCCAGTGGCGTCCCATACTATCGG
ACCTGTGCGCCCAGTGGCGTCCCATAGTATCGG

u Test each SNP for association/correlation with disease or quantitative
phenotype

Heather Cordell (Newcastie) GIVAS (Part 1)
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Case/control studies

@ Each person can have one of 3 possible genotypes at adiallelic
genetic locus

Heather Cordell (Newcastie)

= Popular (and highly successful) approach over past~ 18 years

w Enabled by advances in high-throughput (microarray-based)
genotyping technologies
= Ideais to measure the genotype at a set of single nucleotide
polymorphisms (SNPs) across the genome, in alarge set of unrelated
individuals
= Casesand controls
= Or population cohort measured for relevant quantitative phenotypes
(height, weight, blood pressure etc)
= Or related individuals (family data) —but needto analysedifferently

2

Association testing: case/control studies

a Collect sample of affected individuals (cases) and unaffected
individuals (controls)
= Ora ése a sample of random “population” controls

= Most of whom will not have the disease of interest

® Examine the association (correlation) between alleles presentat a
genetic locus and presence/absence of disease
u By comparing the distribution of genotypes in affected individuals
with that seenin controls

Heather Cordell (Newcaste) GIWAS (Part 1)

Case/control studies

@ Each person can have one of 3 possible genotypes at a diallelic
genetic locus

12 1100 d
Total 2000 2000

w Test for association (correlation) between genotype and presence/
absence of disease using standard X test for independence on 2df

Heather Cordell (Newcaste) GWAS (Part 1)
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Case/control studies

= Each person can have one of 3 possible genotypes at adiallelic
genetic locus

o 1
22500
12 1100

Total 2000

u Test for association (correlation) between genotype and presence/
absence of disease using standard )(2 test for independence on 2df
u Defined {0 E’ where O and Eare observed and
counts (caloulatea from the row and column totals) respectively

= Generatesap value |nd|cat|ng how significant the association/
correlation appearsto

Heather Cordell (Newcastie)
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GIVAS (Part 1)

Odds ratios

= Odds of disease are defined as P(diseased)/P(not diseased)

= Oddsratio OR (2]2: 1|1)repesents the factor by which your odds
disease must be multiplied, |fywravegem(ype2|2$op;medto 1
= ie. the ‘effect of genotype 2|2

Heather Cordell (Newcastie)
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GIVAS (Part 1)

Odds ratios

= Odds of disease are defined as P(diseased)/P(not diseased)
= Oddsratio OR (2|2: 1|1)repesents the factor by which your odds
diseasemust be multiplied, if you have genotype 2|2as opposed to 1|1
= ie. the ‘effect of genotype 2|2
= Similarly, we can define the OR for 1|2vs 1|1
= Asthe factor by which your odds of disease must be multiplied, if you
have genotype 1|2as opposedto 1]1
= ie. the ‘effect of genotype 1|2
u ORsare closely related (often =) genotype relative risks
= The factor by which your probability of disease must be multiplied, if
you have genotype 1|2asopposedto 1|1(say)
u If your genotype has no effect on your probability (and therefore on
your odds) of disease, then the ORs=1.
= Sothe association test can be thought of asatest of the null
hypothess that the ORs=1

Heather Cordell (Newcastie)
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Case/control studies

= Each person can have one of 3 possible genotypes at a diallelic
genetic locus

“Geoype e Contos
22 500 (= B,
12

Total 2000 2000
w Test for association (correlation) between genotype and presence/
absence of disease using standard XZ test for independence on 2df
u Defined (O E’ where Oand E are observed andexpected
counts (calculateg from the row and column totals) respectively

= Generatesap value |nd|canng how significant the association/
correlation appearsto

= Two odds ratios can be estimated
= ORQ[2:1|1)= g
= OR(121 (1)=&

Heather Cordell (Newcastle)

GWAS (Part 1)
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Odds ratios

@ Odds of disease are defined as P(diseased)/P(not diseased)
= Oddsratio OR (2]2: 1|1)repesents the factor by which your odds
disease must be multiplied, if you have genotype 2|2as opposed to 1|1
= ie. the ‘effect’ of genotype 2|2

= Similarly, wecan define the OR for 1|2vs 1|1
= Asthe factor bywhloh your odds of disease must be multiplied, if you
have genotype 1|2asopposedto 1|1
= ie. the ‘effect’ of genotype 1|2

Heather Cordell (Newcaste)

Genotype relative risks

GIWAS (Part 1)

u If adiseaseis reasonably rare, the odds ratio approximates the
genotype relative risk (GRR, RR)

Penetrance
7 001 10 0.010.99=0010T 1.00
12 0.02 20 0.020.98= 00204 202
22 0.05 50 0.050.95=00526 521

u If your genotype has no effect on your probability (and therefore your
RR) of disease, then both the ORs and the GRRs=1.

Heather Cordell (Newcaste)

GWAS (Part 1)




Dominant:
Genotype Cases Controls Total
2[2and 1[2]500+1100 200+820 | 700+1920
K 400 980 1380
Total 2000 2000 4000
Recessive:
Genotype Cases Controls Total
212 500 200 700
1[2and 1][1| 7100+400 820+980 | 1920+1380
ofal 2000 2000 4000

u Canalsorearrange table to examine effects of alleles (1 df tests):

Heather Cordell (Newcastie)
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esting for association: quantitative traits

a Linear regression provides a natural test for quantitative traits
« Testing the null hypothesis that the slope = 0
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GIVAS (Part 1)
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Logistic regression

= Standard method usedin standard epidemiological studies e.g. of risk
factors such as smoking in lung cancer

= Main advantage is you can include more than one predictor in the
regression equation e.g.

In_P_ = po+ Bix1+ fax2+ B3x3
-p
where x1, x2, x3code for
= genotypesat 3 loci
= measured environmental covariates (e.g. age, sex, smoking etc),
= genetic principal component soores (to adjust for population
substructure),
= interactions between loci etc. etc.

Heather Cordell (Newcastie)

GIVAS (Part 1) 8/

Counting alleles

Counts in
Allele ~Cases Controls
2 2100 (=a) 1220 (=b)
1 1900 (=c) 2780(=d)
Total 4000 4000

Allelic OR= ad/bc

= x2test statisticon 1df = ,(O;= EY/E; where Oiand Eiare the
observed and expected valuesin cell j .
= Assumes HWE under null and multiplicative allelic effects under
alternative: considers chromosomes asindependent units

w Better approach: usecounts in previous genotype table to perfom a
Cochran-Ammitage trend test
w Evenbetter approach: uselinear or logistic regression

Heather Cordell (Newcastle)

GWAS (Part 1)

® Usedin case/control studies
= Outcome is affected or unaffected
= Model probability (and thus odds) of disease p asfunction of variable x
coding for genotype:

In%:&+ﬁ<x =c+mx

= Usedbserved genotypes in casesand controls to estimate the values of
regression coefficients Bo and Bt

= And to test whether 81= 0

Heather Cordell (Newcaste)

Testing for association

= All methods produce atest statistic and ap value at each SNP,
indicating how significant the association/correlation observed
appears to be
= i.e. howlikely it wasto have occurred by chance
= The threshold to dedare ‘genome-wide significance’ is usually around
p= 5x10-8
= To account for multiple testing of many SNPs across the genome

GIWAS (Part 1)

Heather Cordell (Newcaste)

GWAS (Part 1)




Testing for association

u All methods produce atest statistic and ap value at each SNP,
indicating how significant the association/correlation observed
appears to be

= i-e. howlikely it wasto have occurred by chance
= The threshold to dedlare ‘genome-wide significance’ is usually around
p= 5x10¢
= To account for multiple testing of many SNPs across the genome

® Alternative (Bayesian) methods produce aBayes Factor Indicates

= howlikely the data is under the altemative hypothesis (of

association between genotype and
= Compared to under the null hypothesis (of no association between
genotype and phenotype)

= Requires you to make some prior assumptions regarding the likely
strength of associations (i.e. the value of the 8's)

= Choosing asensible threshold (e.g. logio BF > 4) requires you to make
some prior assumptions regarding what proportion of SNPsin the
genome are likely to be associated with the phenotype

Heather Cordell (Newcastie) GIVAS (Part 1) 13/ 40
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Manhattan Plots

= At any location showing ‘significant’ association, we expect to see
several SNPs in the same region showing association/correlation with

phenotype
= Dueto the correlation or linkage disequilibrium (LD) between
neighbouring SNPs

Heather Cordell (Newcastle) GWAS (Part 1)

Historical Perspective: Complement Factor H in A

& First (?) GWAS was by Klein et al. (2005) Science 308:385-389

= Typed 116,204 SNPs in 96 cases (with age-related macular
degeneration, AMD) and 50controls
= Very small sample size—they were very lucky to find anything! Luck
= wasdueto the fact the polymorphism has avery large effect
(recessive OR=7.4)

® Klein et al. followed up on two SNPs passing threshold
(p<4.8x107")
= Plus athird SNP that just failed to pass significance threshold, but lay in
sameregion asfirst SNP

Complement Factor H in AMD

u Of the 3 SNPs followed up:
= Oneappearedto be dueto genotyping errors: significance disappeared on
filling in some missing genotypes
= First and third SNP lie in intron of Complement Factor H (CFH) gere
= Lies in region previously implicated by family-based linkage studies

u Resequencing of the region identified a polymorphism of plausible
functional effect

® Immunofluorescence experiments in the eyesof AMD patients
supported the involvement of CFH in disease pathogenesis.

Heather Cordell (Newcastie)
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® GWAS really got going in around 2007
= Visscher et al. (2012) AJHG 90:7-24 “Five Years of GWAS Discovery”
= Visscher et al. (2017) AJHG 101:5-22 “10 Years of GWAS Discovery:
Biology, Function and Translation”
= Abdellaoui et al. (2023) AJHG 110:179-194 “15 Years of GWAS Discovery:
Realizing the promise”

w 2007/2008 saw a slew of high-profile GWAS publications

= Breast cancer (Easton et al. 2007)
= Rheumatoid Arthritis (Plenge et al. 2007)
= Type 1and Type 2 diabetes (Todd et al. 2007; Zeggini et al. 2008)

= Arguably the most influential wasthe Wellcome Trust Case Control
Consortium (WTCCC) study of 7 different diseases

= hitoy//www.wtcee org Ul

Heather Cordell (Newcaste) GWAS (Part 1)
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TCCC Manhattan plots for 7 diseases

= Nature 447: 661-678 (2007)

= Considered 2000 cases for each of the following diseases:

= Bipolar disorder, coronary artery disease, Crohn's disease, hypertension,
rheumatoid arthritis, type 1 dabaes type 2 diabetes

= Compared each disease cohort to common control panel

= 3000 population-based controls
= From 1958 birth cohort and National Blood Service

o

= Highly successful
= WTCCC found 24 separate association signals
= Including highly convincing signals in 5 out of the 7 diseases studied
= All were replicated in subsequent independent follow-up studies

GIVAS (Part 1) 9/ Heather Cordell (Newcast GWAS (Part 1)
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L] Tygioally used rather standard statistical/epidemiological methods
(x* tests, t tests, logistic regression etc.)

= Success largely dueto:
= An appreciation of the importance of large sample size (> 2000 cases,
similar or greater number of controls)
w Stringent quality control procedures for discarding low-quality SNPs.
and/or samples

= Stringent significance thresholds (p = 5x1 0-8) to account for multiple
testing and/or low prior prob of true effe

w Importance of replication in an mdeperﬁem data set

Heather Cordell (Newcastie) GIVAS (Part 1) 21/ Heather Cordell (Newcaste) GWAS (Part 1)
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= Stringent QC checks are required for GWAS data

u Discard samples (people) deemed unreliable "
Ll Lowgenotypecall rates, excessheterozygosity etc.
chromosomal markers useful for checkinggender !

= Males should ‘appear’ homozygous at all X markers
= Genome-wide SNP data useful for checking relationships and ethnicity

= Discard data from SNPs deemed unreliable :
= On basis of genotype call rates, Mendelian misinheritances,
Hardy-Weinberg disequilibrium " - R

= Exclude SNPswith low minor allele frequency (MAF)

® Seetutorials at: = 61sample exclusions (low call-rate); 23 exclusions (heterozygosity)
u https://pubmed.ncbi.nim.nih.gov/21085122/ a SNP exclusions also made based on call-rates, MAF and
u https://pubmed.ncbi.nlm.nih.gov/29484742/ Hardy-Weinburg equilibrium (HWE)

Heather Cordell (Newcastie) GWAS (Par 231 Heather Cordell (Newcaste) GWAS (Part 1)




QC: ethnicity tests

= Multidimensional scaling (with 210 HapMap individuals) identifies 33
samples with non-Caucasian ancestry

@ MDS or similar multivariate methods can also be used to model more
subtle population differences betweensamples...

Heather Cordell (Newcastie) GIVAS (Part 1)

Multivariate Analysis

@ Several related multivariate analysis techniques have been proposed for
detecting population structure in genome-wide association studies
= Principal components analysis (PCA)
= Principal coordinates analysis (PCoA)
= Multidimensional scaling (MDS)

Heather Cordell (Newcastle) GWAS (Part 1)

Multivariate Analysis

= Several related multivariate analysis techniques have been proposed for

detecting population structure in genome-wide association studies
= Principal components analysis (PCA)
= Principal coordinates analysis (PCoA)
= Muttidimensional scaling (MDS)

u If population differences can be detected (and adjusted for) in
association analysis, this offers away to deal with the problem of
population stratification

= Population sampled actually consists of several ‘sub-populations’ that
donot really intermix

= Canlead to spurious false positives (type 1 emors) in case/control
studies

Heather Cordell (Newcastie) GIVAS (Part 1)

Multivariate Analysis

= Several related multivariate analysis techniques have been proposed for
detecting population structure in genome-wide association studies
= Principal components analysis (PCA)
= Principal coordinates analysis (PCoA)
= Multidimensional scaling (MDS)
® If population differences can be detected (and adjusted for) in
association analysis, this offers away to deal with the problem of
population stratification
= Population sampled actually consists of several ‘sub-populations’ that
do not really intermix
= Canlead to spurious false positives (type 1 emors) in case/control
studies
@ These techniques can also be used in quality control (QC) procedures,
to check for (and discard) gross population outliers

Heather Cordell (Newcaste) GIWAS (Part 1)

Principal components analysis (PCA)

Genes mirror geography within Europe

J Novembre ef al :98-101, doi 10,

Heather Cordell (Newcastie)

Principal Components Analysis

= Price et al. (2006) Nature Genetics 38:904-909; Patterson et al.
(2006) PLoS Genetics 2(12):e190
u Based on popn genetics ideas from Cavalli-Sforza(1978)

@ Ideais to form alarge matrix M of SNP counts (0,1,2) corresponding to
the genotype at a L loci (=rows) for nindividuals (=columns)
m]

g1 912 . Gn
91 92 . gxn
_Ug 9w . gy U

B . B

g1 92 . 9in

M

Heather Cordell (Newcaste) GWAS (Part 1)




Principal Components Analysis

@ Subtract row means and normalise by function of row allele frequency
v fIi(T—=1) to give matrix X

[m]
X1 X2 . Xin

X1 X2 . Xon
_Oxat x;2 . x3, O

g: 8B

X1 X2 . Xin

X

= This matrix will be used asstarting point for PCA
= In principal wecould start with adiffe; ix —in particular not all
PCA approaches would nomalise by * fi (1= fi)

Heather Cordell (Newcastie) GIVAS (Part 1)

Multivariate Analysis

@ Estimate covariance matrix W= X7 X between all pairs of individuals,
with entries wijdefined asthe covariance (summing over SNPs)
between column i and j of X

= Represents average genome-wide identity by descent (IBD) (estimated
from identity by state, IBS)

Heather Cordell (Newcastle) GWAS (Part 1)

Multivariate Analysis

= Estimate covariance matrix W= X7 X between all pairs of individuals,
with entries ijjdefined asthe covariance (summing over SNPs)
between column i and j of X

= Represents average genome-wide identity by descent (IBD) (estimated
from identity by state, IBS)

= Compute the eigenvectors -vand eigenvalues A; of matrix ¥

= Co-ordinate j of the kth eigenvector represents the ancestry of
individual j along ‘axis’ k

Heather Cordell (Newcastie) GIVAS (Part 1)

Multivariate Analysis

= Estimate covariance matrix W= X7 X between all pairs of individuals,
with entries wijdefined asthe covariance (summing over SNPs)
between column i and j of X
= Represents average genome-wide identity by descent (IBD) (estimated
from identity by state, IBS)
Compute the eigenvectors -yand eigenvalues A; of matrix W
= Co-ordinate j of the kth represents the ancestry of
individual j along ‘axis' k

= Fortechnical details, seeMcVean (2009) PLoS Genetics 5;10:¢1000686

Heather Cordell (Newcaste) GIWAS (Part 1)

Multivariate Analysis

w Estimate covariance matrix W= X X between all pairs of individuals,
with entries wijdefined asthe covariance (summing over SNPs)
between column i andj of X

= Represents average genome-wide identity by descent (IBD) (estimated

from identity by state, IBS)
= Compute the eigenvectors +and e lues A; of matrix ¥
= Co-ordinate j of the kth eigenvector represents the ancestry of
individual j along ‘axis’ k

w Fortechnical details, seeMcVean (2009) PLoS Genetics 5;10:¢1000686

= Many genetics packages e.g. (PLINK) will allow you to calculate the
top 10#» more) PCs
» Different geographic populations can often be well separated by just
the first two or three PCs

= Useful for outlier detection

w For more subtle differences, you may need to calculate more PCs
= And include them as covariates in the regression equation
u  POStGWAS QC can determine whether you have included ‘enough’

Heather Cordell (Newcastie)
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Post GWAS QC Q-Q Plots (good)

= Plot ordered test statistics (y axis) against their expected values under the
null hypothesis (x axis)

Heather Cordell (Newcaste) GWAS (Part 1)




Q-Q Plots (bad)

Heather Cordell (Newcastie) GIVAS (Part 1)

Population stratification

= A QQ plot showing constant inflation (straight line with slope > 1)
canindicate population stratification/population substructure
= Simple solution: Genomic Control (Devlin and Roeder1999)
= Useyour observed test statistics to estimate the slope (=inflation
factor A)
« Divide eachtest statistic by A to get an adjusted (deflated) test
statistic

= More complicated solution: use PCA/MDS or similar Even

= More complicated solution: use linear mixed models

43

= With genome-wide data, can also infer relationships based on average
identity by descent (IBD) W= X X oridentity by state (IBS)

= Using ‘thinned’ subset of markers with high minor allele frequency
(MAF) and in approximate linkage equilibrium

= Simple relationships (PO, FS, MZ/duplicates) canidentified with only a
few hundredmerkers

= More complicated relationships require 10,000-50,000 SNPs

= Various software packages, including PLINK, KING and TRUFFLE

Heather Cordell (Newcastie) GIVAS (Part 1)

Heather Cordell (Newcastle) GWAS (Part 1)

44

= Assuming no inbreeding, the IBD state probabilities are:

Number of alleles shared IBD

Relationship 2

MZ twins 1 0 0
Parent-Offspring 0 1 0
Full siblings 14 12 1/4
Half siblings 0 1/2 1/2
Grandchila-grandparent 0 1/2 1/2
Uncle/aunt-nephew/niece 0 1/2 1/2
First cousins 0 1/4 3/4
Second cousins 0 116 15/16
Double 1st cousins 116  6/16 916

= A useful visualisation tool is to plot SE(IBD) vs mean(IBD)
(as estimated across the genome)
« Or kinship coefficient { P(IBD=2)+ P(IBD=1) } againstP(IBD=0)

Full/half sibs and parent-offspring

Heather Cordell (Newcastie)
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CHD GWAS results (low QC)

Heather Cordell (Newcaste) GWAS (Part 1)



CHD GWAS results (better QC)

Heather Cordell (Newcastie) GIVAS (Part 1)

Genome-wide meta-analysis

= Puts together data (or results) from a number of different studies
= Could analyse asone big study
= But preferable to analyse using meta-analytic techniques
= At each SNP construct an overall test based on the results
(log ORs and standard errors) from the individual studies

Heather Cordell (Newcastie) GIVAS (Part 1)
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= Puts together data (or results) from a number of different studies
= Could analyse asone big study
= But preferable to analyse using meta-analytic techniques
= At each SNP construct an overall test based on the results
(log ORs and standard errors) from the individual studies
s Meta-analysis is often made easier by usingimputation
u Inferring (probabilistically) the genotypes at SNPs which have not
actually been genotyped
= On the basis of their known correlations with nearby SNPs that have
been genotyped
= Using areference panel of people (e.g. 1000 Genomes) who have been
genotyped at all SNPs
a Enables meta-analysis of studies that used different genotyping

platforms
= Byimputing to generate data at acommon setof SNPs

u Ideally while ing for the i inty in the
downstream statistical analysis

u In practice often don’t bother - use post-imputation QC to remove
poorly-imputed SNPS

CHD GWAS resullts (final QC)

Heather Cordell (Newcastle) GWAS (Part 1)
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Genome-wide meta-analysis

= Puts together data (or results) from a number of different studies
= Could analyse asone big study
= But preferable to analyse using meta-analytic techniques
= At each SNP construct an overall test based on the results
(log ORs and standard errors) from the individual studies
s Meta-analysis is often made easier by usingimputation
u Inferring (probabilistically) the genotypes at SNPs which have not
actually been genotyped
= On the basis of their known correlations with nearby SNPs that have
been genotyped
= Using areference panel of people (e.g. 1000 Genomes) who have been
genotyped at all SNPs

Heather Cordell (Newcaste)
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Data Quality Control
NGS and Genotype Array Data

Suzanne M. Leal, Ph.D.

sml3@cumc.columbia.edu

©2024 Suzanne M. Leal

DNA Collection

Blood samples
— For unlimited supply of DNA
« Transformed cell lines
— s expensive
* Whole genome amplification
— Allows for the creation of large amounts of DNA from initial small DNA sample
» Perform WGA on each sample three or more times and use pooled samples
— Can experience lower call rates and higher genotyping error rates
~ Not recommend for whole genome sequencing or copy number variant (CNV) analysis
Buccal Swabs
« Small amounts of DNA
* DNA not stable

Saliva (Origene collection kit)

N easurement of DNA Concentrations
anodrop

Picogreen

2
Effect of Genotyping Error — Same Error Rates for Effects of Genotyping Error — Different Error
Cases and Controls Rates for Cases and Controls
s Cases and controls are sequenced/genotyped
* For family-based association studies - Trios _ At different times
— Can increase both type | and Il error — Different institutions
« Population based studies — Orone group, e.g., case or control, is predominately
sequenced/genotyped in the same batch
- Increases type Il error only * Can lead to different genotyping error rates in cases and controls
— Inthis situation both type | and Il error can be increased
s If sequencing/genotyping cases and controls
— Randomize cases and controls so they are spread evenly across batches
Quaniitalive Trails
Quantitative Traits If genotyping error is correlated with trait values, it will
If genotyping error is not correlated with also increase type | and Il errors, e.g., individuais with
trait values type Il errors will be elevated systolic blood pressure are genotyped in one
increased batch and those with systolic blood pressure within the
normotensive range in another batch
1

Genotype SNPs (~20-96) before Exome or Whole
Genome Sequencing

Genotype markers which can be used as DNA fingerprint
Allows for Assessment of DNA quality

Aids in determining the the genetic sex of study subjects
— To aid in identification of potential sample swaps
Detects cryptic duplicates

For family data

— Aids in determining close familial relationships
* Non-paternity
« Sample swaps
« Cryptic relationships

Detecting Genotyping Errors

Duplicate samples genotyped using arrays to detect
inconsistencies
— Can use duplicate samples that are inconsistent to adjust clusters to
improve allele calls
« Will not detect systematic errors

Usually generated only for genotype array data

— Due to expense, duplicate samples are usually not generated for exome or
whole genome sequencing studies




Variant Calling Pipeline -Step 1 Preprocessing

FastQ or uBAM files

|

Map to Reference

Burrows-Wheeler Aligner

Mark Duplicates Picard

Recalibrate Bases
Base quality score recalibration (BQSR)

BAM...

GATK

Variant Calling Pipeline-Step 2 Variant Discovery

Call Variants

Recommend HaplotypeCaller
UnifiedGenotyper - outdated

Optional - Can be used
for large datasets
QVCFuun

Joint Calling
VCF

Flags variant
sites which are
likely to be false

positives

Variant quality score recalibration (VQSR)

Variant Calling Pipeline - Step 3 Call Set Refinement

Refines genotype calls &
GQ scores using info on

variant MAFs. For families
uses info on each trio pair
within a family

CalculateGenotypePosteriors

VCF:

VariantFiltration Flags genotypes with GQ<20

a Fl ible d t:
VariantAnnotator o PO o data)
VCF
Functional annotation Not performed by GATK

A Short List of Additional Software to Detect
Genetic Variation

¢ Exome data copy number variation

— CoNIFER (Copy Number Inference From Exome Reads)
* Krummeet al. 2012

- XHMM
 Fromer et al. 2014
¢ WGS data structural variation
— MetaSV
* Mohiyuddin et al. 2015
- LUMPY
 Layer etal. 2014

10

Variant Calling

* BAM files are large and take considerable resources
— Storage is expensive
— One 30x whole genome is ~80-90 gigabytes
— A small study of 1,000 samples will consume 80 terabytes of
disk space
e The cost of cloud computing to call variants
— (Souilmi et al. 2015)
— $5 per exome
— $50 per genome
* For 1,000 samples
- $5,000 exome
- $50,000 genome

Working with gVCF Files

* Instead of obtaining VCF files
* Can obtain gVCF files to perform joint calling and
complete the GATK pipeline
— A whole genome gVCF
* ~1 Gigabyte
~ 1/100t the size of a BAM file for one individual

11
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Influences on Sequence Quality

DNA quality
— Age of sample
— Extraction method
— Source of sample
 e.g., blood, skin punch, buccal

Sequencing machines (read length)
Median sequencing depth

¢ Alignment
.

Variant calling method used

— Single nucleotide variants and insertion/deletions
— Structural variants

NGS Data Quality Control

e Extremely important to perform before data analysis
— Poor data quality can increase type | and Il errors
— Due to inclusion of false positive variant sites or incorrect
genotype calls
* Protocols for data QC are still in their infancy
— No set protocols for QC
* QCis data specific
— Dependent on read depth
— Batch effects
— Availability of duplicate samples

- etc.

13
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NGS Data Quality - Removal of Genotype Calls
and Samples

Sequence depth of coverage
— DP_variant

* High DP could be an indication of copy number variants

- Which can introduce false positive variant calls
» Due to down sampling in GATK maximum DP is 250

— DP_genotype

* Concerned if depth is too low or too high

- Low insufficient reads to call a variant site
* Remove genotypes with low read depth, e.g., DP<8

Genotype quality (GQ) score
— Removal genotypes with a low genotype quality core, e.g., GQ< 20
Bcftools

— Can be used to remove variants sites and genotypes which do not
meet quality control criteria

VCF Example

mro Na00003
1710

0/0:41:3

15 16
. . NGS Data Quality — Removal of Genotype Calls
Variants with more than 2 Alleles yand Samples P
¢ Genetic analysis tools are usually developed to analyze P
variant sites that are diallelic * Removal of sites with missing data
* Some sites may have >2 alleles - e.g., missing > 10% of genotypes
« The alleles at these sites need to be split ¢ Removal of “novel” variant sites which only occur in
one batch and the alternative allele is observed
— New loci are made each multi-allelic site each with only 2 . . . .
el multiple times or the minor allele frequency (MAF) is
alleles
« beftools high in overall sample
¢ Multiallelic sites can have higher error rates compared ¢ Removal of sites that deviate from Hardy-Weinberg
to diallelic sites Equilibrium (HWE)
— Must be performed by population, e.g., African American
Q ‘: SEE and European American
[ — Related individuals should be removed from the sample
N before testing for deviations from HWE
17 18
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NGS Data Quality Control

GATK - Variant Quality Score Recalibration (VQSR)
— Used to determine variant sites of bad quality
* Variant site is a false positive call

However even after this step
— Concordance of duplicates (when available) and

— and Ti/Tv ratios are often low

Additional QC steps needs to be performed

NGS Data Quality Control

¢ Values which are used for DP (genotype), GQ, and
missing data cut offs are based upon
- Concordance rates
 If there are duplicate samples are available
— Ti/Tv ratios
* By individual
* Bybatch
 Entire data set
— Amount of data removed

* QC can remove substantial amounts of data which should be
avoided

- e.g, >15% of variant sites

19
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Transition/Transversion (Ti/TV) Ratios

¢ Transition
¢ Purine ——> Purine

A_____.C
* Pyrimidine — > Pyrimidine
¢ Transversion
¢ Purine —>  Pyrimidine
¢ Pyrimidine —> Purine
Te—

Transition
— Transversion

AKA Ts/Tv ratios

Transition/Transversion (Ti/TV) Ratios

« Ti/Tv Ratios
* Whole genome ~2.0
« Exome novel ~2.7
« Exome known ~3.5

A C

+ Ti/Tv ratios can be calculated by .
« Sample or
« Dataset

—_— Transition
~———> Transversion
Ti/Tv ratios can be evaluated for subsets of data
* e.g., by batch

21
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Sequence Data QC Overview

e Variant and genotype call level
- Evaluation of batch effects
* Genotype call level — Removal of genotype calls
— Low or high depth of coverage DP< 8
— Low genotype quality score GQ< 20
Removal of individual samples
— >20% missing data
* After taking the intersect of capture arrays

— Samples without phenotype information

Sequence Data QC Overview

* Variant level — removal of variant sites

— Low call rate

* i.e., missing call rate > 10%
— “Novel” variant sites observed>2 only in a single batch
— Deviation from Hardy-Weinberg-Equilibrium

* Population specific

 Unrelated individuals

—e.g, p<5x 108, p<5x101s

23

24




QC - Assessing Sex Chromosomes

When data is collected on study subjects they are
asked about their gender/sex and not their genetic sex
— Differences in gender/sex and genetic sex can be due to

* Sample swaps

* Study subjects who are not cisgender

Some study subjects may have neither a XX nor XY
karyotype

— Turner syndrome X0

— Klinefelter syndrome XXY

QC - Assessing Sex Chromosomes

o Study subjects labeled as females with an excess of
homozygous genotypes on the X chromosome can
denote
— That their genetic sex is male
— Turner Syndrome

25
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QC - Assessing Sex Chromosomes

Study subjects labeled as males with an excess of
heterozygous SNPs* on the X chromosome can
denote

— That their genetic sex is female

— Klinefelter syndrome

Note: Individuals who are XY will also be
heterozygous for markers in the pseudoautosomal
regions

¢ Availability of Y chromosome data

— Can greatly aid in determining genetic sex and if an individual has
Turner or Klinefelter syndrome

“Both genetic males and females have two alleles for each locus on the X
chromosome in the datafile, although genetic males are hemizygous

Data Clean — Assessing Sex Chromosomes

* Individuals whose labeled gender/sex does not match
their genetic sex are removed from the analysis
* This observation may be due to a sample swap
— When samples are swapped
* Phenotype data will be incorrect
— e.g., may be a case when labeled as a control

27
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Checking for Duplicate and Related Individuals

¢ Duplicate samples are sometimes included in a study as
part of quality control to detect inconsistencies
— Will not detect systematic errors
— Usually not included in exome and whole genome sequencing studies
— Intentional duplicates can easily be removed before data quality control
e Cryptic duplicates (unintentional)
— DNA sample aliquoted more than once
— Individual ascertained more than once for a study

« eg. The same individual undergoes the same operation more than once and is
ascertained each time

¢ Individuals who are related to each other may
participate in the same study
— Unknown to the investigator
— Or be part of the study design

Duplicate and Related Individuals Need to be
_ Identified
* Forduplicate samples

— Only one can be retained
¢ Forrelated individuals

— PCAis performed first with unrelated individuals and related individuals
are then projected onto the PCs of unrelated individuals
— Mixed-models need to be used to analyze the data if related individuals
are included*
« Case-Control
- Generalized linear mixed models (GLMM)
* Quantitative traits
~ Linear mixed models (LMM)

If related individuals are ignored in the analysis type | error
rates can be inflated

*If only a few related individuals in sample, may wish to remove them or use LMM/GLMM
to control type | errors. Must use LMM/GLMM if related individuals are included in the
dataset. If possible, opt for LMM/GLMM since it can help to control type | error due to
other types of structure in the data, even when no closely related individuals are included

in the analysis

29
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Identifying Duplicate and Related Individuals Identity by Descent (IBD)/Identity-by-State (IBS)
¢ Duplicate and related individuals can be detected
— By examining Identity-by-State (I1BS) adjusted for allele
frequencies (p-hat) between all pairs of individuals within a
sample
— Identify-by-descent (IBD) sharing can be estimated 12 173 12 1/3 12 173
1/3 12 1/1 1/3 12 12
IBD=0 IBD=1 IBD=2
IBS=1 IBS=1 IBS=2
31 32

IBD Sharing Estimated Pairwise for all Individuals
in a Samples
PLINK (Purcell et al. 2007)

Uses sequence (or genotype array) data to check IBD
— Prune markers to remove those in linkage disequilibrium

Identifying Duplicate and Related Individuals

Monozygote twins and duplicate samples will share
100% of their alleles IBD

— IBD=2is 1.0 (can be lower due to genotyping error)

(LD) * Siblings and child-parent pairs will share 50% of their
¢ eg,r<0.1 alleles IBD
* P-hatis calculated using the “population” allele frequency — For parent-child IBD=1 is 1.0 (IBD=0 is 0 & IBD=2 is 0)
* Used to approximates 1D sharing ~ For sibs IBD=1 s ~0.50 (IBD=0 is ~0.25 & IBD=2 is ~0.25)
¢ IBD is the number of alleles of alleles which are shared between « For more distantly related individuals the IBD measure will be lower

a pair of individuals
— Can either share 0, 1, and 2 alleles

33 34

- N . UK Biobank Related Individuals > Kinship Coefficient 0.0625
Identifying Duplicate and Related Individuals White European Ao Asian
#of "E‘a;w I "0'8 :ﬂ‘;ves # of relatives [# ofindwidual] [ of relatives| # of individuals]
. . : s 743
¢ KING [Kinship-based INference for Gwas H 1191 2 1 N 115
(Manichaikul et al. 2010)] can also be used to identify 4 707 3 10 3 33
. . s 4 4
duplicate and related individuals : b : : N M
— KING is more robust to population substructure and 7 9 ; i
admixture z f 9 1
10 4
* Prune markers for LD (e.g., r<0.1) © u u )
— Provides kinship coefficients 12 2 E i
« Duplicate samples 1 ‘ 19 3
19 1 2 2
— Kinship coefficient equals 0.5 25 1 21 1
* Siblings » ! » !
o - 3085 1
— Kinship coefficient equals 0.25
3% 1
391 1
393 1
39 1

35 36
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King Graphical Output
8 4
° ol = Known Relatives
LR m Cryptic Relatives
g &
LR TS *
‘"7 o
% o
3
s w |
£s
e | &w °
g1 oo
0.000 0.002 0.004 0.006 0.008
Pr(BS=0)

Multiple Individuals Observed That are Distantly
“Related”

* If individuals in sample come from different populations

— e.g, individuals from the same population within the sample will have
inflated p-hat values due to incorrect allele frequencies
« Incorrectly appear to be related to each other

“Relatedness” amongst many individuals can also be observed
when batches are combined if they have different error rates
— Individuals from the same batch appear to be related

DNA contamination can cause “relatedness” between multiple
individuals

37 38
Principal Components Analysis (PCA) / Principal Components Analysis (PCA) /
Multidimensional Scaling (MDS) Multidimensional Scaling (MDS)
¢ Can be used to identify outliers ¢ Unrelated individuals are used to generate PC plots
* Population substructure — Related individuals are projected onto to the PC plots
- Individuals from different ancestry e Plot 1%t component vs. 2" component
ceg, Afril:an American samples included in samples of European - Additional PCs should also be plotted
Americans * eg.PCs 110
¢ Batch effects - . .
* Mahalanobis distance can be used to determine outliers
* Use a subset of markers which have been LD pruned —eg,<1
— Only very low levels of LD between marker loci
*eg,r<0.1
— MAF cutoff dependent on sample size
 e.g MAF>0.01
~ Can use lower MAF for large sample sizes
39 40
Principal Components Analysis Example
. . PivspC2 exomes Ne180.016 [T ———
PCA/MDS Can be Used to Identify Outliers
¢ Individuals of different ancestry
— e.g., African American samples included with European . b
Americans samples
— Can use samples from HapMap/1000 genomes to help to
determine the ancestry for samples that are outliers = B e
« Should not include HapMap/1000 genomes samples when calculating F3¥S PG sxomes N-109016 315 PCA exomes 180,488
components to control for population substructure/admixture 2
* Batch effects ‘ -
Exclusion of Outliers using Mahalanobis distance (0.997)
41 42
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Detecting Outliers Using PCA and HapMap
Sample

SCCOR, C58 and HAPMAP MDS

010

Component 2

Jelicome Trust
o " 1958 Birth Cohor
Controls

015 010 005 000

005
*

Component 1

DeEecEmg Outliers Usmg PCAand

HapMap Sample

010

005

Component2

om0

‘Wellome Trust

1958 birth cohort
Controls

-0
»

Gomponent 1
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Detecting Genotyping Error — Examining HWE Detecting Genotyping Error — Examining HWE
¢ Testing for deviations from HWE not very powerful to « Controls and Cases are evaluated separately
detect genotyping errors — Deviation found only in cases can be due to an association
¢ The power to detect deviations from HWE dependent on: « Test for deviation from HWE only in samples of the same
— Error rates ancestry
- Unc:{erl;/ing error model — Population substructure can introduce deviations from HWE
* Random
. N ¢ Do not include related individuals when testing for
ot 2o >t genotype deviations from HWE
— Minor allele frequencies (MAF) — Can cause deviations from HWE
45 46

Detecting Genotyping Error — Examining HWE
What criterion is used to remove variants due to a
deviation from HWE
— GWAS studies have used 5.0 x 107 t0 5.0 x 10
Quantitative Traits

— Caution should be used removing markers which deviate from
HWE may be due to an association
* Remove markers with extreme deviations from HWE and Flag markers
with less extreme deviations from HWE
When performing imputation need to be more stringent in
removing variants which deviate from HWE

Sequence Data QC Overview
Remove variant sites that fail VQSR
Remove genotypes with low DP, GQ scores, etc.
Remove variant sites with large percent of missing data
Remove samples with missing large percent of missing
data
Evaluate genetic sex of individuals based upon X and Y
chromosomal data
— Sample mix-ups
— Individuals with Turner or Klinefelter Syndrome

47
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Sequence Data QC Overview

e Evaluate samples for cryptically related individuals and
duplicates
— Use variants which have been pruned for LD
. eg, r<0.1
— King or Plink algorithm
* Always remove duplicate individuals
— Retaining only one in the sample
« If sample includes related samples use linear mix models
(LMM)/Generalized LMM (GLMM) to control for relatedness
~ Best to perform even for data without related individuals
 If only a few related individuals can retain only one individual of a
relative group if not using LMM or GLMM

Sequence Data QC Overview
Detection of sample outliers

— Perform principal components analysis (PCA) or
multidimensional scaling (MDS) to detect outliers
* Use variants pruned for LD
—eg, <01
* Use unrelated individuals and then project related individuals
onto the PCs

Due to population substructure/admixture and batch effects
Remove effects by
— Additional QC

— Removal of outliers (can be determined by Mahalanobis distance)
and\or
— Inclusion of MDS or PCA components in the association analysis

49
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Sequence Data QC Overview
e Remove/flag variant sites that deviate from HWE in
controls
— HWE should be only be tested in unrelated individuals from the
same population
¢ Post Analysis - Quantile-Quantile (QQ) plots
— To evaluate uncontrolled batch effects and population
substructure/admixture

QQ Plots - Genome Wide Association Diagnosis

* Thousands of variants/genes are tested simultaneously

* The p-values of neutral markers follow the uniform
distribution

If there are systematic biases, e.g., population
substructure, genotyping errors, there will be a
deviation from the uniform distribution

QQ plots offers an intuitive way to visually detect
biases

Observed p-values are ordered from largest to
smallest and their -log;o(p) values are plotted on the y
axis and the expected -log;o(p) values under the null
(uniform distribution) on the x axis

51
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QQ Plot of Exome Wide P Values
UK Biobank 200K

Ovsenved ~koau(p)

\

Expecied -lomn(p) g wale)
Problem hearing
with background noise

Cases N=65,660
Controls N= 96,601

Hearing aid users

Case N=6,436
Controls N= 96,601

QQ Plots show extreme inflation 1=1.32

Otsorved (-og P)

Observed (HogP)

—— T
ected (g P
Expocted (oo P) me=eltg

Bulik-Sullivan et al. 2015
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Genomic Inflation Factor to Evaluate Inflation of

Phenotype | Covariate Wean Chi-Square GIF (A)
the Test Statistic B 120820 116802
e Age 124119 1.18025
* Genomic Inflation Factor (GIF): ratio of the median of & 5 100471 Fi
s . . 8P Age-EV2 1.0881 1
the test statistics to expected median and is usually s oeeva 08385 X
represented as A BP. Age-EV10 1.09582 1.00402
. - 8P 1.14931 T.08921
— No inflation of the test statistic A=1 = Age 115138 108113
— Inflation A>1 BPI Age-EV1 1.05079 101148
_ . 8P ' 1.0428 1
Deflation A<1 2 ‘AgeEve 104204 y
* Can be observed when a study is underpowered BPI Age-EV10 1.05421 1.01724
. . s BRI 117283 1.25664
¢ Problematic to examine the mean of the test statistic Pl oo L i7ses 1 26996
— Can be large if many variants are associated BPIl Age-EV1 1.00874 1.15085
o Particularly if they have very small p-values EFD Age-EV2 109904 116425
BPI Age-EVA 1.00502 1.14500
* Should not be used BRIl Age-EV10 1.10046 11418
BPI SexAge-EV1 1.05958 1.08424
BB 1.05817 108328
BPI SexAge-EVI0 1.06338 1.05581
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R « Bulik-Sullivan et al. (2015) performed simulation studies using LDSC regression to
Evaluating Reason for Inflated 4 evaluate polygenicity
Panels a & ¢ data were simulated Panels b &d data were simulated
. . with population substructure. The with polygenicity with 0.1% of
e LD score regression (LDSC) can be used to determined 2=1 3pzop(a) & LDSC intercept = varia%?sylgavmgtyaqausa\ effect The
if the observed A is inflated due to 1.30(0) #7132 and LDSC intercept = 1.006
— Problems in the data b
. . Panelsc&d is
* Population substructure/admlxture shown the LDSC.
 Batch effects/genotyping errors regression line
— Polygenicity
* Many associated loci each with a very small effect size
e LDSC is performed and the intercept is examined
— If intercept is >1 than inflation is due to population Phaneis &&Lgsg Cis
shown
substructure, etc. regression line "
— If intercept is ~1 than A<1 is due to polygenicity !a
% 1 %0 E0 * Bommon
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Post Analysis QC Post Analysis QC
* Most variants are in LD with neighboring SNPs
* Observe in Manhattan plots individual associated variants with . . . )
no surrounding associated variants * Genotyping error can cause a variant site not to be in
LD with any of its neighbors
/ ¢ Genotyping error can also cause a spurious associations
,
" " " .. .
2 ¢ Alone associated variant site can be due to genotyping
© ' error
234 s 7esomoms omoa
Chromosome
59 60
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Post Analysis QC

¢ Imputation can be used to determine if for the variant
site there is genotype error

Variant site is imputed
— Check how accurate variant is impute
* R? or INFO score
~ If imputation accuracy is high e.g. R>0.8
— Check the correlation between the imputed variant and
sequence or genotype array data
R
— If r2is low there is genotyping error

— The variant site should be removed

Example Project Description

1,667 Samples
Seven cohorts

Two sequencing centers
— Center 1
* Two capture arrays
— NimbleGen V2Refseq 2010 (CA1): 1082
» Batchland3
— NimbleGen bigexome 2011 (CA2): 234
» Batch2
— Center 2
* One capture array
— Agilent SureSelect
» Batcha

Four batches

No intentional duplicate samples

61
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Example Project Description

Intersection of the three capture arrays used
— NimbleGen V2Refseq 2010
« Batchland3
— NimbleGen bigexome 2011
« Batch2
— Agilent Sure Select
* Batch4
Sequencing machine
— lllumina HiSeq
Sequence alignment
- BWA
Multi-sample variant calling
— GATK

MDS First 2 Components Before QC*

ing_all variant MDS2

ing_all variant_WDS1

*After VQSR
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Mean GP (genotype) by Batch

sarsbes

vaios

Mean GQ by Batch

sarsbes
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Genotypes Removed by DP (genotype) Cut-off by Batch Genotypes Removed by GQ Cut-offs by Batch
40%- 20%
30%- o5
g g :
85 Batch g Batch
& Batcht & Batoht
s 20%-  Batcn2 T o R—
g8 = Batchd g = Batcha|
£ 0 atene 2 e
5 5
S S
10%- 5%
67 68
Genotypes Removed by DP (genotype) Cut-off by Batch Genotypes Removed by GQ Cut-offs by Batch
(First removing genotypes with GQ.< 20) (First removing genotypes with a DP<8)
15%
40%
30% ]
3 310% Batch
Sas% Batch H Batcht
s Batcht < B e
e 20 - Bache 8 - Batcha
g = Batcho £ Batche
s Batche 2 5
é o}
5%
0%
i . . ) 0 5 10 15 2 25 30 o s
2345678910 15 20 0 Genotype Quality Cutoff
Genotype Depth Cutoff
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Missing Rate Criteria & Sites Removed Ti/Tv Ratios during QC Process
Known Novel Al
Variant sites Variant sites
'm:;’ien"g" 'er;"}g;’ier“’g" Before VQSR 295005 1.18+0.29 2.86+0.07

>10% of their
genotypes

>5% of their
genotypes

Percent of genotype data removed

Before QC* 2.5% 3.9%
After QC 12.9% 18.3%

Before additional QC 3.12£0.03 201£032 3.11+0.03

Genotype QC DP<8, GQ<20 3.18+0.04 2.10%0.32 3.16+0.03

Remove sites missing >10% genotypes ~ 3.39£0.04 2.42+052 3.39£0.04

Remove batch specific novel sites.22

N=17,835 3.39£004 241%053 3.39:004
Variant sites missing >10% of their data were removed - N
¢ ) E:Z‘z:i sites deviating from HWE RS5X10° 541, 004 2394054 3402 0.04
“After VQSR
71
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Ti/Tv Ratios by Individual Before and After QC

- =

Ti/Tv Ratios

E=

A Known g Al

Before OC. After QC

MDS First 2 Components After QC

>

8 os-

£

2 baten
H B
3 2
g oz g
g n

dos obo obs. ol ols 00

king_VLQC_BMR10_MDS1
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Sequence Data QC Convenience Controls
. . e Can reduce the cost of a study
¢ Batch effects can sometimes be removed with
additional QC * Genotype data
¢ Extreme outliers should be removed * Typelerror can be increased
. . B — Ascertainment from different population
« Additionally, MDS\PCA components can be included in _ Differential genotyping error pop
the analysis to control for population « Evenif performed at the same facility
substructure\admixture and batch effects .
* Proper QC can reduce or remove biases
— Unless correlated with the outcome (phenotype)
— The MDS or PCA components should be recalculated after QC
only including those samples included in the analysis
¢ Batch (dummy coding) may be included as a covariate
in the analysis
— Unless correlated with the outcome (phenotype)
75 76
Genotype Array Data
Convenience Controls—Sequence Data Genotype Data QC - Population Based Studies
* Obtain BAM files and recall cases and control together . o L
— Canstill have differential errors between cases and controls * Initially remove DNA samples from individuals who are missing
o X
— Check variant frequency by variant types in cases and control >10% or their genotype data
« Synonymous variants should have the same frequencies * For variant sites with a minor allele frequency (MAF)>0.05
* Would not expect large differences in numbers of variants between cases and — Remove variants sites missing >5% of their genotype data
 contels ) ; - « For variant sites with a MAF<5%
s For sllngebvar.\ants ;alm compare difference in frequencies with _ Remove variant sites missing > 1% of their genotype data
gnomAD butls problematic ) ) « The genotypes for variant sites with missing data may have
— Differences in frequencies can be due to differences in ancestry and/or .
sequencing errors higher genotype error rates
— Cannot adjust for confounders
« e.g, sex, population substructure/admixture
* Don’t perform an aggregate test using frequency information
obtained from databases, e.g., gnomAD, TOPMed Bravo
77 78




Order of Data Cleaning-Genotype Array Data
Remove samples missing >10% genotype data
Remove SNPs with missing genotype data
— If minor allele frequency >5%
« Remove markers with >5% missing genotypes
— If minor allele frequency <5%
« Remove markers with >1% missing genotypes
Remove samples missing >3% genotype calls
Check genetic sex of individuals based on X-chromosome
markers & Y chromosome marker data (if available)
— Remove individual whose reported gender/sex is inconsistent with
genetic data
« Could be due to a sample mix-up
Check for cryptic duplicates and related individuals

— Used “trimmed data set of markers which are not in LD
© g r2<0.1

— Remove duplicate samples

Order of Data Cleaning-Genotype Array

Perform PCA or MDS to check for outliers

— Use trimmed data set of markers which are not in LD
. eg,r2<0.1

— First with unrelated individuals and then project related
individuals on the components

— Remove outliers from data
« e.g., Mahalanobis distance

Check for deviations from HWE
— Separately in cases and controls
— Only unrelated individuals

— If more than one ancestry group
* Separately for each ancestry group
— As determined via PCA or MDS

79

Order of Data Cleaning-Genotype Array

Examine QQ plots

— e.g., not controlling adequately for population admixture
« Inflated test statistics Deflated p-values

Examine Manhattan to detect associated variants
which are not in LD with other variants

— Genotyping errors causing spurious associations

81
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Complex Trait Association Analysis of
Rare Variants Obtained from
Sequence Data

Suzanne M. Leal, Ph.D.
Sergievsky Family Professor of Neurological Sciences
Director of the Center for Statistical Genetics
Columbia University

Complex Diseases (Traits)

Top 10 leading causes of
death in the United States

Genetic and environmental contribution to
complex disorders

All common variation explains 60% of
height heritability (h?)

smi3@Columbia.edu JT——
©2024 Suzanne M. Leal
1 2
Heritability Height Heritability
* Broad-sense heritability * The variance of human height is about ~25 cm?
— Considers all genetic factors — Adjusted for sex
« Phenotype = Genetics + Environmental Noise « Total Variation Total Variation
« Var (Y) = Var (G) + Var (E) — —
— H2=Var (G)/Var (Y) « ~20 cm? due to genetics
« ~5cm?due to other factors (noise)
* Narrow-sense heritability Gonet Nois
— Considers only additive contributions enetics ose
« Phenotype = Additive Genetics + Environmental Noise _‘_
~Y=A+E R R
* Var (¥) = Var (A) + Var (€) « The heritability of height is ~20/~25=~80%
— h2=Var (A)/Var (Y) .
* The heritability of height has been estimated using a variety of
study types, e.g. twin, sibpairs
* Karolinska
3 4
Heritability for Common Traits Heritability for Several Traits
Human Height ‘Schizophrenla Obesity
Human height heritability is ~80% S oo varome) >
* Strongly associated common
variation explain 21—29%
* Those that statistically signficant ot Ganstcs

Crohn's Disease Bipolar Disorder Epilepsy

Area in blue is the so called missing heritability




Heritability for Several Traits

Human Height Schizophrenia Obesity
com
K . .
Genetion
Crohn's Disease Bipolar Disorder Epilepsy

Allelic Architecture

Effect size

very hard to identify
by genetic means.

et

0.001

0.005 0.05
[Rare] ™ [Eoiiieaeny]

Allele frequency

25
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. . Studying Complex Traits — Common Variant
Complex Disease — Common Variant L.
Associations Associations
* Disease susceptibility is conferred by variants which are * Hundreds of thousands of Single nucleotide polymorphism
common within populations (SNPs) genotyped and analyzed
— Variants are old and widespread — Indirect mapping
« Markers usually had a minor allele frequency (MAF) > 0.05
* These variants have modest phenotypic effect * Usually not pathogenic - tag SNPs
« In linkage with disease ariant
* This model is supported by many replicated examples
— Age Related Macular Degeneration (Klein et al. 2005)
« Complement factor H (CFH) gene
9 10
Complex Trait — Common Variant Associations Complex Disease — Rare Variant Associations
* Complex traits are the result of multiple rare variants
« Although — Although first thought to large effects, there effect sizes are usually small
highly * Although these variants are rare, e.g., MAF<0.005
3 ﬁ successful in — Collectively they may be quite common
identifying « Direct tests of this hypothesis where first reported >15 years ago
thousands 9f — Dallas Heart Study
- b complex trait « Small sample ~1,200 individuals
loci - Multi-ancestry
~ Used “extreme” sampling
+ Usually « Plasma low density lipoprotein levels (Cohen et al. 2004)
% . - NP1
pathogenic
= susceptibility
";m yaria_n_t(s) not
) identified
www.genome.gov/GWAstudies
www.ebi.ac.uk/fgpt/gwas/
11 12




Rationale for Rare Variant Aggregate
Association Tests

Testing individual variants with low effect sizes and minor allele
frequencies (MAFs)

— Underpowered to detect associations
Testing variants in aggregate increases MAFs

— Improving the power to detect associations

.

.

Gene 1 Gene 2 Gene 3

Caveats - Aggregate Rare Variant Association Tests

¢ Misclassification of variants can reduce power
= Inclusion of non-causal variants
— Exclusion of causal variants

 Analysis can be performed using region boundaries for
— Genes
— Genes within pathways
— Regulatory regions
* As determined for example by
— FANTOMS CAGE profiles to identify promoter regions (Noguchi et al. 2017)
— STAAR pipeline that combines multiple in silico annotations (Li et al. 2020)

Unlikely a sliding window approach will work

* Size of window unknown and will differ across the genome
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Analysis of Rare Variants

For biobank sized datasets higher frequency rare variants,
e.g., 0.5% can be analyzed individually

— Using same same methods implemented for common
variants

SAMPLE SIZE_HAFO001 $MAFO005 @ MAF0.01 SNAFO05
I

a=5x 108
Disease prevalence 5%
1-8 =0.80

“Note: a more stringent significance
criterion may be necessary for genome-
wide sequence data. Due to a larger
number of effective tests compared to
analysis of common variant GWAS
panels

A Few Rare Variant Association Tests

* Combined Multivariate Collapsing (CMC)
— Liand Leal AJHG 2008
Burden of Rare Variants (BRV)
— Auer, Wang, Leal Genet Epidemiol 2013
Weighted Sum Statistic (WSS)
— Madsen and Browning PloS Genet 2009
Kernel based adaptive cluster (KBAC)
— Liuand Leal PloS Genet 2010
Variable Threshold (VT)
— Price et al. AIHG 2010
Sequence Kernel Association Test (SKAT)
— Wuetal. AHG 2011
SKAT-0
— Leeetal. AIHG 2012

Fixed Effect
Tests

Random Effect
Test

Optimal test

15

16

Types of Aggregate Analyses
Frequency cut offs used to determine which variants to include in
the analysis

— Rare Variants (e.g., MAF<0.05% frequency)
— Rare and low (MAF=0.05-5%) frequency variants

Maximization approaches

Tests developed to detection associations when variants effects
are bidirectional
e.g., protective and detrimental

Incorporate weights based upon annotation
— Frequency

* eg. gnomAD
— Functionality

« CADD c-scores

Methods to Detect Rare Variant Associations
Using Variant Frequency Cut-offs

Combined multivariate & collapsing (CMC)
— Li & Leal, AJHG 2008
Collapsing scheme which can be used in the regression
framework
— Can use various criteria to determine which variants to collapse into
subgroups
* Variant frequency

+ Predicted functionality

17




cmC

* Define covariate Xj for individual j as

X = 1 if rare variants present

o otherwise
* Compute Fisher exact test for 2x2 table

('Number of cases for |

which one or more rare Nobor of canes )
Vo e ohenrec Number of cases
e.g., nonsynonymous. X=1 [X=0 wnhout arare

( variants freq. <1% ] variants

hS | cases pu —

controls
< QN

Number of controls Number of
for which one or more controls without
rare variants are a rare variants

observed
Can also use same coding in a regression framework

cmC

Example of coding used in regression framework:

- B'”E’de‘"gx Q if rare variants present
0

X otherwise

— Gene region with S variant sites

- Individual ___Coding
. I 4 4
1 1
11 . 2 1
1 1

- [ 3 0

Rare Variant Sites

Gr

een bars: Major allele is observed in the study subject

Red bars: Minor allele has been observed
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Methods to Detect Rare Variant Associations
Using Variant Frequency Cut-offs

* Gene-or Region-based Analysis of Variants of Intermediate and
Low frequency (GRANVIL)
— Aggregate number of rare variants used as regressors in a linear
regression model
— Can be extended to case-control studies
« Morris & Zeggini 2010 Genet. Epidemiol
— Test also referred to as MZ

Individual 1: Coded 2

GRANVIL

Example of coding used in regression framework
— Gene region with 5 variant sites — data available on all sites

Individual 1
I 1 ! Coded 2/5 (0.4)
| (| 1
I I‘""““d“a'lz 1 Coded 2/5 (0.4) Note same
coding for heterozygous and
1 I homozygous genotypes

Missing data for three of the five variant sites
Individual 3
I
| Coded 1/2 (0.5)

(Auer et al. 2013 Genet Epidemiol)

Individual 2: Coded 3
Individual 3: Coded 1

21 22

Methods to Detect Rare Variant Associations
Weighted Approaches

* Group-wise association test for rare variants using the
Weighted Sum Statistic (WSS)
— Variants are weighted inversely by their frequency in controls (rare
variants are up-weighted)
« Madsen & Browning, PLoS Genet 2009
* Kernel based adaptive cluster (KBAC)

— Adaptive weighting based on multilocus genotype
* Liu & Leal, PLoS Genet 2010

Methods to Detect Rare Variant Associations
Maximization Approaches

e Variable Threshold (VT) method
— Uses variable allele frequency thresholds and maximizes the test statistic
— Can also incorporate weighting based on functional information
« Price et al. AJHG 2010
* RareCover
— Maximizes the test statistic over all variants with a region using a greedy
heuristic algorithm
« Bhatia et al. 2010 PLoS Computational Biology

23

27

24




Methods to Detect Associations with Protective
& Detrimental Variants within a Region

* C-alpha
— Detects variants counts in cases and controls that deviate from the
expected binomial distribution
« For qualitative traits only
~ Neale etal. 2011 PLoS Genet

* Sequence Kernel Association Test (SKAT)
« Variance components score test performed in a regression framework
~ Canalso incorporate weighting
« Wuetal. 2011 AIHG

Optimal Test

* SKAT-O
— Maximizes power by adaptively using the data to combine a burden test
and the sequence kernel association tests
* Lee etal. 2012 AIHG

25 26
Significance Level for Rare Variant Determine MAF Cut-offs for Aggregate Rare
Association Tests Variant Association Tests
* For exome data where individual genes are analyzed usually a * MAF cut-offs are frequently used to determine which variants
Bonferroni correction for the number of genes tested is used to analyze in aggregate rare variant association tests
— There is very little to no linkage disequilibrium between genes « MAF from controls should not be used
— Increases in type | error rates
* Bonferroni correction used * Determine variant frequency cut-offs from databases
- eg., ps2.5x 10° (Correction for testing 20,000 genes) — Using population frequencies for those understudy
— gnomAD
* dwdlenowadbroadintinic e/
27 28
Problem of Missing Genotypes for Aggregate Dosages
Rare Variant Association Tests
* Same frequency of missing variant calls in cases and controls * Genotypes are no longer assigned 0 (1/1), 1 (1/2) or 2 (2/2)
— Decrease in power — Due to uncertainty
* More variant calls missing for either cases or controls * Each genotype is assigned a probability
— Increase in Type | error ~ Probabilities sumto 1
— Decrease in power * For example
* Remove variant sites which are missing genotypes, e.g., >10% — Probability of 0(1/1) genotype is 0.98 and 1 (1/2) genotype is 0.015
* Canimpute missing genotypes using observed allele frequencies * The dosage can be estimated for this example as follows
— For the entire sample 0x0.98=0
« Not based on case or :ur‘|tml status 1%0.015= 0015
* Analyze imputed data using dosages 2x0005=001
Dosage = 0.025
* Instead of using the most likely genotype the dosage is used
29 30



http://gnomad.broadinstitute.org/

Results
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Rare Variant Aggregate Methods
Ideally should be performed in a regression framework to adjust
for covariates
— Logistic
— Linear regression

Almost all rare variant aggregate methods have been extended
to be implemented within a regression framework

Some have also been implemented in a linear mixed model
(LMM)/generalized LMM (GLMM)
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Analyzing Quantitative Variants

* Most rare variant aggregate analysis methods can be performed
on quantitative traits

* If phenotype data includes outliers or deviates from normality
— Canincrease type | errors

Froquarcy

2 8 &8 8 8

90 1o Smoit Sunvival (%)

Analyzing Quantitative Variants

For data that deviates from normality

— Quantile-quantile normalization

For data that includes outliers

— Winsorize

Don’t winsorize and then normalize

Instead of analyzing quantitative trait values

— Residual can be generated

* Adjusting for confounders
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Family-based Methods for Rare Variant
Aggregate Association Analysis

Binary Traits

Variance-Component Tests

Quantitative Traits

Linear Mixed Model (LMM) & generalized LMM (GLMM)

Analysis of Related & Unrelated Individuals
LMM is an extension of the linear model to allow for both
fixed & random effects and also allows for non-
independence of samples

— Early implementations calculated the kinship matrix ® on the
basis of known relationships
— Amin et al. (2007) proposed to estimate kinships based on
genome-wide variant data
* The generalized relationship matrix (GRM) can be estimated for all
individuals using for example identical-by-descent (IBD) sharing

Extended to binary (case-control) traits - GLMM
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LMM and GLMM:
Analysis of Related & Unrelated Individuals

* Can be applied to analyze families, cryptically related, & unrelated
individuals

- e.g, UK Biobank
« 500K study subjects of which 30.3% arg< 3rd degree relatives & 4.5% sib-pairs

More recent implementation for large scale data using a variety of
methods

— BOLT-LMM (Loh et al. 2015)
— FastGWA (Jiang et al. 2019)
— SAIGE (Zhao et al. 2015)*

*Can be used to analyze data where case to control ratio is very

unbalanced
— e.g., 20 cases for every control

.

* REGENIE (Mbatchou et al. 2020) *
* SMMAT (Chen et al. 2019)**

.

* **Cannot be used for UK Biobank Scale data

LMM and GLMM:
Analysis of Related & Unrelated Individuals

To allow for use with biobank sized datasets

REGENIE does not use the GRM

— It uses whole genome regression, i.e., the ridge regression

* In essence, it includes all the SNVs as covariates in the null model
~ Performed by blocks to avoid having to load the entire genome in memory
» Using different effect size differences per block

This large-scale approximation may not control type |
error for individuals that are closely related

— e.g., when only families are being analyzed

— Can use for example SMMAT
* Which uses the GRM
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. LMM and GLMM: - Rare Variant Association Analysis - Confounders
Analysis of Related & Unrelated Individuals
* Control for covariates in the analysis which are potential
confounders
¢ A few programs which can perform rare variant aggregate - Age
analysis = Sex
— Batch
— REGENIE - Burden test, SKAT, & SKAT-O
urden test, ’ — Body Mass Index (BMI)
— SMMAT - Burden, SKAT, & SKAT-O _ Smoking pack years
— rvtests (Zhan 2020) implements BOLT-LMM to perform burden — Population substructure
association analysis
39 40

[Confounder -Population Substructure and Admixture

Population Substructure and Admixture

¢ If proportion of cases and controls sampled from each
population is different
— Can occur due to
« Disease frequency is different between populations
* Sloppy sampling
¢ Population substructure\admixture can cause
detection of differences in variant frequencies within a
gene which is due to sampling and not disease status

— False positive findings can be increased

41
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Example River People

Population Substructure and Admixture

* Currently PCA or MDS are use N
to control for population T
substructure\admixture

— Controls on the global level
— May not be sufficient

« For admixed populations
* Rare variation
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Rare Variant Aggregate Association Analysis

e When analyzing different populations, e.g.,
— Africans
— Europeans

e When analyzing data from different source
— Analyze each group separately

¢ Meta-analysis can be used to combine the results from
each group

Rare Variant Aggregate Methods

* Best to obtain principal components to include in the
regression model (including LMM and GLMM)
— using variants which are not in LD e.g., r2<0.1 (pruned)
— covering a wide range of the allelic frequency spectrum e.g., >0.1%
— Evaluate how many components need to be included

« Don'tinclude a fix number of components
~ eg. 5or 10 components

e Success of PCA\MDS in "

MR .
controlling for population S -

substructure\admixture can be £

evaluated through lambda and g i

examining Quantile-Quantile S
(QQ)plots T

)
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Age-related Hearing Loss (ARHL)
(aka Presbycusis)
* ARHL can impact quality of life and daily functioning
Part Il * ARHL is one of the most common adult conditions
Example of a Rare Variant Association - Inthe USA o
* ARHL affects 50% of individuals >75 years of age
Study o Itis estimated that 30-40 million will be affected with significant
ARHL by 2030
Pure Tone Audiogram on
Analysis of UK Biobank Exome Data to " = -
Study the Etiology of Late-onset <= . =
Hearing Loss \2\
N s\c,«:u
i N
i
47
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Goals of the Study

¢ Using data from the UK Biobank to detect
associations between self-reported measures of

ARHL and genetic variants

— H-aid self-reported hearing aid use (f.3393: “Do you use a
hearing aid most of the time?”)

— H-diff self-reported hearing difficulty (f.2247: “Do you have any
difficulty with your hearing?”)

— H-noise self-reported hearing difficulty with background noise
(f.2257: “Do you find it difficult to follow a conversation if there
is background noise e.g., TV, radio, children playing)?

— H-both individuals with both H-diff and H-noise

e With an emphasis of understanding the role that
rare variation plays in ARHL
— Current analysis - exome sequence data

UK Biobank

* 500,000 individuals randomly sampled
- Aged 40-69 at time of enroliment
« To be followed for at least 20 years
« Predominantly white Europeans
~ Also includes South Asians and individuals of African Ancestry and smaller number of
individuals of a few ather ancestries

* Extensive phenotype data
- Qualitative and quantitative traits
« 1CD-10 and ICD-9 codes
« Self reports
« Cognitive test
« Brain MRIs
« NMR-metabolomics data
* Genetic Data
- Genotype and imputed data
- Exome sequence data
- Whole genome sequence data
- Telomere length data

[*Data showcase can be used to examine phenotypes and sample sizes available
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[ . Principal Components Analysis and
PUCE g pVCF Quality Control P 'p . v
= Exclusion of Outliers
I Exome Data P1us G2 exomes Ne183016 PLus PC2 cromes t-168.488
]
) [ eronves |
Autosomes Left normalization Muli-allelc spiitting
Gonoyporvel e doth O % T =T o=
R SRR g o e rer e
S
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Exclusion Criteria
Obtained from ICD10, ICD9, & Self Report

Deafness

Early-onset hearing impairment
Otosclerosis

Meniere’s

Labyrinthitis

Disorders of acoustic nerve
Bell’s palsy

History of chronic suppurative and nonsuppurative otitis
media

Meningitis
Encephalitis, myelitis, and encephalomyelitis
e Etc.

Defining Cases and Controls

¢ Based on answers obtained from a touch screen
* Cases - self-reported hearing difficulty
— f.2247: “Do you have any difficulty with your
hearing?”

e Controls - did not have any self-reported HL or
1D10/9 HL codes
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Hearing difficulty/problems -Data field 2247 Repeat measures*
¢ Individuals with inconsistent answers removed
569,977* items of data are available, covering 498,704 participant: Visit1 Visit 2 Visit3 Visit4
Inconsistent
SludysubjeclA No Hearing
Hearing Remove
Yes [146,020]
No [399,713] ) No Hearing Consistent
. Study subject B [RRRIIA (Case)
1am completely deaf [144]
study subiect C (DI PRR] Cg’(‘;"sﬁ"'
Do not know [23,616]] Problems Problems | Problem: (Control)
Prefer not to answer [598]
80 160 240 320 400
(thousands)
“Majority of study subjects currently have data from only one visit
*Due to repeat visits
55 56
Analysis of Exome Sequence Data UK Biobank Discovery and Replication
for Age-related hearing loss Samples
\\ Ebu:ﬁ: — —~ Exome uq::-:::n;}(mmz)
——— forr g
O ioe e
€ PO =
[ gt = N=128,988 r 9 N=40,464
T =) =5
L ! !
= R | = | e
i o o
- e TR e
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Analysis of Exome Data Analysis of Exome Data
* Analysis performed using generalized linear mixed
models (GLMM) (REGENIE) o Analysis limited to individuals of White European
— To control for inclusion of related individuals Ancestry
. :l:)r::rsw( Biobank data 30.3% of participants arg.< 3rd degree relatives & 4.5% « Sex, age, and two PCAs included as covariates
— Genotype array data (~800K) were used for the ridge regression - Age
« Data pruned to remove variants with a r>0.1 « cases first report of hearing difficulty

~ Using exome data for the ridge regression led to an an inflated lambda value

* Controls age at last visit
QQPlot using exome data for ridge regression  QQ Plot using genotype data for ridge regression

— The PCAs where recalculated for only individuals included in
the analysis

* Using linkage disequilibrium (LD) pruned genotypes array data (r2<0.1)

——

gm0, (5)

[ —
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Analysis of Exome data - Single Variant

¢ Variants with four or more alternative alleles
observed in the sample analyzed
— Avery low MAF was used since it was hypothesized some
of the variants may have a large effect sizes

Significance Levels-Single Variant Analysis
e Discovery sample
— A genome-wide significance level (single variant
analysis) was used to reject the null hypothesis of
no association
* pg5.0x10%

* Replication sample

— Permutation was used to obtain empirical p-values

* Adjusting for the phenotypes and variants brought to
replication

- p50.05
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Hearing Difficulty - Data Field 2247
Single Variant Analysis

Manhattan Plot QQ Plot

2 =1.044

~logio(p)

[Sp—

1234 5 7809 m 1B WA

Chromosome

Genome-wide significance level 5 x 10% (red line)

Cases N=45,502
Controls N= 96,601

Analysis of the Discovery Sample & Replication
Single Variant Analysis

Discovery sample single-variant associations analysis for age-related hearing loss traits

I L ) v
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wmoa o
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© o s s om comaes wmes
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Rare Variant Aggregate Analysis

Genes with at least two variants were analyzed,
e.g., pLoF variants

Max coding was used

e Two masks were used

— Mask 1 — pLoF variants

— Mask 2 — pLoF and missense variants

Minor allele frequency cut-off of <0.01 was used

— The frequencies for each variant site were obtained
from gnomAD (non-Finnish Europeans)

REGENIE Rare Variant Aggregate Analysis

* Three different codes can be used
* Max
* Sum
* Comphet
* This term is not correct because the phase is unknown
* Variants may be on the same haplotype

Note: At the time of the study REGENIE could only perform fixed effect tests it
now implements SKAT and SKAT-O

Single variant sites max sum  comphet
00000000000000 — 0 0 0
00000100010000 — 1 2 2
00201011010100 — 2 7 2

wL.github I /
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https://rgcgithub.github.io/regenie/options/

Selection of Variants to Include in Rare
Variant Aggregate Association Tests

Annotation File Mask File AAF file

PCSK9 LoF

4 Maskl Lof
PCSK9 missense

Mask2 LoF,missense

1:55039839:T:C 1.53e-05
1:55039842:G:A 2.19e-06

1:55039839:T:C PCSK9 CADD30

1:55039842:G:A PCSK9 CADD20 Mask2 CADD score > 20

REGENIE will use information from the annotation and alternative allele
frequency (AAF) files to build the Masks (variants to be included in the
association testing)

4 MaskL CADD score>30 4 1i55039839:T:C 1.53e-05
1:55039842:G:A 2.19e-06

Rare Variant Aggregate Analysis

Exome sample was split
— Second release of 150K exome were used as the discovery sample.
— First release of 50K exome were used as the replication sample
Entire exome sample (200K) was also analyzed*

Discovery sample significance level
— Rg2.5x10¢
« 0.05/20.000 Bonferroni correction for testing 20,000 genes

Replication sample significant level
- pg0.05
— Empirical p-values generated

« Permutation used to adjust for the number of phenotypes and genes brought
to replication (pLoF and pLOF & missense)

*No replication sample available for these findings
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Hearing Difficulty - Data Field 2247

pLOF Variants

wod=108 °
Genes N=16,821

[Eas—
pLoF and missense variants
M Genes N=18,010

Cases N=45,502
Controls N= 96,601

Exome-wide significance level

2.5 x 10 (blue line)

Rare Variant Aggregate Analysis — Discovery and
Replication Samples

Discovery Sample Rare-variant aggregate analysis with age-related hearing traits
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missense + pLoF variants with a MAF<0.01 in gnomAD v2.1.1 were analyzed inthe discovery and meg:

missense & plof] and treits brought to repiication] are shown in red

Genes assoclated to an exome-wide Sgnificance level (p<2.5 x 10%) with hearing aid (11-aid), hearing difficulty (H-F), hearing
diffculty with background noise (H-noise), and the combined trait (Hboth). Using rare-variant aggregate association tests pLoF or

a samples of white European
indlviduals from the UK Biobank The p-values for replicated assoclations [empirical p-values <0.05 adjusting for genes (pLoF and
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Manhattan Plot Rare Variant Aggregate Analysis —
Discovery Sample

pLoF & missense variants

pLOF variants

Expression of Pdcd6 in the Mouse Inner Ear

cell_type

H-aid H-aid 3
; - .. ¥ 8 PR
5 - g b]
gl H
Hediff .
. 1
NET
H-noise erens H-noise xExy
H-both e H-both ExxY
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Overview

Replicated some previously reported ARHL genes
— Some which had not been previously replicated
« e.g, BAIAP2L2, CRIP3, KLHDC7B, MASTZ, and SLC22A7

Identified and replicated a new HL gene, PDCD6 which has not been

previously reported

— Inner ear expression in humans and mice supports the involvement of gene in
HL etiology

— PDCD6 is a cytoplasmic Ca2+ binding protein with an important role in
apoptotic cell death

Rare-variant aggregate analysis demonstrated the important contribution

of Mendelian HL genes, i.e. MYO6, TECTA, and EYA4 the genetics of ARHL

Rare variants for ARHL tend to have larger effect sizes than those for

common variants

— Rare variants should play an important role in risk prediction by increasing
accuracy

For additional information see

— Cornejo-Sanchez et al. (2023) Eur J Hum Genet PMID: 36788145

.

.

.

.

Overview/Future Direction

The entire exome sequence data set of White Europeans has
been analyzed

— Reveling many additional known Mendelian nonsyndromic HL genes
Mendelian genes (although not necessarily the same variants)
play an important role in ARHL

Performing Mendelian Randomization and testing for pleiotropy
(vertical & horizontal) to evaluate associations between ARHL
and comorbidities

— e.g., dementia, depression

Analysis of UK Biobank and All of Us WGS data including
structural variants and performing rare variant aggregate tests
outside of the coding regions
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More advanced topics:
Linear Mixed Models and GxG or GXE interactions
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Linear Mixed Models (LMMs)

= Linear Mixed Models have been used for many yearsin the plant and
animal breeding communities
In the mid 1990s they became popular in the human genetics field,
mostly for performing linkage analysis and estimating heritability
= Using family (pedigree) data i.e. related individuals
In recent years they have become popular in the genetic association
studies field for:
= Testing for association while accounting for varying degrees of

relatedness
u Close family relationships
= Distant and

Linear Mixed Models (LMMs)

@ Linear Mixed Models have been used for many yearsin the plant and
animal breeding communities
In the mid 1990s they became popular in the human genetics field,
mostly for performing linkage analysis and estimating heritability
= Using family (pedigree) data i.e. related individuals
In recent years they have become popular in the genetic association
studies field for:
= Testing for association while accounting for varying degrees of

relatedness
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= Estimating the heritability accounted for various partitions of SNPs:
= All SNPs typed on a GWAS panel
= All typed SNPs and others in LD with them
= Partitions of SNPs in various functional categories

= Investigating genetic correlations between different traits

Heather Cordell (Newcastle)
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Population stratification and relatedness

Genes mirror geography within Europe

J Novembre et al. (2008) N 101, doi-10.1038/nature07331

Heather Cordell (Newcastle)

Linear Mixed Models (

Ms)

® A linear mixed model is a statistical model in which the dependent
variable is a linear function of both fixed and random independent
variables
= Known respectively asfixed and random effects
= Fixed effects are considered ‘fixed’ at their measured values
= Random effects are considered to be sampled from adistribution

a Recallthe usual linear regression model
y=mx+c or y= Bo+ Bix
@ This model may also be written

yi= Bo+ Bixi+ Ei

u yi refers to the trait value of person i
o Xirefers to the measured value of person i 's predictor variable

» Erefers to the displacement from the regression line
a ie. the discrepency between the observed and the predicted y value

Linear Mixed Models (LMMs)

@ Inlinear regression wehave yi= Bo+ Bixi+ Ei
u Here Bo and B1 arefixed effects while Eis arandomerror
= X is the ‘loading’ of the fixed effect that someone has (based on their
genotype)
& In matrix notation we can write this model:
[P= = PR = Og0
oo o' ed ' oBo
B A P -
B HB Bs B H
yn 1 xn En

mory= Xg+€
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Linear Mixed Models (LMMs)

@ A linear mixed model is a statistical model in which the dependent
variable is a linear function of both fixed and random independent
variables

= Known respectively asfixed and random effects
= Fixed effects are considered ‘fixed’ at their measured values
= Random effects are considered to be sampled from adistribution
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Linear Mixed Models (LMMs)

m Inlinear regressionwehave yi= Bo+ Bixi+ Ei
m Here 8o and B+ arefixed effects while Eis arandomerror
= X is the ‘loading’ of the fixed effect that someone has (based on their
genotype)

= In matrix notation we can write this model:

0,0 Oy ,0 Og0
oo o ed ' oBo
. = . . + -
B-BB8 Bs BB
yn 1 xn En
mory= X+ €

a ALMM takesthe formy= XB + Zu + €
= Where u corresponds to a vector of random effects
= with loadings specified inZ

Heather Cordell (Newt
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Linear Mixed Models (LMMs

w E.g. suppose 2 fixed effects 81and B2, and 3 random effects (plus n
random errors)

m Theny= XB + Zu + €comesponds to:

[m] o o m] [m] [m]
4 iy O Han 22 2 o o &
aoy:o oX X2 o s 'Oz 22 zs g v _ OBk
.o g - - e A
B-BHH ~He B -~ " H; B H
yn Xm Xn2 Znt Zm2 Zn3 En

w Oryi= BiXit + BaXiz + UrZin + Wz + szis + B

Heather Cordell (Newcastle)
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LMMs in genetics

= In genetics we generally work with two equivalent forms of LMM
@ One is: y= XB+ Zu+ €

= The random effect u coresponds to a scaled additive effect of
causal variant (locus) /
= We assume there are many (m) such causal variants all across the
genome
= Considering it to be a random effect (within a population of interest)
could be thought of astaking a Bayesian perspective

= Z is astandardized genotype matrix i.e. zitakes value

=2l d-20  20-fa
26(1 - 1) = 26(1- i)

if individual i has genotype (qq, Qq,QQ)

u Where fiis the frequency of allele Q at locus /

15

LMMs in genetics

@ Theotherform is: y= XB + g+ €
= Where gi= I, znuis the total genetic effect in individual 7 ,
summed over all the causal loci

® In this form, gican be considered as a random effect operating in
individual i
= The vector of random effects g takes distribution g~ N(0, Go ) 2
u Where G is the genetic relationship matrix (GRM)
between individuals — i.e. their IBD sharing at the causal loci
u 02= moZis the total additive genetic variance
u G=22"/m
w Forfamily data (close relatives), the expected values of the elements
of G equal the expected IBD sharing
= i.e. twice the kinship coefficients
= Thus Gis just equal to twice the kinship matrix
= Models their expected relatedness at the causal loci (and elsewhere)

Heather Cordell (Newcastle)

MMs in genetics

= In genetics we generally work with two equivalent forms of LMM
u One is: y= XB+ Zu+ €

= The random effect w coresponds to a scaled additive effect of
causal variant (locus) /
® We assume there are many (m) such causal variants all across the
genome
= Considering it to be arandom effect (within a population of interest)
could be thought of as taking a Bayesian perspective
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LMMs in genetics

u Theotherform is: y= XB+ g+ €
= Where gi= 7’; , ziuris the total genetic effect in individual /,
summed over all the causal loci

@ In this form, gican be considered as a random effect operating in
individual i
= The vector of random effects g takes distribution g~ N(0, Go ) 2
u Where G is the genetic relationship matrix (GRM)
between individuals — i.e. their IBD sharing at the causal loci
2

u 02= mo’is the total additive genetic variance

= G=2Z'/m

Heather Cordell (Newcastie)
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Useof LMMs in genetics

@ The formulation y= XB + g+ €isknown asthe Animal Model
and has been used extensively in plant and animal breeding

= Mostly to predict the breeding values giin order to inform breeding
strategies
® E.g.to increase milk yield, meat production etc. etc.
= Similar approaches could be used for prediction of trait values given
genotype data

® In the mid 1990s it became popular in human genetics asthe
backbone of variance components linkage analysis

@ Now commonly used in association analysis (GWAS)

= To correct for relatedness, when testing for association

Heather Cordell (Newcaste)
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Testing for association using LMMs

a ldeais to test afixed SNP effectB1
u While including arandom effect yi that models relatedness

= Fit regression model:
= yisthe trait value
= xis avariable coding for genotype at the test SNP
(e.g. anallele count, coded 0, 1, 2 for genotypes 1/1, 1/2, 2/2)
myi= g+E

yi= Bo+ Bixi+ yi

Heather Cordell (Newcastle)
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Testing for association using LMMs

a LMMs werefirst (?) applied in human genetics by Boerwinkle et al.
(1986) and Abney et al. (2002)

@ Chen and Abecasis (2007) implemented them via the "FAmily based
Score Test Approximation” (FASTA) in the MERLIN software
package

u Closely related to earlier QTDT method (Abecasis et al. 2000a;b)
which implements a slightly more general/complex model

u FASTA wasalso implemented in GenABEL, along with asimilar test
called GRAMMAR (Aulchenko et al. 2007)

21

Estimating the genetic relationship matrix

= Once you move to estimating the GRM, you are no longer limited to
using family data
= Kang et al. (2010) and Zhang et al. (2010) suggested applying the
approach to apparently unrelatedindividuals
= As a way of accounting for population substructure/stratification
= Also proposed applying to binary traits (case/control coded 1/0)
= Implemented in EMMAX and TASSEL software, respectively

Heather Cordell (Newcastle)

Testing for association using LMMs

a Ildeais to test afixed SNP effect31
= While including arandom effect y; that models relatedness

u Fit regression model:
= yisthe trait value
= X is avariable coding for genotype at the test SNP

(e.g. anallele count, coded 0, 1, 2 for genotypes 1/1, 1/2, 2/2)
myi= g+E

yi= Bo+ Bixi+ yi

= Weassumey ~ MVN(0, V) where variance/covariance matrix V
follows standard variance components model
= Variance/covariance matrix structured as:
Vi = o*y oPi=j)
Vi = 2040°(i /=)
u 02, o2represent the additive polygenic variance (due to all loci) and
the environmental (=error) variance, respectively

Heather Cordell (Newcaste)
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Estimating the genetic relationship matrix

= These early implementations calculated the kinship matrix ® on the
basis of known (theoretical) kinships constructed from known
pedigree relationships

@ Amin et al. (2007) proposed instead estimating the kinships based on
genome-wide SNP data

m Ideally wewant to useG=ZZ//m, the genetic relationship matrix
(GRM) between individuals at the causal loci

= Since wedon'’t know the causal loci, we approximate G by A, the
overall GRM between individuals

= Various different ways to estimate this, usually based on scaled
(by allele frequency) matrix of identity-by-state (IBS) sharing

Heather Cordell (Newcastie)
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Estimating the genetic relationship matrix

u Once you move to estimating the GRM, you are no longer limited to
using family data
u Kang et al. (2010) and Zhang et al. (2010) suggested applying the
approach to apparently unrelatedindividuals
= As a way of accounting for population substructure/stratification
= Also proposed applying to binary traits (case/control coded 1/0)
= Implemented in EMMAX and TASSEL software, respectively

® Subsequently a number of other publications/software packages have
implemented essentially the same model

FaST-LMM (Lippert et al. 2011)

GEMMA (Zhou and Stephens2012)

GenABEL (GRAMMAR-Gamma) (Svishcheva et al. 2012)

MMM (Pirinen et al. 2013)

MENDEL (Zhou et al. 2014)

RAREMETALWORKER

GCTA

u DISSECT

Heather Cordell (Newt
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Software implementations

& Main difference between them is the precise computational tricks used
to speed up the calculations
= And the convenience/ease of use
in E etal. (2014)
PL0S Genetics 10(7):1004445

Heather Cordell (Newcastle)
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Binary traits

= Forbinary traits, coding casesand controls asa 1/0 quantitative trait is
not optimal
= Though in practice it seemsto work reasonably well

@ LTMLM (Hayeck et al. 2015) and LEAP (Weissbrod et al. 2015)
instead use an underlying liability model to improve power
u Assuming known disease prevalence

® SAIGE software (Zhou et al. 2018, AJHG 50(9):1335-1341)
implements a mixed model test that deals with large case-control
imbalance, as you might see (for example) in UK Biobank

= REGENIE also implements this same saddle point approximation
(SPA) test

= Along with an approximate Firth penalized likelihood-ratio test

= Seealso LDAK-KVIK

Heather Cordell (Newcastle)

Software implementations

@ Main difference between them is the precise computational tricks used
to speed up the calculations
= And the convenience/ease of use
. inE etal. (2014)
PL0S Genetics 10(7):¢1004445

@ BOLT-LMM (Loh et al. 2016) usesa slightly different approach,
based on a Bayesian implementation of LMM formulation 1:

y= XB+ Zu+ E

One of the first mixed model packages that worked for really large-scale
(e.g. UK Biobank) datasets
Now potentially (?) superseded by fastGWA module in GCTA
And by REGENIE, which usesaslightly different formulation based on
analysing the residuals following awhole-genome blockwise ridge
regression

= Again based on LMM formulation 1: y= XB + Zu+ E
Seealso LDAK-KVIK

Heather Cordell (Newcaste)
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Binary traits

a Forbinary traits, coding casesand controls asa 1/0 quantitative trait is
not optimal
= Though in practice it seemsto work reasonably well

u LTMLM (Hayeck et al. 2015) and LEAP (Weissbrod et al. 2015)
instead use an underlying liability model to improve power
= Assuming known disease prevalence

@ Chenet al. (2016) showed that high levels of population stratification
can invalidate the analysis, when applied to a case/control sample
= Resulting in amixture of inflated and deflated test statistics
= Developed GMMAT software to address this problem
u Seealso CARAT software (Jiang et al. 2016, AJHG 98:243-55)

Heather Cordell (Newcastie)
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Elucidating genetic tecture

Seminal paper by Yang et al. (2010) [Nat Genet42(7):565-9]

Showed that by framing the relationship between height and genetic
factors asan LMM, 45% of variance could be explained by considering
294,831 SNPs simultaneously
= So-called “SNP heritability’ or ‘chip heritability’
= Demonstrated that modelling effects at all genotyped SNPs explained
the *known’ heritability (= 80%) much better than just the top SNPs
from GWAS

Moreover, if you estimate effects of additional SNPsin LD with the
genotyped SNPS, the variance explained goes up to 84% (s.e. 16%),
consistent with ‘known’ value

Subsequently many papers have shown similar results for a variety of
complex traits

Heather Cordell (Newt
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Elucidating genetic architecture

u Basicidea is to use formulation
y= XB+ g+ €
- 2 2
with g~ N(0, A®) and€~ N(0,103 SOV = A0”+ o7
= A is the GRM between individuals, estimated using all genotyped SNPs
o 02 and 02 estimated using REML (or MLE)

= Thus we can estimate heritability accounted for by the genotyped
SNPs as02/(02,+ 02)

a Implemented in several software packages including GCTA and
DISSECT
u ALBI software (Schweiger et al. 2016, AJHG 98:1181-1192) can then
be usedto construct accurate confidence intervals for the heritability

Heather Cordell (Newcastle)
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Other approaches

m Some recent work has focussed on achieving similar ends
= i.e. estimating
= heritability explained by sets of SNPs
m genetic correlations across traits
using summary statistics only

= Bulik-Sullivan et al. (2015) [Nat Genet 47:291-295]
= Bulik-Sullivan et al. (2015) [Nat Genet 47:1236-1241]

m Cleveridea that allows the variance component parameters to be
estimated via a simple regression on ‘LD Scores’

= SeeLDSC software (https:/github.com/bulik/ldsc)
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Gene-gene (and gene-environment)interactions

8 GWAS have been extraordinarily successful at detecting genetic
locations harboring genes associated with complex disease
= But the SNPsidentified do not account for the known (estimated)
heritability for most disorders
u Could GxG and GxE effects account for part of the ‘missing
heritability’?
u Zuk etal. (2012) PNAS 109:1193-1198

Heather Cordell (Newcastle)

Partitioning v. ce

@ The same formulation can be used to partition the variance explained
by different subsets of SNPs

= Yanget al. (2010) partitioned variance onto each of the 22 autosomes
using formulation
L L
y= XB+ 2, g+ € withV= 2 Acz+ lo,
where ge is a vector of effects attributed to the cth chromosome,
and Ac is the GRM estimated from SNPs on the cth chromosome
= Slight adjustment is needed for estimating variance explained by SNPs

oon chromosome X

@ Similar partitioning can be used to examine subsets of SNPs defined
in other ways e.g. according to MAF or functional annotation

Heather Cordell (Newcaste)
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Short break
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Gene-gene (and gene-environment)interactions

® GWAS have been extraordinarily successful at detecting genetic
locations harboring genes associated with complex disease
= But the SNPs identified do not account for the known (estimated)
heritability for most disorders
= Could GxG and GxE effects account for part of the ‘missing
heritability’?
u Zuk etal. (2012) PNAS 109:1193-1198

u Effects operating through interactions may not be visible unless you
stratify by or take account of the interacting genetic (or
environmental) factors

= By modelling interactions, we hope to increase our power to detect loci
with weak marginal effects

Heather Cordell (Newt




Gene-gene (and gene-environment)interactions

8 GWAS have been extraordinarily successful at detecting genetic
locations harboring genes associated with complex disease
= But the SNPsidentified do not account for the known (estimated)
heritability for most disorders
u Could GxG and GxE effects account for part of the ‘missing
heritability’?
u Zuk etal. (2012) PNAS 109:1193-1198

® Effects operating through interactions may not be visible unless you
stratify by or take account of the interacting genetic (or
environmental) factors
= By modelling interactions, we hope to increase our power to detect loci
with weak marginal effects

® Phenomenon of biological interest?
= |dentifying genesthat interact to cause disease could help us
understand the mechanisms and pathways in disease progression

Heather Cordell (Newcastle)
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Interaction

s Expected trait values (log odds of disease) take the form:

Factor 2
Factor1 | 1 0
T BoF Bi¥ Pr¥ Piz PoF B
0 Po+ f2 Bo

u Bo, B1, B2, B12 are regression coefficients (numbers) that can be
estimated from real data
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Interaction

= Expected trait values (log odds of disease) take the form:

Factor 2
Factor 1 | 1 0
T BoF BTF BzF Bz BoF B
0 Bo+ B2 Bo

u Bo, B1, Bz, Br2 are regression coefficients (numbers) that can be
estimated from real data
= Having factor 1adds 81to your trait value
= Having factor 2 adds B2to your trait value

Heather Cordell (Newcastle)

Definition of (pairwise) interaction

u Statistical interaction most easily described in terms a of (logistic)
regression framework
= Supppose x1 and X2 are binary factors whose presence/absence
(coded 1/0) may be associated with a diseaseoutcome

= Logistic regression models their effect on the log odds of diseaseas:

P P

o - B+ o -
95 Bo+ Bix 95 Bt Bx2
Marginal effect of factor 1 Marginal effect of factor 2
og = g+ B Bxs og P = g+ e Bxs Baxe
5 =5
Main effects of factors 1and 2 Main effects and interactionterm

u Forquantitative traits, uselinear regression (replace log= with y)
= Formodelling asan LMM, add in arandom effect y

Heather Cordell (Newcaste)
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Interaction

u Expected trait values (log odds of disease) take the form:

Factor
Factor 1 | 1 0
T Bo+ B+ B2+ iz Bo+ i
0 Bo+ B2 Bo

m Bo, B1, B2, P12 are regression coefficients (numbers) that can be
estimated from real data
® Having factor 1adds §1to your trait value

Heather Cordell (Newcastie)
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Interaction

= Expected trait values (log odds of disease) take the form:

Factor
Factor1 | 1 0
T BoF BTF BzF Bz BoF BT
0 Bo+ f2 Bo

= Bo, B1, B2, B2 are regression coefficients (numbers) that can be
estimated from real data

= Having factor 1adds 81to your trait value

= Having factor 2 adds 2to your trait value

u Having both factors adds an additional B12to your trait value
= Implies that the overall effect of two variables is greater (or less)
than the ‘sum of the parts’

= The ‘effect’ of factor 2 s different in the presence/absence of factor 1

Heather Cordell (Newcaste)




a Expected trait values (log odds of disease) take the form:

Factor 2
Factor 1 | 1 0
T BoF BTF BzF Bz BoF B
0 Bo+ B2 Bo

u Bo, B1, B2, P12 are regression coefficients (numbers) that can be
estimated from real data

= Having factor 1adds 81to your trait value

= Having factor 2 adds B2to your trait value

u Having both factors adds an additional B12to your trait value
= Implies that the overall effect of two variables is greater (or less)
than the ‘sum of the parts’

a The ‘effect’ of factor 2 s different in the presence/absence of factor 1

= Suppose no main effects (81= B2= 0)

Factor
Factor1 | 1 0

t Borpr—pU
0 Bo Bo

u Trait value only differs from baseline if both factors present

Heather Cordell (Newcastle)

Gene-gene interaction

@ Alternatively we can assume additive effects of each allele at each locus:
= Corresponds to fitting

log = Bt Bot Byt B Xz

1-p
with x1, x2 coded (0,1,2)

Tocus H
Locus G | 2 1 0
BoF 2BGF ZBH ¥ 4BGH PO ¥ 2BGF PH ¥ 2BCH PO 2BC
1 Po+ o+ 2Br+ 2BcH  Po+ o+ Bu+ fon  Po+ P
0 Bo+ 2BH Bo+ BH Bo

Change of scale

® Transformations of outcome variable y can change whether or not the

predictor variables interact
= Due to definition of interaction asdeparture from alinear model for

the effects of x1 and xz, for predicting y
u Two SNPs that interact on the log odds scale may not interact on the

penetrance scale (and vice versa)
= Makes biological interpretation of resulting interaction modeldifficult

@ Much discussion in the literature
Siemiatycki and Thomas (1981) Int J Epidemiol 10:383-387; Thompson (1991) J Clin Epidemiol 44:221-232

L]
B Phillips (1998) Genetics 149:1167-1171; Cordell (2002) Hum Molec Genet 11:2463-2468

B McClay and van den Oord (2006) J Theor Biol 240:149-159; Phillps (2008) Nat Rev Genet 9:855.867
Ll

Clayton DG (2008) PLoS Genet 5(7): €1000540; Wang, Elston and Zhu (2010) Hum Hered 70:269-277

Heather Cordell (Newcastle)

ie-gene interaction (epistasis)

u However SNPs are not binary, but rather take 3 levels according to
the number of copies (0,1,2) of the susceptibility allele possessed

u Most general ‘saturated’ (9 parameter) genotype model allows all 9
penetrances to take differentvalues

= Via modelling log odds in terms of:

= A baseline effect (Bo)
= Main effects of locus G (B6:, BG:)
= Main effects of locus H (B, BH:)
w 4interaction terms

tocus H
Locus G | 2 1 0
BOFRCTF BT FG7 PORRGT TR T BoFReT
1 Bo+BGi +BH: +B12  Bo+Per +BHi +B11 Bo+Ber
0 Bo+BH: Bo+BH: Bo
= Corresponds in statistical analysis packages to coding x1, x2 (0,1,2)

asa “factor”

Heather Cordell (Newcaste)
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Change of scale

® Transformations of outcome variable y can change whether or not the
predictor variables interact
= Due to definition of interaction asdeparture from alinear model for
the effects of x1 and x2, for predicting y
u Two SNPs that interact on the log odds scale may not interact on the
penetrance scale (and vice versa)
u Makes biological interpretation of resulting interaction model difficult

Heather Cordell (Newcastie)
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Change of scale

® Transformations of outcome variable y can change whether or not the
predictor variables interact
= Due to definition of interaction asdeparture from alinear model for
the effects of x1 and xz, for predicting y
u Two SNPs that interact on the log odds scale may not interact on the
penetrance scale (and vice versa)
u Makes biological interpretation of resulting interaction modeldifficult
@ Much discussion in the literature
Siemiatycki and Thomas (1981) Int J Epidemiol 10:383-387; Thompson (1991) J Clin Epidemiol 44:221-232

MeC Oord (2006) J Theor Biol ipS (2008) Nat Rev Genet 9:855-867

[
| Phillips (198) Geneics 149:1167-1171; Cordell (2002) Hum Molec Genet 11:2463-2468

=

B Clayton DG (2008) PLoS Genet 5(7): £1000540; Wang, Elston and Zhu (2010) Hum Hered 70:269-277

@ Bottom line is, little direct correspondence between statistical
interaction and biological interaction
= In terms of whether, for example, gene products physically interact

Heather Cordell (Newcaste)
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Change of scale

Transformations of outcome variable y can change whether or not the
predictor variables interact
= Due to definition of interaction asdeparture from alinear model for
the effects of x1 and xz, for predicting y
u Two SNPs that interact on the log odds scale may not interact on the
penetrance scale (and vice versa)
u Makes biological interpretation of resulting interaction modeldifficult

Much discussion in the literature
Siemiatycki and Thomas (1981) Int J Epidemiol 10:383-387; Thompson (1991) J Clin Epidermiol 44:221-232

Phillips (1998) Genetics 149:1167-1171; Cordell (2002) Hum Molec Genet 11:2463.2468
McClay and van den Oord (2008) J Theor Biol 240:149-159; Phillps (2008) Nat Rev Genet 9:855.867
Clayton DG (2008) PLoS Genet 5(7): €1000540; Wang, Elston and Zhu (2010) Hum Hered 70:269-277

Bottom line is, little direct correspondence between statistical
interaction and biological interaction
= In terms of whether, for example, gene products physically interact

However, existence of statistical interaction does imply both loci are
“involved” in disease in some way

Heather Cordell (Newcastle)
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Gene-environment (GxE) interactions

= The same regression model
p

Io
9 =5

= Bt Boxt Byt B X1z

can be used to model interaction between a genetic factor Gand an
environmental factor H
= With the environmental variable x2 coded in binary fashion (e.g.
smoking) or quantitatively (e.g. age)

51

Testing association and/or interaction

@ Goback to binary coding of genetic (and/or environmental) factors
log_P = Bo+ Bixi + foxz + Braxixe
T-p

u 3dftestof 1= B2= Pi2= Otests for association at both loci
(or both variables), allowing for their possible interaction

Heather Cordell (Newcastle)

Change of scale

Transformations of outcome variable y can change whether or not the

predictor variables interact
= Due to definition of interaction asdeparture from alinear model for

the effects of x1 and xz, for predicting y
u Two SNPs that interact on the log odds scale may not interact on the

penetrance scale (and vice versa)
u Makes biological interpretation of resulting interaction modeldifficult

@ Much discussion in the literature
Siemiatycki and Thomas (1981) Int J Epidemiol 10:383-387; Thompson (1991) J Clin Epidemiol 44:221-232

[
| Phillips (1998) Genetics 149:1167-1171; Cordell (2002) Hum Molec Genet 11:2463-2468

B Mec Oord (2006) J Theor Biol : Phillps (2008) Nat Rev Genet 9:855-867
=

Clayton DG (2008) PLoS Genet 5(7): £1000540; Wang, Elston and Zhu (2010) Hum Hered 70:269-277

Bottom line is, little direct correspondence between statistical
interaction and biological interaction

= In terms of whether, for example, gene products physically interact
However, existence of statistical interaction does imply both loci are
“involved” in disease in some way

= Good starting point for further investigation of their (joint) action

Heather Cordell (Newcaste)

Gene-environment (GxE) interactions

u The same regression model
p

[
9 =5

= R+ BxXt BXxt B X2

can be used to model interaction between a genetic factor Gand an
environmental factor H
= With the environmental variable x2 coded in binary fashion (e.g.
smoking) or quantitatively (e.g. age)

u Focus of analysis is often risk estimation
= Estimating genetic risks in particular environments
= Estimating effect of environmental factor on particular genetic
background
= Important for treatment/screening strategies and public health
interventions

a For GxG, focus of interest is more related to
= Increasing power to detect an effect (by taking into account the effects of

other genetic loci)
= Modelling the biology, especially related to the joint action of the loci

Heather Cordell (Newcastie)

52

Testing association and/or interaction

@ Goback to binary coding of genetic (and/or environmental) factors
log_P = o+ Bixi + Boxe + Brzxixe
T-p

= 3dftestof 1= B2= Bi2= Otests for association at both loci
(or both variables), allowing for their possible interaction

m 2dftestof B2= PBi2= Otests for association at locus 2,
while allowing for possible interaction with locus (or variable) 1

Heather Cordell (Newcaste)
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Testing association and/or interaction

@ Goback to binary coding of genetic (and/or environmental) factors

log_P = Bo+ Bixi + fexz + Braxixe
T-p

u 3dftestof 1= B2= Pi2= Otests for association at both loci
(or both variables), allowing for their possible interaction
m 2dftestof B2= Bi2= Otests for association at locus 2,
while allowing for possible interaction with locus (or variable) 1
= 1dftest of B12= Otests the interaction term alone

Heather Cordell (Newcastle)
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Testing association and/or interaction

u Goback to binary coding of genetic (and/or environmental) factors
log_P = o+ Bixi + Baxz + Przxixz
1-p

m 3dftestof B1= B2= Pi2= Otests for association at both loci
(or both variables), allowing for their possible interaction
= 2dftestof B2= Bi2= Otests for association at locus 2,
while allowing for possible interaction with locus (or variable) 1
= 1dftestof B12= O tests the interaction term alone

= Depending on circumstances, any of these tests may be a sensible option

a Most tests of interaction/joint action can be thought of asa version of one or
other of thesetests

= Although different tests vary in their precise details
= And their relationship to the logistic regression formulation not always
clearly described
= SeeHowey and Cordell (2017)
ncbi.nim.nih. 712/
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GxG in the context of GWAS

= Many recent publications have focussed on finding clever
computational tricks to speed up exhaustive search procedure

BOOST (Wan et al. (2010) AJHG 87:325-340)

SIXPAC (Prabhu and Pe’er (2012) Genome Res 22:2230-2240)

Kam-Thong et al. (2012) Hum Hered 73:220-236 (GPUs)

Fraanberg et al. (2015) PLOS Genetics 11(9):¢1005502

“Discovering genetic interactions in large-scale association studies by

stage-wise likelihood ratio tests”

Heather Cordell (Newcastle)

Testing association and/or interaction

@ Goback to binary coding of genetic (and/or environmental) factors
log_P = o+ Bixi+ Boxe + Brzxixe
T-p

= 3dftestof 1= B2= Bi2= Otests for association at both loci
(or both variables), allowing for their possible interaction
m 2dftestof B2= PBi2= Otests for association at locus 2,
while allowing for possible interaction with locus (or variable) 1
= 1dftest of B12= Otests the interaction term alone

u Depending on circumstances, any of these tests may be a sensible option

Heather Cordell (Newcaste)
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GxG versus GXE in the context of GWAS

a Typically GWAS measure thousands if not millions of genetic variants
= But only afew (tens or at most 100s) of environmental factors

u Feasible to consider all GxE combinations

a All pairwise GxG combinations possible, but much more time
consuming
= And leads to greater multiplicity of tests
= Also, why stop at 2-way interactions?
= Could look at all 3 way, 4 way etc. combinations
= Scale of problem quickly gets out of hand
u Less obvious reason to do this for GxE...

Heather Cordell (Newcastie)
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GxG in the context of GWAS

u Many recent publications have focussed on finding clever
computational tricks to speed up exhaustive search procedure
= BOOST (Wan et al. (2010) AJHG 87:325-340)
m SIXPAC (Prabhu and Pe'er (2012) Genome Res 22:2230-2240)
= Kam-Thong et al. (2012) Hum Hered 73:220-236 (GPUs)
= Fraanberg et al. (2015) PLOS Genetics 11(9):¢1005502
“Discovering genetic interactions in large-scale association studies by
stage-wise likelihood ratio tests”
u Or have proposed filtering based on single-locus significance or other
(biological or statistical) considerations
= Reduces multiple testing burden, improves interpretability

Heather Cordell (Newt




GxG in the context of GWAS

= Many recent publications have focussed on finding clever
computational tricks to speed up exhaustive search procedure
BOOST (Wan et al. (2010) AJHG 87:325-340)
SIXPAC (Prabhu and Pe’er (2012) Genome Res 22:2230-2240)
Kam-Thong et al. (2012) Hum Hered 73:220-236 (GPUs)
Fraanberg et al. (2015) PLOS Genetics 11(9):¢1005502
“Discovering genetic interactions in large-scale association studies by
stage-wise likelihood ratio tests”
a Or have proposed filtering based on single-locus significance or other
(biological or statistical) considerations
= Reduces multiple testing burden, improves interpretability

= Or have proposed testing at the gene level rather than the SNP level
= Ma et al. (2013) PLoS Genet 9(2): 1003321
u Compared 4 different tests that combine P values from pairwise
(SNP x SNP) interaction tests
= Showed that the truncated tests did best
an only consi gene pairs known to exhibit
protein-protein interactions

Heather Cordell (Newcastle)
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Testing correlation between loci

@& A similaridea is implemented in EPIBLASTER
(Kam-Thong et al. 2011; EJHG 19:465-571)

Wau et al. (2010) (PLoS Genet 6:¢1001131) also proposed a similar
approach — though needs adjustment to give correct type | error rates

Seealso Joint Effects (JE) statistics
(Ueki and Cordell 2012; PLoS Genetics 8(4):e1002625)
All these methods test whether correlation exists (case-only) or is
different in casesand controls (case/control)
n Via testing alog OR for association between two loci
= However, the log OR for association (A) encapsulates aslightly
different quantity between the different methods

All implemented (along with standard logistic and linear regression)
in CASSI

Empirical evidence for GxG interactions

® Hemani et al. 2014 (Nature 508:249-253) found 501 instances of
epistatic effects on gene expression, of which 30 could be replicated in
two independent samples

= Many SNPs are close together, could represent haplotype effects?
= Or the effect of asingle untyped variant?
= Seecaveats in
= Wood et al. (2014) Nature 514(7520):E3-5. PMID:25279928
= Fish et al. (2016) Am J Hum Genet 99(4):817830. PMID:27640306

® The Hemani et al. paper was subsequently retracted

Heather Cordell (Newcastle)

Case-only analysis

Piergorsh et al. 1994; Yang et al. 1999; Weinberg and Umbach 2000
Several authors have shown that, for binary predictor variables, atest of
the interaction term B12in the logistic regresssion model

log P = Bo+ Bix1+ B2x2 + B12x1x2
1-p

can be obtained by testing for correlation (association) between the
genotypes at two separate loci, within the sample of cases
Gains power from making assumption that genotypes (alleles) at the
two loci are uncorrelated in the population

= Soonly really suitable for unlinked or loosely linked loci (since closely

linked loci are likely to bein LD)

Alternatively contrast the genotype correlations in cases with those
seenin controls (--fast-epistasis in PLINK)

Heather Cordell (Newcaste)
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Empirical evidence for GxG interactions

Epistasis among HLA-DRB1, HLA-DQA1, and HLA-DQB1 in
multiple sclerosis (Lincoln et al. 2009 PNAS 106:7542-7547)

HLA-C and ERAP1 in psoriasis (Strange et al. 2010)
HLA-B27 and ERAP1 in ankylosing spondylitis (Evans et al. 2011)
BANK1 and BLK in SLE (Castillejo-Lopez et al. 2012)

Gusareva et al. (2014) found a reasonably convincing (partially
replicating) interaction between SNPs on chromosome 6 (KHDRBS2)
and 13 (CRYL1) in Alzheimer's disease

Dai et al. (2016) [AJHG 99:352-365] identified 3 loci simultaneously
interacting with established risk factors gastresophageal reflux, obesity
and tobacco smoking, with respect to risk for Barrett's esophagus

Heather Cordell (Newcastie)
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Empirical evidence for GxE interactions

a Myers et al. (2014) Hum Mol Genet 23(19): 5251-9 “Genome-wide
Interaction Studies Reveal Sex-Specific Asthma Risk Alleles”

Small et al. (2018) Nat Genet50(4): 572-580 “Regulatory Variants at
KLF14 Influence Type 2 Diabetes Risk via a Female-Specific Effect on
Adipocyte Size and Body Composition”

Sung et al. (2019) Hum Molec Genet 28(15): 2615-2633 “A
multi-ancestry genome-wide study incorporating gene-smoking interactions
identifies multiple new loci for pulse pressure and mean arterial pressure.”



http://www.staff.ncl.ac.uk/richard.howey/cassi/
http://www.nature.com/articles/s41586-021-03766-y)

al evidence for GxE interal

w Faveet al. (2018) Nat Commun 9(1): 827 “Gene-by-environment
Interactions in Urban Populations Modulate Risk Phenotypes”
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Why Estimate Sample Sizes and/or Power?

* To avoid wasting time and money

— Does not make sense to perform an inadequately powered study for which it
is unlikely to to correctly reject the null hypothesis due to inadequate sample
size

« Collaborations can aid in increasing sample sizes
— Caveats
» Disease definition may not be the same between studies
» Study subjects may be drawn for different populations
» Processing of genctic material maybe not be consistent

* Almost always necessary for grant proposals
— Can be denied funding if unable to demonstrate planned study has adequate

« Realistic disease models are necessary when performing power calculations
« Correctly adjust alpha for multiple testing which will be performed
- eg, ide si level of 5 x 10 for i

Power and Sample Size Estimation for Case-
Control Data

The correct a must be use for sample size estimation/power
analysis
Type | (a) the probability of rejecting the null hypothesis of no
association when it is true
Due to multiple testing a more stringent value than a=0.05 is
used in order to control the Family Wise Error Rate

Power and Sample Size Estimation for Case-
Control Data

* GWAS of common variants where each variant is test separately
— a=5X10¢ (Bonferroni Correction for testing 1,000,000 variant sites)
— Shown to be a good approximation for the effective number of tests
* Valid even when more than 1,000,000 variant sites tested
— Effective number of tests is of the linkage di
structure

ium (LD)

* Single variant tests using whole genome sequence data
— Many more rare variants than common variants
« Lower levels of LD between rare variants than between common variants
— The number of effective tests for rare variants is higher than for analysis
limited to common variants
— ais yet to be determined for association analysis of whole genome
sequence data

An Example of Determining Genome-wide
Significance Levels for Common Variants

Using genotypes from the Wellcome Trust Case-Control
Consortium
Dudbridge and Gusnato, Genet Epidemiol 2008
Estimated a genome-wide significance threshold for the UK
European population
By sub-sampling genotypes at increasing densities and using
permutation to estimate the nominal p-value for a 5% family-
wise error
Then extrapolating to infinite density
The genome wide significance threshold estimate ~7.2x10°8

Estimate is based on LD structure for Europeans
— Not sufficiently stringent for populations of African Ancestry

Power and Sample Size Estimation for Aggregate
Rare Variant Tests

For gene-based rare variant aggregate methods a Bonferroni
correction for the number of genes/regions tested is used
— e.g., 20,000 genes significance level a=2.5x 106
« Can use a less stringent criteria
- Notall genes have two or more variants
» Divide 0.05 by number of genes tested
« If units other than genes are used
~ Amore stringent criteria may be necessary
For rare variants — very low levels of LD between variants in
separate genes

— Therefore, a Bonferroni correction is not overly stringent
* The number of tests = effective number tests
~ This would not be the case for variants in LD
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Studies

For replication studies can base the significance level (a)

On the number of genes/variants being brought from the
discovery (stage 1) study

To replication (stage Il)
For example, if it is hypothesized that 20 genes and 80
independent variants will be brought to stage Il (replication)

— ABonferroni correct can be made for performing 100 tests
 Ana=5.0x103can be used for a family wise error rate of 0.05

Power and Sample Size Estimation for Replication

Estimating Power/Sample Sizes For Single
Variant Tests
* Can be obtained analytically
* Information necessary
— Prevalence
— Risk allele frequency
— Effect size (odds ratio-for case control data)

— Genetic model for the susceptibility variant
* Recessive (y1=1)
« Dominant (y2=y1)
« Additive (y2=2y1-1)
* Multiplicative (y2=y2)

7 8
Estimating Power/Sample Sizes For Individual .
i P Armitage Trend Test
Variants
* Usually, information on disease prevalence is known from * Power and Sample size
epidemiological data — Calculated under different models
* Avrange of risk allele allele frequencies and effect sizes are used © Wherey is the relative risk
* Avariety of genetic models can also used ~ Multiplicative
« Dominant M;’ vy
« Additive - »mtz "
« Multiplicative _ Dom‘:amv
» v
- Recessive
» vl
9

10

Gamma is the Relative Risk not the Odd Ratio

Most software for power calculations/sample size estimation use
the relative risk (y) and not the odds ratio

* The relative risk only approximates the odds ratio when disease is
rare (Prevalence ~< 0.1%)

— The relative risk is not appropriate for common traits when a case-control
design is used

Correspondence Between the Odds Ratio and Relative Risk

Dominant Model

0.01

1.51 151
0.10 1.59 1.59
0.20 1.71 171
Multiplicative Model
Disease Prevalence
0.01 1.51 2.28
0.10 1.59 2561
0.20 1.71 3.25

Marker minor allele and disease allele frequency 0.01

and r2=1
*1/2 genotype — heterozygous (one copy of the alternative allele)
**2/2 genotype - homozygous for the alternative allele

11
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Genetic Association Study (GAS) Power Calculator

* hitp://csg.sphumich.edu/abecasis/cats/gas power calculator/i

* Aone-stage study power calculator
— Which was derived from CaTs

« Which is to perform two-stage genome wide association studies
~ Skol etal. 2006

* Cochran Armitage Trend Test

* Displays graphs of the results

GAS Power Calculator

13
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Genetic Power Calculator

o hitp://zzzbwhharvard.edu/goc/
S Purcell & P Sham
Uses the methods described in Sham PC et al. (2000) Am J Hum
Genet 66:1616-1630
— VCQTLlinkage for sibships
— VCQTL association for sibships.
— VCQTLlinkage for sibships conditional on the trait
— TDT for discrete traits
— Case-Control for discrete traits
— TDT for quantitative traits
— Case-Control quantitative traits
Although input is the relative risk
— Displays odds ratios

Genetic Power Calculator

Case - control for discrete traits

High risk allele froquency (A) : 001 | (0 - 1)
Prevalence £ 02 (0.0001 - 0.9999)
Gonotypo rolative risk Aa 5 (1
Genotype relative risk AR s (1)

prine f1©-n
Marker allele frequency (B) f00 (0-1)

(0 - 10000000)

(>0

Number of cases + 10000
Control : case ratio '

(1 = equal mumber of cases and controls]

Unselected controla? (+ see below)

User-defined type I error rate

100000005 (0.00000001 - 0.5)
User-defined power: determine N : 080 | (0 - 1)

(1 - type 1T error rate)

Process  Reset

Created by Shaun Purcell 24.0¢12008
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Power Association With Errors (PAWE)

e hitp://compgen.rutgersedu/pawe

* Implements the linear trend test
* Four different error models can be used
— See online documentation for complete explanation
* Can either perform:
— Power calculations for a fixed sample size
— Sample size calculations for a fixed power
The genotype frequencies can be generated either using a:
— Genetic model free method or
~ Genetic model-based method

17
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http://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/index.html
http://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/index.html
http://zzz.bwh.harvard.edu/gpc/
https://urldefense.proofpoint.com/v2/url?u=http-3A__compgen.rutgers.edu_pawe_&d=DwMFAg&c=G2MiLlal7SXE3PeSnG8W6_JBU6FcdVjSsBSbw6gcR0U&r=kQ1dicU9QIx3lqhSii74HsZDNTBu2WQ6MsDpiC2xsMo&m=0dt8Q9U07VjL49DGy7UM-oI_eWM6TAtkjEX_QYuU-DA&s=l_G1Sg6A4Hpfq9fq9FVV3PxqaVYlBsFdG9aE8fOPM58&e=

Quanto

Provides sample size and power calculations for

Genetic and environmental main effects

Interactions
— Gene x gene
— Gene x environment

Sample & power calculations can be carried for:
— Case-control
« Unmatched
« Matched
— Case-sibling
— Case-parent (trios)
« Quantitative
« Qualitative
— Independent sample of individuals

* Quantitative traits
~ Assumption sampled from a random population

Can only be run under windows
— https://pphs.usc.edu/download-quanto/

Linkage Disequilibrium (LD)

Power will be reduced if causal variant is not in perfect LD (r2=1)
with the tag SNP

Can adjust sample size when r2<1 to increase power to the
same level as when r’=1

Can estimate sample size when 221
— N/r=N'

— Valid only for multiplicative model

— (Pritchard and Przeworski, 2001)

Power calculation almost always assume that =1
For whole genome sequence data this should be the case since
usually the causal variant would be included in the data

19
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Power Analysis for Rare Variant Aggregate Simplistic Analytical Power Calculation for Rare-
Association Tests variant Aggregate Association Analysis
* Assumption
* Many unknown parameters must be modeled P
~ Allelic architecture within a genetic region — All rare variants are causal and have the same effect size
* Varied across genes and populations * Although usual not be correct
— Effects of variants within a region N . .
3 ) — Provides a gestalt of the power for a given samples or sample size
« Fixed or varied effect sizes of causal variants N
« Bidirectional effect of variants fora given power
« Proportion of non-causal variants  Use aggregate of allele frequencies
* Power estimated empirically — For example, assume a cumulative allele frequency of 0.025
* Simplified assumptions can be made to obtain analytical — Use an exome-wide significant level e.g., 2.5x10°
estimates . )
_ All variants have the same effect size * Provide disease prevalence and penetrance model
— No non-causal variants within a region that is analyzed in aggregate * Perform calculations in the same manner as was described
for single variants
21 22
Empirical Power Calculations Empirical Power Calculations
¢ Avariety of methods can be used to generate variant * Examples
data to empirically estimate power - 5,000 replicates are generated each with 20,000 cases and
e Variant data is generated 20,000 controls
_ * The power is the proportion of replicates with p-value less than the
Based upon a penetrance model samples of cases and specified threshold, e.g, 5x10%
controls are generated .
° L s db d h N — For rare-variant aggregate tests all autosomal genes are
- or ? quantitative trait is generated based upon the genetic generated and those genes with more than two rare variants
variance (e.g., predicted loss of function) are analyzed
e Multiple replicates are generated and analyzed « The power is the proportion of genes that were tested with p-value
— To determine the power which is below a specified threshold, e.g., 2.5x10-6
23 24
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Simulation Methods

o
Other
Coalescent
222%
1KGP/GAW
36.1%
Forward-time

111%

Note: Not all methods give a realistic distribution of variants & in particular for rare variants

Generating Exome Sequence Data Sets
Forward-time Simulation

Data Haplotype
Counts

Demographics

Boyko 105,814
Kyrukov | 1,800,000*

em—

i

Gazave | 1,308,000

*Selection coefficients used to define “variant type”
-"Missense” (1.0 x 105 1.8 x 102
~“Nonsense, splice site and frameshift” (>1.8 x 10-2)

25 26
SKAT Power Calculator SEQPower
http://www.bioinformatics.org/spower/
* RlLibrary
* Provides a haplotype matrix
— 10,000 haplotypes over 200kb region
— Simulated using a calibrated coalescent model (cosi) ,fn"::::;::, Mmm::::‘ Power analysis
— Mimicking linkage disequilibrium structure of European ancestry e _ Froquencies condilonal
(i
~ User can also provide haplotype data L T reem—— Ol Powstisample sze
* Power and sample size calculations for binary and quantitative Linear Rave vertant ———
traits Reatwortdste © |__aanimparat association methods assocition metnods
) ) _ _ ‘ TN e
* User specify proportion of variants that increase or lower risk . Sumiatve okt dota S | #smpesa

" Rancem sampie Quantiatie rait valoes
© Exveme oo vats

Wang et al. 2014 Bioinformatics
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Generating Variants: Using a European
Demographic Model and Exome Sequence Data

Generation

>1,000]:

620

* Variant data generated on 18,397 genes
* Variant data simulated using
population demographic model
- Gazave etal. 2013

10,000

5,633

« Variants generated using exome
sequence data

— 4332 Exomes obtained from European
American

Which method performs better and why?

Does Generating Variant Data Using the Europear]
Population Demographic Model Perform Well?

Distribution of number of variants per gene

B simulated Data
I ESP Data

+ Simulated variant counts based  Simulated variant counts based on

on the entire simulated population haplotype pool down-sampled to ESP

29
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http://www.bioinformatics.org/spower/

- e g sanars

Simulating Data Using Sequence Data (ESP)

‘i |!
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Number of Variant Sites
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Singletons, Doubletons and Tripletons]

Simulating Data: Using Population
Demographic Models (PDM)
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Number of Variant Sites
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Simulation Studies to Evaluate Power for Rare Variant
Association Studies

Itis unknown which genes are important in disease etiology
— Correct allelic architecture is unknown

Can get a better understanding of power to detect
associations by generating variants for the entire exome

Use a variety of disease models
— Odds ratios
— Proportion of pathogenic variants

Analyze of all genes
— e.g., those with 2 or more variant sites

Determine power as the proportion of genes that meet
exome-wide significance (e.g., €=2.5x10")
— If addition regions besides genes are analyzed

« Amore stringent « value should be used

Power Analysis

® For tests of individual variants

— Power depended on sample size, disease prevalence, minor
allele frequency, genetic model and variant effect size

e For rare variants (aggregate association tests)

— Also dependent on the allelic architecture
* Cumulative variant frequency within analyzed region
* Proportion of causal variants
~ How much contamination from non-causal variants
 Effect sizes the same the same or different across gene regions
— Effects of variants in the same o different directions
» Protective and detrimental for binary traits
» Increase and decrease quantitative trait values

33 34
Power Analysis Rare Variants How Large of a Sample Size is Necessary to
(Aggregate Association Tests) Detect Rare Variant Associations?
Generation
* Power will not only vary between traits greatly « Data generated on 18,397 genes >1.oool
* The power to detect an association will also vary  Variant data simulated using a 10,000
drastically between genes for the same complex trait European population demographic o
— For some causal g.enes even with hundreds of thousands of rrlodel ve ot al. 2013 )
samples power will be low
— While for other causal genes a few thousand samples may be
sufficient 141
* Every missense, nonsense and splice with a MAE< 1% assigned an 0
odds ratio of 1.5
* Sample sizes to detect X number of genes determined for
- a=25x106
- power=0.8
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Sample Sizes Necessary to Detect an Association
(Case-Control Data)
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Imputing and Analyzing Imputed Genotype
data

Suzanne M. Leal, Ph.D.

© 2024 Suzanne Leal

Motivation for Imputation of Genotype Data

¢ Obtain genotypes for variant sites that are not genotyped
— Additional variants can be tested for associations
* Providing additional power to tag causal variant sites

* Potential inclusion of causal variants that are unavailable on genotyping
arrays

— Aids in fine-mapping

e Considerably less expensive than generating whole
genome sequence data

— Does come at a cost of accuracy
* In particularly for very rare variants
— Imputed data will be available for very rare variants if

 For avariant site the alternative allele has be observed ~8X in the

reference panel in order for it to be imputed

1 2
Imputation of Variants
* Can be performed locally or on an imputation server
¢ Imputation locally has it limitation due to availability of a
references panel : : . :
P Phasing and performing imputation
— Internal data
~ 1000 genomes using an Imputation Server
— Haplotype reference consortium (HRC)
* Only part of this dataset is made publicly available
¢ Smaller imputation panels will impact the ability to impute
lower frequency and rare variants
— Additionally, regardless variant MAF a decrease in the size and diversity
of imputation panel will lead to a decrease in the imputation accuracy
3 4
Imputation Step 1 Phasing Step 2 Imputation
Study samples are  Imputation server with  Sample phased (e.g., s:r:aT:: 3 Imputation P':::;‘.idr gf:l:’;Z!’li.se:‘ R2
uploaded to phased reference SHAPIT, EAGLE2) P Server posterior p B
imputation server panel (haplotypes) using reference panel,
0. Most likely
e.g. TOPMed Al T TA G| e L1222
VS1 AC H1  AATACG AlC - H2  AAATTT AC  .02(8) 01 0.96
vs2 - B A - H3  CTGATG
H3  CTGATG Tie =) |H4  AMTAG G
vs3 GT :‘; éTg\m g Tie AA H5  CTGATG TG .02 02 0.94
vsa an ) W e = aa - Ho  AAATIT = a 01 .01 0.99
VS5 - . - Gle ®)
VS 6 GG GlG .
) e GG .01.08@D 0.75
Variant Site (VS) HB5K CTGATG

Phased data

Imputation software Measure of imputation
Obeerved genotype for Phasing of reference Study Sample 12 phased can be e.g., Impute5, accuracy for each
otudy eemple 12 penel performed 1X downloaded  PBWT, Minmac4 variant site
0.g- SHAPIT, EAGLE2
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Measures of Imputation Accuracy

* R2/INFO
— Measures of imputation accuracy
* Most programs report R2
— Impute provides INFO scores
® r2js the correlation between the dosage and genotype
obtained from sequence or genotype array data

— Must have imputed data and sequence or genotype array
data for the same person to estimate r2.

Step 3 Analysis of Imputed Data
Variants are filtered according to R2values
— e.g., analyze variants with an R%>0.8

Most likely genotypes are not analyzed instead dosages are
analyzed

The dosage can be estimated as follows for variant site 1 sample
12: A|C with prior probabilities 1/1=0.02, 1/2=0.97, & 2/2=0.01
(R?=0.96) Genotype 1/1 0x0.02= 0.0

Genotype 12 1x0.97 = 0.97

Dosage 0.99
e The dosage for variant site 2 sample 12: A|T with prior
probabilities 1/1= 0.22, 1/2=0.53, & 2/2=0.35 (R2=0.23)

Genotype 1/1 0x0.22= 0.0
Genotype 1/2 1x0.53 = 0.53
Dosage 1.23

Imputation Panels

¢ 1000 Genomes Phase 3*
— 2,504 reference samples
* 26 populations from Africa, the Americas, Europe, East Asia, & South Asia

.

African Genome Resource

e Asthma among African-ancestry Populations in the
Americas (CAAPA)

e Genome Asia Pilot (GAsP)
e HAPMAP2

¢ Haplotype Reference Consortium (HRC) *

32,470 references samples (39,635,008 variants)
¢ Predominately European Ancestry

*Commonly used imputation panels

Imputation Reference Panels
e Multi-ethnic HLA
e Southeast Asian Reference Database (SEAD)

e The Trans-Omics for Precision Medicine (TOPMed)*

— Version R3 133,597 reference samples (445,600,184 variants)
« ~40% European, ~29% African/African American, ~19% Hispanic/Latino,
~8% Asian, & ~4% other/unknown)

e UK10K
e Westlake Biobank for Chinese (WBBC)

*Commonly used imputation panels

9 10
Imputation Servers Imputation Servers
e Michigan (US) e Sanger (UK)
— Reference panels include, HRC, 1,000 Genomes, etc. — Reference panels include HRC, 1,000 Genomes, etc.
— Phasing EAGLE2 — Phasing SHAPEIT or EAGLE2
— Imputation Minmax4 — Imputation PBWT
— https://imputationserver.sph.umich.edu/index.html#! — https://www.sanger.ac.uk/tool/sanger-imputation-service/
e NHLBI (US) e Westlake (People’s Republic of China)
— Reference panel TOPMed — Reference panels include 1000 Genomes, GAsP, SEAD, &
— Phasing EAGLE2 WBBC
— Imputation Minmax4 — Phasing SHAPEIT2
— https://imputation.biodatacatalyst.nhlbi.nih.gov/#! — Imputation Minmax4
— https://imputationserver.westlake.edu.cn/index.html
11
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https://imputation.biodatacatalyst.nhlbi.nih.gov/

What Impacts Imputation Quality?
¢ Reference (imputation) panel

— Sample size

e Larger samples
— Increase imputation accuracy

— Ability to impute rare variants
— Ancestry diversity
e Target sample
— Density of markers
— Genotype quality
— Ancestry and representation on the imputation panel
— The population’s linkage disequilibrium structure

Note: Since each target sample is phased and imputed
separately using the pre-phased imputation panel on the
imputation server, sample size of the target sample does not
impact imputation accuracy

How Well do 1000 Genomes, HRC, and TOPMed
Imputation Reference Panels Perform?

* Reference Panels
— 1000 Genomes Phase 3
® 2,504 reference samples
— 26 populations from Africa, the Americas, Europe, East Asia, & South Asia
— HRCv1.12016
* 32,470 references samples (39,635,008 variants)
— Predominately European Ancestry
— TOPMed (Version r2)
* 97,256 reference samples (308,107,085 variants)

— Diverse population from the USA 48.49% European, 25.95% African/African

American, 17.57% Hispanic/Latino/Admixed Americans, 1.22% East Asian, 0.66
South Asians, 6.11% other/unknown )

— TOPMed (53K)

* 53,831 reference samples

13
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How Well do 1000 Genomes, HRC, and TOPMed
Imputation Reference Panels Perform?
e Target Sample
— 100 ancestry specific samples,
¢ e.g. Europeans, African-Americans, & South Asians
— Obtained from BioMe

¢ Samples are not included in any of the reference panels

Europeans

1.00

>

)
{
@

°
3

°

Panel

— 10006

- HRC

- - TOPMed 53K
- TOPMed IS

Avg: AllSNPs

-
Avgr*: SNPs in Rel. Panel
o

0.00

IT- ST ST SR
o 100 R
Ccz i z -
E P s &
S o07s /
< .
£ v Taliun et al. 2021 Nature
g s

) CRP Ty e
Minor Allele Frequency in TOPMed EUR
Panel A: r? between the sequence-based genotypes and imputed dosages across all variants,
assigning r’ = 0 to variants absent from each reference panel
Panels B: average r2 with only the variants present from each reference panel

Panel C. The oroportion of variants present in the refs panel
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African Americans

1.00

>

ol o
1

/Panel
K ivess
" ——nRC
- TOPMed 53K
~— TOPMed IS

Avgr®: All SNPs
o
@
g
Avg: SNPs in Ref. Pang

0.00

T 100 10+ 107

c '

Taliun et al. 2021 Nature

Fracton of SNPs in Rel. Panel

1o 0 w6 100 10
Minor Allele Frequency in TOPMed AFR

Panel A: r? between the sequence-based genotypes and imputed dosages across all variants,
assigning r’ = 0 to variants absent from each reference panel

Panels B: Average r> with only the variants present from each reference panel

Panel C: The proportion of variants present in the reference panels

East Asians

A 100 B 1.0
o 075 & ozs
£ . 3
] =
= os G o0s
= o050 g os0
o ) s
2 ; <" Janel p
< 025{ ¢ — 10006 Ela
- —HRC H
< TOPMed 53K
0.00 —— TOPMed IS 0.00

c

Taliun et al. 2021 Nature

Fracton of SNPs in Rel. Panel

107 10 o 100
Minor Allele Frequency in TOPMed EAS

Panel A: r? between the sequence-based genotypes and imputed dosages across all variants,
assigning r = 0 to variants absent from each reference panel

Panels B: Average r? with only the variants present from each reference panel

Panel C: The proportion of variants present in the reference panel
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Comparison of Rare Variant Distributions

Unrelated white European UK Biobank study participants
(N=168,206) with
— Release 2 exome sequence
— Genotype array data available
¢ |mputed variants using both HRC and TOPMed (v2)
e Comparison of variant distributions
— Exome sequence (ES) data
— HRCimputed data r2>0.3 and r2>0.8
— TOPMed imputed data r2>0.3 and r2>0.8

Distribution of Rare Variants

0%
Minor Allele Frequency Range
B mAF <=1E5

0% 1E-5 < MAF <= 1E-4

1E-4 < MAF <= 0.001

0.001 < MAF <=0.005

j20% I 0.005 < MAF < 0.01

l-ll_-

FRC(03)
N=35234

HRC(08)
N=14634

ToPWed
©8)
N=78149

ES ToPWed
N=823884 .
N=210653

Variants for chromosomes 1 and 2 in coding regions

Meta-imputation (I) Meta-imputation (I1)
Use, in turn, two or more reference panels*, then combine the results Obtain region-specific weights via leave-one-out (LOO) in an HMM
Imputation using 1¢' reference panel ‘ ‘ Imputation using 2" reference panel
A T IR} s o NEAREENONS
veewoees (RS | (REREEE ) (AEAEE ) oo NN ( MRS | (RS
math ™| | | 11
AAAGCG - AAAGCG - AAAGCG - bt o iR N coATCO CGATCG
CiCCGAG CCCGAG- CCCGAG ABATO® = AGATCO - AGATCO
S || SEceiEn || BacEns coAtce- ||coarco- |[caarca
Mininact fntrnce | e | | xtairarars | | A xa T Alol eid B Acccce- |[accoce
> next slide Panei#! | (AIAATAG- AAATAG- AAATAG- P2l AGCGCG recuce AGC6cCG
[ oo ] tons? | e || drchlk || &S AeAlSE
I hapiotypes carry | €lcATca= || ccatca- |(ccatco (ATerac- || ATemaas |(aTcTac
ih cortectaele \_ ] X x \ y
% i doutof 5
LomvocneotRosuk#t S A0s] + (A10l o . Guak Losveoneot Rewt#2  AD3 +  ADZ o . oo =
S Q >
[ Simplified! Y 1%
all haplotype

Requires pre-phased data

Yu etal. (2022) Am J Hum Genet

*The reference panels must use the same genome build

Weighting by the
concordance between
LOO prediction and
true genotype

Stephens’ with LOO results Lmowoatuan 08 18 o8 68 02 03 03 05 o3

a5 emiasion probabiitias) Lavesneasranarz 03 02 03 08 1o 08 o3 08 1o

WogcaPmel£t Hon Hon Hon Med Low Low Low Low Low

Yu etal. (2022) Am J Hum Genet
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Imputation of Variants without using an
Imputation Server

Imputation locally has it limitation due to availability of
references panels
— Internal data
— 1000 genomes
— HRC
* Only part of this dataset is made publicly available to download to use
locally
¢ Can be computationally intensive to phase and impute
genotypes locally

All haplotype phasing and imputation software used on
imputation servers are publicly available

¢ Due to data sharing limitation in particular within the European
Union

— It may not be possible to use imputation servers which are located in the
US, UK or China

Using Imputation to Detect Genotyping Errors

e Can provide information on genotyping error by comparing the
genotype of the imputed variant with genotypes obtained from
array or sequence data

— Would suggest there is genotype error if for the imputed data the R?
(measure of imputation accuracy) is high
« But the r? (correlation) between the imputed variant and the genotypes

obtained from sequence or array data is low.

— Association analysis results obtained for the imputed variant and the
same variant obtained from genotyping array or sequencing vary greatly
even though the R2 value is high for the imputed variant

* Suggest that there is probably genotyping error for the variant obtained
from genotyping array or sequence data

e The variant obtained from array or sequence data can be
replaced with the imputed variant

23
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Combining data obtained from different genotyping
arrays

e Variants that don’t overlap between arrays can be
imputed
— As well as variants not available on any of the arrays

e Caution should be used because the imputation quality
can vary between datasets
— Influenced by different error rates between datasets

— Principal components analysis (PCA) can be used to determine
if the potential problems

« If additional quality control is necessary

o [f there are more cases or controls for a particular dataset
— Type | errors can be increased

25
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Linkage disequilibrium in genetic
association studies

GaoWang, Ph.D.
Advanced Gene Mapping Course, May 2024

The Gertrude H. Sergievsky Center and Department of Neurology
Columbia University Viagelos College of Physicians and Surgeons

1

Sources of association signals

Causal association —meaningful
+ Tested genetic variations influence traits directly
Linkage disequilibrium (LD) —useful
« Tested genetic variations associated with other nearby
variations that influence traits
» Meaningful or misleading, in different contexts
Population stratification — misleading
« Tested genetic variations is unrelated to traits, but is
associated due to sampling differences
« eg, minor allele frequency, disease prevalence

3

Linkage disequilibrium (LD)

LD: the sharing of certain combinations of variants

« Fomally, equivalents to Haplotype structure

* There are several measures of LD but largely irelevant to
our leaming objectives

* In gene-mapping, let’s simply understand LD asPearson's
correlation between variants

Genetic association studies (recap)

Identify genetic variants associated with complextraits
* Association does not imply causality
« Disease, quantitative traits, molecular phenotypes
in order to
» Understand biological mechanism

+ Identify potential drug targets
« Identify individuals with high diseaserisk

2

Sources of association signals: analysis tools

Causal association —meaningful
« Fine-mapping, colocalization, Mendelian randomization
Linkage disequilibrium (LD) —useful

* Meaningful: LD soores regression, polygenic risk scores
(PRS), transcriptome-wide association studies(TWAS)
* Misleading: fine-mapping, LD pruning/ clumping
Population stratification — misleading
* Principle component analysis, linear (mixed) models

4

Linkage disequilibrium (LD)

Levels of LD is aresuit of chromosomal “shuffling”
* Segregation and Recombination

! | I L
Eachrowis avariant site
+ Shuffle within rows does not change marginal MAF .
* Multi-loci MAF, i.e., haplotype frequency , will change.




Why do wecare about LD?

When obviously LD is an issue
 Many variants will look “similar” by genotype but have
different biological function — mapping “causal” variants
is challenging
When LD is useful

« Canleverage non-causal genetic variables to predict
phenotypes when causal variant is not observed in data

* Cenleverage variants that are LD to infer each other’s
genotype to complete missing genotype data

« also, association study summary statistics

7

Impact of LD on GWAS analysis

Polygenic: trait influenced by numerous genetic variants

« Misleading: stronger association due to more LD ‘friends’
« Useful: whole-genome prediction with sparsemodels

4

~ e
e

9

LD score regression (LDSC)

LD soore regression mode! without population stratification

Chi-square GWAS
statistic of variant |

Sample size
. Narrow sense heritibility

\ NK3®
E[)C]g] =1+ Méz/‘ LD score of variant j

Total number of variants

Tk corretation casttciont hetween SNP
and other (neighboring) SNPe

7,2 1D cooret sum of squared Pearson's
L=Y7 e
k#j

11
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Impact of LD on GWAS analysis

Oligogenic: trait influenced by afew genetic variants

+ Misleading: difficult to identify causal variants
* Useful: ‘tag SNPs'in aray based GWAS design
Iy

observed effect, 3

8

A second thought on genomic inflation

Population stratification? Or, polygenic inheritance + LD?

Observed -0g10(p)

Expected Jog10(p)

Suggested reading: Yang et al (2011) EJHG

10

LD score regression (LDSC)
Separating #2and population stratification
N
E[)(]] :N“+1+Wl/' LD score of variant |

A more powerful and accurate correction factor for GNVAS
summary statistics compared to genomic control approach.

* Buiik-Sullivan et al (2015) Nature Genetics — the LDSC regression paper

* Zhu and Stephens (2017) AoAS — aneat, altemative LDSC regression model
derivation in supplemental material

12



LDSC application: heritability estimation Variance of height explained in GWAS

Narrow sense heritibility
« Proportion of phenotypic variation explained by additive
genetic factors
Estimation strategy
* Pedigree design: genetic covariance and IBD sharing
« Population design: linear mixed models
Population design, summary statistics
* LDSCto estimate SNP-basedheritability
+ Stratified LDSC (S-LDSC) to partition heritability by Yengoet al. (2022) Nature
functional annotations

13 14
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Statistical fine-mapping in genetic
association studies

GaoWang, PhD.
Advanced Gene Mapping Course, May 2024

The Gertrude H. Sergievsky Center and Department of Neurology
Columbia University Viagelos College of Physicians and Surgeons

1

Correlated variables in association studies

Due to a phenomenon called linkage disequilibrium (LD)
A

observed effect 3

3

Statistical fine-mapping aids in the identification of causal
variants, in order to

* interpret association signals (pinpoint to genes)

« understand biological function of avariant

« elucidate genetic architecture of complex and molecular
phenotypes

64

Figure: Broekema et al. (2020) Open Biol.

CE IR

SURTR - N <

Figure: N'Diaye et al. (2011) PLoS Genet.

-zero effect (“causal”)

Simply pick the top association in an LD block? Maybe?

observed effect. 3




Identify non-zero effect (“causal”) variables

Simply pick the top association in an LD block? ... or not!

3

observed effect

7

Challenge: large-sample computational challenge

Figure: UK Biobank height GWAS,
http://nealelab.is/uk-biobank

“One causal SNP”

case control
Al | A2 | A1 | A2 p-value
SNP 1 | 1200 | 500 | 1000 | 1000| 2.1 x 10— 1"
SNP 2 [ 1101 [ 509 [ 1000 [ 1000 | 1.3 x 10~7
Compute likelihood ratios (LR) H1 vs Ho,

LRi= 615x 10°LR:= 094 x
108

11

Architecture: sparse effects, polygenicbackground

Figure: O'Donovan et al. (2014) Nature

“One causal SNP”

Effect variable (red) comrelated with non-effect variable (green)

case control
AL | A2 | A1 | Az | Palwe
SNP1 [ 1200 | 200 | 1000 | 1000 | 2.1 x 10—
SNP2 [ 1101 [ 809 [ 1000 | 1000 | 1.3 x 107

10

“One causal SNP” assumption

case control
Al | A2 | A1 | A2 pEliEe
SNP 1| 1200 | 800 [ 1000 | 1000| 2.1 x 10—
SNP 2 [ 1101 [ 209 [ 1000 | 1000 1.3 x 107

Compute likelihood ratios (LR) 1 vs Ho,
LRi= 615x 10°LR= 094x 10°

Probability of association assuming one effect variable,
LR
R+ R 00 RFR

12


http://nealelab.is/uk-biobank

Per variable contingency table analysis, R code

# returns likelihood ratio of H 1 vs
get_22_1r = function(tbl) {
thl = as.table(matrix(tbl, 2,2,
dimames=list(status=c('case', 'control "),
genotype=c('minor_dllele', 'major_dllele'))))
test = MASS: :Toglm(~s ,data=tbl)
return(exp(test$lrt / 2))

HO

}

1rl = get_2x2_1r(c(1200,800,1000,1000))
1r2 =
get_2x2_1r(c(1199,829,1000,1000))

13

Bayesian variable selection: PIP

Computes Posterior Inclusion Probability (PIP)

-

A
[OREI

BVSR
- 7

PIF = 0.15

observed effect 3

15

Bayesian variable selection: Credible Sets

‘Clusters’ of signals to account for correlations between
variables (eg LD)

— L
©
®
a - @
a ; - @®
o | ﬁ
© T T T 1 1
0 200 400 600 800 1000
variable

17
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A “single effect” Bayesian variable

UseBayes Factor, and compute posterior inclusion
probability
PIP =085
e control
AU [ A2 | AL | A2 | Povalw
1200 [ S00 [ 1000 [ 1000 21> 10 ™
10T [ 00 [ 1000 [ 1000 13 x 10 °
BF PIP =015
PIP1 = = )
BFT¥ BF2 085 ,
PPz D2 - ‘
" BRi+BR2 45 ‘
12

14

Bayesian variable selection: PIP

Computes Posterior Inclusion Probability (PIP)

16

Bayesian variable selection: Credible Sets

* 95% credible set S: Pr(e ffect variable in S) = 95%
* eg., “Single effect’ model:
> PIPG) = 9%
I
where PIP(;)’s arein descending order.
+ Formal definition: Wang et al. (2020) J. R. Stat. Soc. B

18



A simple frequentist conditional analysis

Forward selection algorithm
1. For each SNP it a simple linear regression model

2. Selectthe SNP; that has the largest model

- likelihood
) 3. Fomresidualsy := y— Xib), and repeat

Multiple effects: step-wise

Conditionst assocition snalysis o lead SNP
° 25ignals

15ignal

postion )

postion )

Figure: Spain and Barrett (2015) Hum. Mol. Genet.
16

20

A simple frequentist conditional analysis To quantify uncertainty

Forward selection algorithm . selection alaorith
1. Foreach SNPfit asimple linear regression model NN R TR ]
2 Selectthe SNP that hasthe | likelihood 1. ForeachSNP), fit asimple Bayesian linear regression

A ’j tha e largest model likeli to get Factor BF,
2. Fomweight for each SNP, w; « BF;
3. Fomresidualsy = y— 3wy Xib, andrepeat

3. Fomresidualsy := y— Xib), andrepeat

A greedy algorithm to choose the “best” SNPs, but is
incapable of capturing multiple SNPs in LD
18

22

To quantify uncertainty A motivating example
data available as data(susieR: :N2finemapping)

“msge®

~N o
100 kb genomic region

Bayesian forward selection algorithm
1. Foreach SNPj, fit a simple Bayesian linear
regression model to get Bayes Factor BF; =3
o
g
I

2. Formweight for each SNP, w; « BF;
3. Fomresiduds y := y—- 3 w Xb), and repeat

What if a “bad decision” is made early on?
0 200 400 600 800 1000

23 24
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A motivating example

TS
N o doye*

NP 2

-log10(p

0 200 400 600 800 1000

25

Bayesian Variable Selection Regression (BVSR)

Fine-mapping is a particular multiple regression problem:
Yuxt = Xipbpx1 + €x1

« bis sparse: most of its elements are 0's
 Colunns of Xare very correlated

27

Why BVSR?

« Other sparse variable selection regression may not work
« designed to minimize prediction errors, e.g. LASSO
« Bayesian variable selection regression (BVSR)
« can evaluate significance of effect variables
« canquantify uncertainty in variables selected

29

Detecting multiple effect variables

Intuition: Amodel involving the two effect variables should
fit the data better than that involving the top variable.

observed effect 3

26

Why BVSR?

+ Other sparse variable selection regression may not work
« designed to minimize prediction errors, e.g. LASSO

28

BGASL wdtey N e Padmd Mo rer——

Figure: Schaid et al. (2018) Nat. Rev. Genet.
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BVSR model BVSR results

Assssscombinations of variables
y= Xb+ e 10100 - 025
e~ N(0, 1) 10010 - 025
model rations
i ~ Bemoulli(m) configu 01100 - 8.2
brly~ &) 01010 - }
Coil=& « PIP;:= Pr(z isnonzero)
[ (e 2 e (S gz (e Yo (P PIP= (0.5,05,05,05,0, )
24 25
Assessing multi-effects configurations
L=1
7Z/M---ll <= Pr(Mn)
) < Pr(M
-- -- ( 1) --.“-- <:Pr(/\/12)
26

33 34

7] | BN | EESEevh
71 | BE | e E7H - El = Pr(M)
HZHE --EE < Pr(M,) : :
: : Z7zm---Hl < Pr(M,)
Zzm---El < Pr(M,) ZM7Z--- Wl < Pr(M,,)
7ZM7--- Ml <Pr(M;,) : :
U % = Pr(Mp)

35 36
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Assessing multi-effects configurations

Marginal associations

7Z/MmM--- M| = PIP(M,) B PIP(M,)
MM --mE = PIP(M,) W PIP(M;)

: : EZm---EE  PIP(M;)
7zzzm--- MMl = PIP(M,)) ZmZ---mE PIP(M, )
7ZM7z---ml = PIP(M;4) g :

: . VU PIP(Mp)
M- :>PIP(MP) PIP, = PlP(,M'__))“rPlP(./\/l,/)“rPlP(',M!"‘)

37 38

Assessing mul-effects configurations BVSR inference: posterior methods

The 96% (smallest) Credible Set
ZHN---EED o =0.70 BVSR is computationally challenging!
WvmE---EED o =0.15 + MCMC: BIMBAM, Guan & Stephens (2011)

: N « Enumeration: CAVIAR, Hormozdiari et al. (2014)
R---EP s = 0.02 » Schochastic search: FINEMAP, Benner et al. (2016)
VA /B | [ « Deterministic approximation: DAP-G, Wen et al.

s : (2016)
w7 - v 77m s = 0.00

26 27

39 40

Summarizing BVSR results

Tm D
m D
7/ mmm
mom®

observed effect, 3

41 42
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Summarizing BVSR results

D
WD
vmmv D
v mvD

28
Summarizing BVSR results

Lo [ [+ | o IR
m m m m Posterior Inclusion

Probability
95% Credible Set (CS)

45

5] 05]05]os]

« There are2signals expected (0.5+ 05+ 05+ 0.5)
« But which two? Any two?

* 95%certainty that all effect variables are captured?

* Weneedto quantify this better!

.
£X)

srved effoct A

71

Summarizing BVSR results

EIEEERET Tt
m m m m Posterior Inclusion

Probability

44

05| 05]05] o5

* There are2signals expected (0.5+ 05+ 0.5+ 0.5)
« But which two? Any two?
* 95%certainty that all effect variables are captured?

46

Quantifying uncertainty in variable selection

Consider a sparse regression example

y= Sxb+e e~ NO, 1), ™

=1

wherex1= x2,x3= x4, b1/= 0,l/= 0, he14r =0

48



Quantifying uncertainty in variable selection

Consider a sparse regression example

y= ix/bj +e e~ N0, ),
j=1

(1)
wherexi= x2,x3= x4, 01/= 0,lu/= 0,heq1a = Q
W\e are interested in making the following statement,

(b1/= Oorke/= 0) AND (b3/= Oorbs/=
0).

49

Quantifying uncertainty in variable selection

/= 0orbe/= 0,andbs/= Oorba/= 0.

True effect size Lasso

b
bhat

0002040608

T T — — T — T —
0 200 400 600 800 1000 0 20 400 600 800 1000

51

The Sum of Single Effects model (SuSIE )

y= )SIH e E B2 ®H =
b=3 b X =Xm+X[]+Xm
Z [ [
Wang et al. (2020) J. R. Stat. Soc. B
32
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Quantifying uncertainty in variable selection

We areinterested in meking the folowing statement,
(b1/= 0orkze/= 0) AND (b3/= Oorbs/= 0).
1. There are two independent variables with non-zero effect

2, x1andx2 (and x3and x4) are too similar to distinguish
3. yet they can be prioritized relative to each other

50

Quantifying uncertainty in variable selection

b/= Qorbe/= 0,andbs/= Ooru/= 0.

Bayesian sparse regression SuSiE, 2 CS identified
Sw B N N B S © © © ©°

T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000

52

The Sum of Single Effects model (SuSIE )

y= Xb+ e
L
b= 2 b

=1

. H 1
X =XE+X_+XH
Z m m [

A variational approximation to posterior under SuSIE
g, b) = [1q®)
1
* bi,..., boaretreated asindependent aposteriori.
+ Do not assumeq: factorizes over the elements of br.

54



A fast Bayesian variable selection

Iterative Bayesian forward selection algorithm (IBSS)
« Foreachiteration?
1. For each SNP jfity= X+ egetBF.’
2. Form weight for each SNP w(’/) « BF")
3. Form residuals y’:= y- ,ZWX/b;’) and repeat
« Until converge

Coordinate ascent algorithm; convergence based on
evidence lower bound (ELBO)

55

IBSS algorithm, formal notation

Algorithm Tterative Bayesian forward

(a, p, 0}
2: repeat
3 forl/ini,..., Ldo
4 re Y- Xiv=
5 Wiy, P~ SR,
6: - acom
7: until converged

35
SuSiE model yields single-effect CS

I

ay/ 1D
+

. 'z ]

SuSIE model, formal notation

“single effect”: br’'s
y= Xb+ e A mean-field
approximation
e~ N(LO, ?1n) b ..., 1) = qu(bl)
b= > b b !

I=1 < by..., b aeteatedas
b= yp independent aposterior.
yi~ Mult(1, « Do not assumeq: factorizes
g[)_ NGO, @) over the elements of br.

% =0
34

56

SuSIE model yields single-effect CS

I
7.
+
7.
+
D G
: 36

observed effect /3
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IBSS algorithmillustration

1. At random (zero) initialization, fit single effect model ony

] o

61

IBSS algorithm illustration

3. Compute residual 1 using fited mode, and do it again
(== P77
BN EX

.- (R

& Two signal-level 95% CS

65

2. Compute residual rzusing fitted mode!, and do it again
Vi Vi)
5% 55 EZ N
v

62

IBSS algorithm illustration

4. lterate until converge; compute single-effect credible sets
=osp |
E
EREN

64

Realworld example illustrated

Marginal associations

~Iog10(p)

0 200 400 600 800 1000
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Realrworld example illustrated

Marginal associations

SuSiE results

=swe 2|

~log10(p

0 200 400 600 800 1000

0 200 400 600 800 1000

Real-world example illustrated

Marginal associations

SuSiE results

-log10(p

swe2|

37 SNPs, minimum|
absolute pairwise
‘correlation is 0.97

S

0

200 400 600 800 1000

200 400 600 800 1000
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Real-world example illustrated

1BSS after 1 toration 1BSS after 10 iterations
e o
@ %0 &

0 04006000 1000 0 20040061000 1000

..... o (1) varav (5P)

SuSEis powerful

5
) —

Sol| SuSiE
g DAP-G
AR
o FINEMAP
oo T T T T T

T T
0.00 0.10 0.20 0.30
FDR

't SuSIE priors not required as they are learned from local tests.

71
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The IBSS algorithm iterations breakdown

Iteration 1

il bkt Dk

variablos

WEREPIGIE) B

70

SuSiEis fast

Speed comparison (3 causal variables; unit: sec.)

Method  Avg.  Min.  Max.
SISET 064 0% 28
DAPG 287 228 887
FINEMAP 2301 1099 4816
CAVIAR  2907.51 263734 301852

TAn Rimplementation of SUSIE . Others are implemented in C++.

42

72



Similar model, different problems

* Xis geneexpression, yis tissue/ cell type

« Xis pathway, yisgene-set

« Xisfunctional annotation, yis GWASeffect size

- Xis“step matrix”, yi ly-structured variabl

73

The “changepoint” problem

Canbe modelled aslinear combination of step functions

4
Wicroglia (Enhancer Open Chrom.)- [ —
Wicrogia (Enhancer)- [ —
Microglia (ATAC-seq)- I —
Microglia (Promoter)- [ —
Microglia (H3K27ac)- [ Amnoieion
B-Cell (DNase)- [ =::::;:
Neutrophils (DNase)- [ W ot o)
Microglia (Enhancer Open Chrom)- [l I Ectormer on Non (2019)
0 10 20 i
Heritability enrichment
11

77
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The “changepoint” problem

Data is piecewise constant, e.g. copy number variation

Copy-Ratio

74

Example: simulated DNA copy number variation

SUSIE vs Circular Binery Segmentation ofswen o . (2004) sostatisics

T T T T T
0 100 200 300 400

Notice the benefit of quantifying uncertainty in this example

76

A sparse model (a somewhat oligogenic

Generalized linear mode! for SNP effects given K annotations

= (1- m)do+ mg(O)
m:= Pr(yi= 1|ad)

W

1 K
log = a+ ) ady
k=1

T-m
aarelog fold enrichment of functional genomicfeatures

* Suggested reading: Wen (2016) AcAS
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Enrichment of DNase | in GTEx eQTLs

A 8

79

Probability of association assuming one effect variable,

R _os
R+R

L =013
R+R

Fine-mapping with functional annotations

Recall the BVSR model
y= Xb+ e
e~ N0, G In)
y; ~ Bernoulli(m)
brly~ o)
byly~&

Key idea: 17, prior inclusion probability, can be modelled by
enrichment of functional annotations

83

77

Annotations improves fine-mapping resolution

observed ofect 3
L

observed effect 3

corfar. o) = 1.0

Integrating functional information prioritizes the left SNP.

80

Recall the toy example

Probability of association assuming one effect variable,

0.87 0.13

- LRZ .
R+R R+R

What if wedetermine apriori that SNP 1 is twice as
important asSNP 2?

2x LR
IXIRFIR o0

R
xR+ R
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Genome-wide approach with SL.DSC

Asingle locus may not have enough power to leverage
annotation enrichment
+ Genome-wide evaluation of thousands of annotations can
increase power of fine-mapping

 Leadto new loci to discover
Functional enrichment can be done under the same
framework

« Prioritize genomic features / tissues/ cell-types
Enrichment coefficient may be transferrable cross
population

« Weissbrod et al. (2022) Nat. Genet.
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Functionally informed fine-mapping in UK

In analyses of 49 UK Biobank traits, PolyFun + SuSIE
identified >32% more fine-mapped variant-trait
pairs compared to using SUSIE alone.

w0 PoyFun + SUSIE (3025 PP >0.95 SNP-tral pas)

—USiE 2292 PP > 0.95 SNP-uat pais)
30

§
1=
{o
i
fw
2 100
w
o
£z
g

Figure: Weissbrod et al. (2020) Nat. Genet.
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Cau disease specific enrichment
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Figure: Zhang et al. (2020) Science
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@ Motivation

@ Meta-analysis review

© Meta-analysis: amultivariate regression prospective

@ Multivariate adaptive shrinkage andfine-mapping

89

78

Example: SuSIE with functional informed pri

Relative explevel of
VPS45 (ENST00000369130)

Figure: Zhang et al. (2020) Science
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Multivariate analysis in genetic
association studies

GaoWang, Ph.D.
Advanced Gene Mapping Course, May 2024

The Gertrude H. Sergievsky Center and Department of Neurology
Columbia University Vagelos College of Physicians and Surgeons
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Motivation
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Beyond per trait per variant association studies

Statistical fine-mapping (multiple regressors)
« Identify non-zero effect variables by accounting for LD
Meta-analysis (multiple responses)
« Integrate information across multiple conditions / studies
“Causal” variants across multiple conditions?

« Cross-population fine-mapping; colocalization; pleiotropy;
mediation; . . .

91

The problem

For agenetic variable analyzedin two conditions:

P(“causal” in trait 1 & 2 | association data for 1 & 2)

93

Multivariate relationships?

suppress. suppress
* *

-

©

suppress|

¢

Figure: Pleiotropy or Linkage?

The problem

Methylation

3 : i: L ou o3

:
Histone acetylation

. ?

|

Expression .
<
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owas

f

—_—

NP within S00Kb radius of ABCAT transcription sart ste
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The problem

For agenetic variable analyzed in two conditions:

P(“causal” intrait 1 & 2 |association data for 1& 2)

Denote dataas D1 and D2, and use indicator variables 1, y2
for variable having effects in 1 and 2, and hyperparameters ©:

P(y1= 1,y2=1|D1,D2, ©)

94

95

Meta-analysis review

96




Meta-analysis: a multivariate
regression prospective

97

Fixed effect (FE) model

Let B, betheobsenvedeffiet sizeofstudyi, 1< i< k ands 2
its variance. The true effect sizeis 8. The observed effect is
modelled as

B~ Nk
with likelihood function

. ko k 5 (B—
1B = PBIB = [TPG1B - [Texp - 2 G5 P

99

Random effects (RE)model

Let B, bethe obsenvedeffect szeof study i, 1 < i<k ands?
its variance. Let i be the true effect size of study i. The
observed effect is modelled as

BB ~NB:s), Bi~NB, ?)

with likelihood function

. k. k@ pe
ABlpo) = [1sizen - X BBl

7 2As o)

101

Fixed effect and random effects models

Different assumptions on effects across studies

+ Fixed effect modet: all studies shareacommon effect size
+ Random effects model: effect sizes are random variables
from an underfying distribution

98

Fixed effect (FE) model

Let 8; bethe observedeflect szeof studyi, 1< ik ands?
its variance. The true effect sizeis 8. The observed effect is
modelled as
B~ N(B. ).

with likelihood function

. k . k k ([3:— 2]
1g) = PBIB)= T1P6 1B~ TTexp = 3 pze— -
Letwi= 1/s% bethe weight of study i. The MLE of
summary effectis

g
6= %,{’%ﬁ’ Inverse variance weighting
Fwi

100

Random effects (RE) model

Let B, bethe observedeffect szeof study i, 1 = i<k, ands?
its variance. Let Bi be the true effect size of study i. The
observed effect is modelled as

BB ~N(B:s),  Bi~NB, )
with likefihood function

S (- pr |
2o o

. 3
PB|Bo] = Hmcxp -

REhesweight wi = 1/(s%+ 0%); summary effect Scan be
similarly computed as FE, replacing w: with w;*. o canbe
estimated (e.g. , MLE).
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Multivariate model(s) for effect

Consider aparametric model on effect sizes across studies,

Bly=1~ MVN(0,U)

Consider 2 studies, e.g. height GWASin Europeans and
Africans.

103

Random effects model multivariate analysis

Effect sizes are different between two studies, but arefrom the
same distribution,
i 1
2 10
Urandom = @ % 01

105

Other flexible multivariate models

More generally,

U=

R '
SR

* Pro: more generic than Utixed and Urandom
+ Con: 3 parameters to deal with, comparedto oneo® |

107

81

Fixed-effect model multivariate analysis

Effect sizes are exactly the same between two studies,
i 1
11
Uned = @X 11

104

Other multivariate models

i 1

L p
U, artial = gx
e ol
where [o| = 1. This contains the two meta-analysis models as
special cases!

106

Analogy to popular multivariate models

(some necessary but, not sufficient)

+ Colocalization correlation matrix:
|1 p1
o1
« Condition specific correlation matrix:
i 1 i 1
10 00
00" 01

108



Analogy to popular multivariate models

(some necessary, but not sufficient)

* Mediation:
i . 1
Unediation = G% o ‘;2
* Genolype-» Trait1-  Trait 2.
« Effect on trait 2 should be smaller than that on trait 1.

109

Colocalization method: coloc

coloc [Giambartolome et al. (2014) PLoS Genet]

* On.X: “one causal’ assumption

* OnY: thenull + 4 combinations given “one causal
1. In1 butnot 2
2. In2 butnot 1
3. In 1and 2 but not the same variable
4. In 1and 2 and the same variable (colocalization)
5. No association in both data 1and2

111

eCAVIAR effects assumption

Effect sizes areindependent,
i , 01
ez
Us § @

113

82

The problem

For agenetic variable analyzed in GWAS and eQTL studies:

Py = 1,ye=1|D;, D, ©)

110

Colocalization method: eCAVIAR

6CAVIAR [Homozdiar et al. (2016) Am. J. Hum. Genet ]

* OnX: multiple effect variables

» OnY: each effect variable can be
1. In1 butnot2
2. In2 butnot1
3. Inboth 1and 2
4. No association in both data 1 and 2

112

Colocalization method: enloc

enloc[Wen et al. (2017) PLoS Genet]
* Key difference: cross-condition effects not independent
+ eQTL signals are enriched in GWAS

114



Colocalization method: enloc

enloc[Wen et al. (2017) PLoS Genet]
« Key difference: cross-condition effects not independent
 eQTL signals are enriched in GWAS
But how?
* Through asimple logistic link using eQTL asan
annotation for ;
loe == -
og |_ . = atay.
andin this context
m:= Pyg= 1]ye= 1)

115

» eCAVIARIs aspedial caseof enlocwith a= 0.

* colocis aspedial caseof “one causal’ fine-mapping
based enloc with fixed, high(!) a value by default.

*Recent coloc extension: coloc version 5, aka SuSIE-coloc
removed the “one causal” assumption.

» Wallace (2021) PLoS Genetics
* https://chrlswallace.github.io/coloc/

117

 Choice of prior

« Bestto estimate enrichment a from data

* a€ [0, 5] suggestedby > 4,000 GWAS+ GTExdata
* LD reference mismatch: underestimate a, thus power loss

Hukku et al. (2021) Am. J. Hum. Genet.

119

enloc two step procedure

1. Obtain P(ye = 1) and P(ye = 1) using fine-mapping
2. Fit the enrichment model via multiple imputation

116

» eCAVIARIs a special case of enfocwith a= 0.
* colocis a special case of “one causal’ fine-mapping
based enloc with fixed, high(!) a value by default.
*Recent coloc extension: coloc version 5, aka SuSiE-coloc
+ Wallace (2021) PLoS Genetics
* https://chrlswallace.github.io/coloc/

Summeary: pattern and scale of effect size correlations,
represented as different prior models.
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Multi-trait colocalization

spothesis Numberof

e oo Crnma e

Figure: HyPrColoc, Foley et al. (2021) Nat. Comm.

Assuming asingle causal variant in theloci.
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https://chr1swallace.github.io/coloc/
https://chr1swallace.github.io/coloc/

Multivariate adaptive
shrinkage and fine-mapping

121

Major challenges

« For a given variant: the lessassumption made on
multivariate effects, the more parametersto estimate.
+ FE and RE models are restrictive but easyto fit.
« Different variants: mayfit in different multivariate
effect models

123

A data-adaptive mixture model

Instead of making assumptions, canwelearn from data:

+ What arethe latent structures for multivariate effects?
« How often does each structure appear?

and usethese to construct the mixture model?

125

More phenotypes, more complications

b4 H or, .'... or,| ® or, ...

Figure: Plausible pattems of sharing

122

A naive mixture model

“FE and RE are equally likely for any
variant”: i 1 i 1

Uppea = 05% + 05
X

m

R
[

ol
R =

Prior allows for possibility of both; data will determine where
posterior lands.

124

Pattems of sharing: factor analysi

Dewrwsir‘geﬁectesﬁmat%,% LF+E

LLE

Factor3; pve: 0016 Factor 4 pve: 001

Factor2: pv: 0022

" 11w
tissue

| Adronal Gland
. Avory - Coronary
a1 Dy

I Adpose - wous.
| Adipose - Viscoral (Omertum)
JlI| -
Brain ~ Anteriorcingulate cortex

Figure: Sparse factor analysis of GTEx data
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Incorporating all possible pattems

Multivariate effects of avariant follows the 4-th pattern with
probability 7x:

i 1 i 1
24 03 1.6 0.001

U e S
mived = THX 25 F TEX 0001 0.02

+ T3X ree
This is the Multivariate Adaptive Shrinkage Prior.
« Step 1: estimated 7 via EM algorithm using data across
genome.
« Step 2: apply this prior to eachvariant in association
mapping.

127

Figure: mvSuSIE fine-mapping with adaptive shrinkage model

Zou et al. (2023) biorxiv

129

Comparison to other methods

131

Multivariate effect size sharing in eQTLs

Figure: Quantitative characterization of eQTL effects
heterogeneity in GTEx

Fevantis ot 1 (2072, PAINTOF BayessuR: Znao or ST GETT
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GWAS application: 16 blood traits in UKBiobank

Analysis overview
+ Sample size 248,980; 975 candidate regions fine-mapped
+ Average #SNPs per region 4,776; maximum 36,605

132



GWAS application: 16 blood traits in UK Biobank

GWAS application: 16 blood traits in UK Biob

Analysis overview
* Sample size 248,980; 975 candidate regions fine-mapped
* Average #SNPs per region 4,776; maximum 36,605

Top pattems of effect size sharing inferred from data:

platelet al -
. s EEEERN “+ Compound wirite blood cell

" - Red blood .
cell

133

Complex phenotype prediction and
transcriptome-wide association studies

GaoWang, Ph.D.
Advanced Gene Mapping Course, May 2024

The Gertrude H. Sergievsky Center and Department of Nevrology
Columbia University Viagelos College of Physicians and Surgeons
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Motivation: eQTLs are enriched in GWAS signals

Causality:

Counfounder

SNP—> ANA —» Trait

wan
Plelotropy: Popesn

Tt
sw:: ™ Gountounder

AN 4~ -

Figure: Heinig (2018) Front. Cardiovasc. Med.
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86

Many more signals identified compared to fine-mapping per
each trait

% 2 o,
g w0l g
3, w 150.
w0 2
gy
40 24
" 0.
=
¢ o

20 50 00 7
SUSIE CSs. SUSIE 1-SNPCSs.
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Transcriptome-wide association study (TWA!

Contributions of multiple genetic variants to complex traits
through their impact on molecular phenotypes

Figure: Gusev et al. (2016) Nat. Genet.
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TWAS challenge: association vs causality TWAS challenge: association vs causality

kot . ol 9

Alternative
E. Expression mediates
TRAIT | Desired case

. Trait mediates (no cis-GE effects)

.
(o] [=] oyt ok s e

and trait represented in expression panel

C. All independent
T | Subsumed by (A and B)
D. Trait effects GE independently of SNPs
i et om0

Figure: Gusevet al. (2016) Nat. Genet.

G. Independent effects at same SNPs
Unlikely to detect for multiple SNPs
] e g

Nuk Figure: Gusev et al. (2016) Nat. Genet.
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TWAS challenge: technical considerations TWAS methods overview

Ideal TWAS setup prediXean orr
et st oeR s
i

* Homogenous population i i =T
« Tissue and cell-typespecific :
+ Training data-set is large and complete (N > 200) ﬂ » » » » BEEN »
But in reality
« Cross population TWAS aplications TWAS

* Multiple tissue and cell-types
« Availability of individual level data vs summery statistics Figure: Zhu and Zhou et al. (2021) Quantitative Biology

CoMM

Use BSLIM a5 The st ikginoos. Acommodste
asas ferance ool

peatopc fects

141 142

Univariate TWAS methods overview Simple regression meth

S LETTERS

Y=Y BXte
pre=

1
TR Common polygenic variation contributes to risk of
schizophrenia and bipolar disorder
The Intemational Schizophrenia Consotiom
=3 =
Regression

These methods can also be used for Polygenic Risk Score m
(PRS) calculations

M
\ y = Z BEWAS x,

1Y = XiBell2 P

‘ 1Y = 3 XuBellz + A8l + Al Bellz
% k|

J

143 144
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Ridge regression/ BLUP

REPORT

GCTA: A Tool for Genome-wide Complex Trait Analysis
Jian Yang,!* S. Hong Lee,! Michael E. Goddard,>* and Peter M. Visscher!

AJHG 2011

Penalized regression
M

v =3 g,
k=1
Ridge

Iy — Zxk‘ﬁk“z + Aa|Bz I
&

"

145

Bayesian variable selection regression

1 PLOS | cevercs

OPEN BACCESS Frealy ovailable online

Polyg
Models

Xiang Zhou', Peter Carbonetto’, Matthew Stephens'**

M M
Y= BEXk+Y BiXi+e
k=1 k=1

doli

g with Bay Sparse Linear Mixed

BF ~ N(0,0%)
B ~ N(0,0%)

MultiBLUP: improved SNP-based prediction for complex traits
Doug Speed and David J Balding

Genome Res. published online June 24, 2014
Access the most recent version at doi:10.1101/gr.169375.113
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Likelihood based approach

Figure: CoMM, Yeung et al. (2019)

Also seeYuan et al. (2022) likelihood based Mendelian
Randomization

149
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Other penalized regression

J.R. Statis. Soc. B (2005)
67, Part2, pp. 301-320

Regularization and variable selection via the

elastic net
Penalized regression
E

1Y =" XiBella + MllBlh + AallBall2
k

Hui Zou and Trevor Hastie
Stanford University, USA
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Choice of methods: cross validation

&% TWAS / FUSION

Functional Summary-based Imputation

148

Multivariate TWAS methods overview

Leverage similarity between molecular phenotypes

¥ mion 6P

+ UTMOST, Yu et al. (2019) Nature Genetics
* MR-JTI, Zhou et al. (2020) NatureGenetics
+ mrmash, Morgante et al. (2023) PLoS Genetic (to

appear) 1
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Multivariate TWAS method: mrmash

C. Mostly Null

A. Equal Effects

Ml

Tiiiseracn
tissue

B. Independent Effects

emas

PR

sbbhsinip

T:iise7Eam
tissue

100

RAMSE relative to mr.mash

RMSE relative to mr.mash
i

RIMSE relativ

T23456785m
tissue

D. Equal Effects + Null E. Shared Effects In Subgroups.

i

l& e o=

TriitéiEdn
tissue

RMSE relative to mrmash

RMSE relative to mrmash
8

Tiiiseiean
sissuo
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Multi-omic Strategies for TWAS

Mediator-enriched TWAS
A. MeTWAS scheme

1. Model mediators M,,... My

SNBSH0Gl(0  and btan ...
My, M Incidence or
2. Find imputed M1 = l prevalence of trait
SNPs local to Oy, ).
L 5 Vol with oed RS test

X;
M and random X, of association

Figure: Bhattacharya et al. (2020) PLoS Genet.
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Multi-omic Strategies for TWAS

C. Example biological mechanism | d by MOSTWAS
Regultionvia TF
ocmethyiaton Mediation of distal eQIL RNA of
i o
S RNA _emeen i
O o TEX - =
gy Gene X local \/s\_
Sament [ todistaleSNP. :czmu under study
+=— Regulatory

Distal QL

Figure: Bhattacharya et al. (2020) PLoS Genet.
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89

mnigenic view of genetic lations

A

Gone ragulatory network

Figure: Liu et al. (2019) Cell
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Multi-omic Strategies for TWAS

Distal-eQTL Prioritization via Mediation Analysis

B. DePMA scheme
Distal eQTL s
X5 My, . My

.16 Hy: TME = afyfy = 0
is rejected.

3. TWAS test
of association

Append X with X, <

2 Estimate w;,
shpslocalto with full Xg Incidence or
Xo

prevalence of trait

Figure: Bhattacharya et al. (2020) PLoS Genet.

154

Deepleaming to predict molecular traits

Avsec (2021) Nature Methods
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Multivariate TWAS hands-on exercise

statgen-setup launch --tutoridl twas

TWAS and fine-mapping: variable selection

b Twas
assoditions

I I TR T

Probabilstic fine-mapping of ranscriptome-wide
association studies

Prodicted xprossion

159

Vertical Pleiotropy
Locus
Trait A ; :
Trait B Trait A Trait B

Figure: Jordan et al. (2019) Genome Biology

Horizontal Pleiotropy

Locus

161

90

Missing regulation in eQTL and GWAS

The missing link between genetic
association and regulatory function

by applying a gene-based approach we found limited evidence that the baseline expr
explains GWAS wheth ‘methods (

158

TWAS and fine-mapping: variable selection

00 ooy C. cTwas p\
‘/ﬁ\ MM\L/

© Causal variant B Causal gene.
© Noncausal variant B Noncausal gene.

@a@a@ﬁ—)\@

Figure: Zhao et al. (2022) biorxiv

\:Z/mwz”‘u‘ +e

B. Standard TWAS
‘Sparse priors

By~ G- NOGE) + (1 = 75) - &,
6, ~ my- NO.62) + (1 — 1) - 6,

160

S+ colocalization: pleiotropy

g
Sz

PrediXcan, SMR, FUSION Coloc, Enloc, eCAVIAR, Sherlock

* Image credit: Haky Im @UChicago
* “Locus level” colocalization: Hukku et al. (2022) AJHG;
Okamoto et al. (2023) AJHG.
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TWAS and colocalization: statistical framework

M = puy1 + G + ey ey ~ N (0.631)
Y = puyl +yM + GPy +ey,ey ~ N (0,6}1)
« ‘“locus level”, Pr(y /= 0|Data) « Pr(y /= 0)P{Deta)
* Pr(y /= 0) = Pr(coloc) x Pr(twas)
« Data: z-score from TWAS.
* Keyidea: Testy = 0, not to estimate y whichis
Mendelian Randomization.
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and Mendelianrandomization

Figure: Zhu and Zhou (2021) Quantitative Biology

TWAS can be viewed as two-sample MR — using various [V
selection methods. 2
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current methods and practical
considerations

Fine-mapping with summary statistics:

GaoWang, Ph.D.
Advanced Gene Mapping Course, May 2024

The Gertrude H. Sergievsky Center and Department of Neurology
Columbia University Viagelos College of Physicians and Surgeons

1

Reasonsto work with summary statistics

Advantage over full data (genotypes andphenotypes):
« Easierto obtain and sharewith others
« Convenient to use: QCand data wrestling barely needed
» Computationally suitable for large-sample problems
. O(pz) (summary statistics) < O(np) (full data)
» when sample size n > variants in fine-mapped region p

Suggested reading: Pasaniuc and Price (2017) Nat. Rev. Genet.

3

Properties of per SNPz scores

« z-soore for a SNP depends on effects of both itself and
other correlated SNPs:

EEIR) = 3 1.
i=1
GWAS marginal effects are biased due to LD!
* z-scores are correlated,
Cor(z7,2%) = 1k, Vj, k

* Recall the previously discussed connection with LDSC

92

Association analysis summarystatistics

zscores from univariate associationstudies:

Z:= Blils,
Bi= (x) ¥y 5= otx )

« Sufficient statistics: x" x, x‘y,c?].
» “Summary” statistics:

* z-scores: Z

« Genotypic correlation: R

Regression with Summary Statistics (RSS)

Z~ NRzR)
Assumptions:
1. Heritability of any single SNPis small
2 Rissample genotypic correlation for the same study
3, Genotypes usedto computed z and R are accurate

4

Summary of summary statistics

* X, genotype matrix

* ¥, phenotype matrix, can be multiple traits

X7, association resuits — effect size estimate

XX, LD matrix

XX, genomic relatedness matrix, reflects kinship

Y?, trait comelation, relevant in multi-trait analysis and
integration




GWAS summary
istics

GWAS data
rait + genotypes
i 4

Reterence genotype
panel sze

S w

Oww

Figure: Benner et al. (2017) Am. J. Hum. Genet.

7

The # model: The 5,5 model:

Z~ NRzR) bE~ NS RS'b,SRS

« Both models can be easily written as SUSIE regression

+ Zmodel: lower MAF variants have larger effects

+ b,smodel: effect sizes are the same regardiess of MAF
+ b,§model takes sample size into consideration

* No longer have to assume small effect per SNP
« Zmodel: CAVIAR, FINEMAP (2016)
* b,$model: Zhu and Stephens (2017) AcAS; FINEMAP

(2018 10.1101/318618), SUSIE-RSS (Zou et al. 2022)

9

Summary statistics methods comparison

in-sample LD
03
025
02
g i
g o5 Bl SuSIE-suff
Q. r —— SUuSIiE-RSS
04 - SuSIE-RSS, L = true
FINEMAP
0.05 FINEMAP, L = true
— DAP-G
0 CAVIAR
0 005 01 015 02 025 03
FDR
Zouet al. (2022) PLoS Genet "

11
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Fine-mapping via RSS model

“Single effect”: z/'s

7~ NRzR) z 21 22 3
vt 0D o o0

=1 O=0+0+01
zi= Yizi D D D \:‘
z~ N0, w))

yi~ Mult(1, m) Zou et al (2022) PLoS Genet.

8

Summary statistics methods comparison

in-sample LD
03
0.25
0.2
g
g 918 j SuSIE-suff
Q l —— SuSiE-RSS
0.1 ——- SuSIE-RSS, L = true
FINEMAP
0.05 FINEMAP, L = true
—— DAP-G

0 CAVIAR
0 005 01 015 02 025 03
FDR

Zou et al. (2022) PLoS Genet

10

Impact of allele flips

What is allele flip?

« Different allele encoding between GWAS and LD reference

+ eg.AA=0, AC=1, CC=2in GWAS;AA=2, AC=1,
CC=0in LD reference genotype

+ A challenging problem coupled with strand flip, when
merging sequence data from different platforms

12



Impact of allele flips

Amarginal associations B susie-rss with misaligned alleles

08
Q08

4
PP i T o4
wibdp ity 0 .

0 200 400 600 800 1,000
SNP

0 200 400 600 800 1,000
SNP

C diagnostic plot D atter correcting allele encoding
h
ettt htaian

observed z-score

0 200 400 600 300 1,000
sNP

5 0 5 10
expected z:score

Zouet al. (2022) PLoS Genet.
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Impact of mis-matched LD reference: PIP

A CAVIAR, L = true B DAP-G
03 03
025 o 025
02 P — 02
5 A 5
2 015 4 = 2 0154 4
g o g SUSE sut - sample LO)
011§ 04 fiarrorey
1000320001
005 00s 1500, ostmtad
0 3 2500 o

0 005 01 015 02 025 03 0 005 01 015 02 025 03
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Impact of mis-matched LD reference: PIP

E SuSiE-RSS, L =true

03

F SuSiE-RSS

0 005 01 015 02 025 03

17
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Addressing the allele flip challenge

« susieR::susie rssQ function implements a diagnosis
« bigsnpr: :snp_match() function implements abasic
allele matching for two sets of summary statistics
+ Other resources
« Allele flip illustration: hittps://statgen.us/
Lobwiki X Lq/alel
« A powerful, multi-set data merger (by Yin Huang):

pel ine/mi ]

14

Impact of mi ed LD reference: PIP

C FINEMAP, L = true D FINEMAP
03 03

T —y
irio L

0 005 01 015 02 025 03 0 005 01 015 02 025 03
FDR
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Impact of mis-matched LD reference: credible sets

Acoverage
4
e

B power

oz

D median purty

-iie ol
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https://statgen.us/lab-wiki/compbio_tutorial/allele_qc
https://statgen.us/lab-wiki/compbio_tutorial/allele_qc
https://cumc.github.io/xqtl-pipeline/pipeline/misc/summary_stats_merger.html
https://cumc.github.io/xqtl-pipeline/pipeline/misc/summary_stats_merger.html

Impact of mis-matched LD reference: real data

A ) Locomsonisses e 08 00 04 02
individuals from the FINRISK o
study © LD information

(Absolute value of
Pearson correlation)

-iog10( P-value )
8 &

3

Benner et al. (2017) Am. J. Hum. Genet.

Impact of mis-matched LD reference: real data

Cc e
rom the Fnnish pane f he
11] 1000 Genomes Projectwih
99 ndiduals
°
°

Benner et al. (2017) Am. J. Hum. Genet.

Fine-mapping in meta-analysis: key factors
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Kanai et al. (2022) Cell Genarrics
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Impact of mis-matched LD reference: real data

B 131 einemap with Lo informaion
from the original genotype data

log10( Bayes factor )

Benrer et al. (2017) Am. J. Hum. Genet.

Fine-mapping in meta-analysis: overview

QWS conarts
Conont1

Kanai et al. (2022) Cell Genomics

18
Fine-mapping in meta-analysis: diagnosis
]
Crenet al. (2021) Nat. Comm. (DENTIST)
Kani et al. (2022) Cell Genorrics
20
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Fine-mapping in meta-analysis: diagnosis

|3 DENTIST-S outler varants Effectve N

01 -logio Pos

W

om o ok om 1o %
o the lead variant

Missingness

$ W soom

Zscoro (52090684)

Kanai et al. (2022) Cell Genorrics
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Covariate adjustment in LD reference

Consider two GWAS regression analysis:
1. Evaluate SNPeffect in Trait ~ SNP+Age+Sex+PCs

2. Fit model Trait ~ Age+Sex+PCs, compute residual of
Trait (remove covariates), and evaluate SNP effect in
model Residual Trait ~ SNP

They are not equivalent because covariates should also be
removed from SNIP data: Residual Trait ~ Residual SNP

More technical details seeMcCaw et al. (2020) Biometrics

27
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Covariate adjustment in LD reference

Consider two GWAS regression analysis:
1. Evaluate SNP effect in Trait ~ SNP+Age+Sex+PCs

2. Fit model Trait ~ Age+Sex+PCs, compute residual of
Trait (remove covariates), and evaluate SNP effect in
mode! Residual Trait ~ SNP

Are these two analysis equivalent?

More technical details seeMcCaw et al. (2020) Biometrics
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Covariate adjustment in LD reference

Covariates should be removed from genotype before
computing LD reference for fine-mapping
Adjusted LD

Unadjusted LD Reference LD

summary stat PIP

2=1 =081 2=029

0 025 05 075 1 0 025 05 075 1 o

individual-level PIP

025 05 075 1

Quick et al. (2020) biorxiv
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Integrating GWAS with functional
annotations

GaoWang, Ph.D.
Advanced Gene Mapping Course, May 2024

The Gertrude H. Sergievsky Center and Department of Neurology
Columbia University Viagelos College of Physicians and Surgeons

end 5P

position (o)

Which are the
causal variants?
Fine-mapping

In which cell types
dothe variants act?

SNP enrichment

Which genes are regulated
by the variants?

Colocalization

3

Functional enrichment in fine-mapped variants

Signals concentrated in tissue/  cell specific functional area

d 37 - — e
on o (H3K2700)

recree | [ 1 O DR D lI I I
ol gl

Figure: Huang et al. (2017) Nature

Non-coding functional
annotation in GWAS

2

GWAS variants catelog by functional annotations

Most GWAS variants are non-coding

GWAS Catalog

Regulatory  Noncoding
region. . transcripts

% %
Intergenic
L0

Downstream
%
3UTR
£

Missense.
%

Leeet al. (2018) Human Genetics

Functional annotation in
aggregated rare variant
association analysis




Functional annotation filters in aggregated tests Annotations integrated to aggregated tests

Aggregated tests are sensitive to (mis-)classification of
functional variants. Different sets can be evaluated in practice:

* Lossof function: start-loss, stop-gain, splice sites
« Dameaging missense: start-loss, stop-gain, splice sites,
nonsynonymous with REVEL score > 0.5

« loannidis et al (2016)AJHG
« All: start-loss, stop-gain, splice sites, nonsynonymous
Also seeLi et al. (2019) AJHG; Li et al. (2022) Nature Methods
6

Figure: Li et al. (2020) Nature Genetics

8

Annotations integrated to aggregated tests Rare xQTL canimprove PRS for complex traits

i 7 €

Efiects on polygenic

Rare molecular
outlier SNVs. disease risk pedicton
]
H RS pdsion
Gann a
Woiecular oulier

Figure: Smail et al. (2022) AJHG

Also seeLi et al. (2017) Nature; Ferraro et al. (2020) Science
7

Figure: Li et al. (2020) Nature Genetics

10

A polygenic model: stratified LD soore regression

Sample size

Chi-square GWAS

statistic of variant |
Narrow sense heritibility

Functional annotation in
\ NI2*
— 8
E[}(,Z] =1+ i.zj. LD score of variant j

common variant association

LD score: sum of squared Pearson's

analysis
lj= Z";zk Gorrelation coefficient between SNP |
k#j

and other (neighboring) SNPs

11 12
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A polygenic model: stratified LD score regression

Chi-square GWAS
statistic of variant |

Sample size
. Narrow sense heritibility

\ NK3®
E[)C]g] =1+ Méz/‘ LD score of variant j

Total number of variants

=Y, ’;Zk Corrtaton costiciont beturoon SHP
k#j and other (neighboring) SNPs
* Perform LDSC restricted to afunctional category
« Enrichment: The proportion of SNP-heritability in the
category divided by the proportion of SNPs

13

« Integrate directly asrange besed binary annotations
« Finucane et al (2015) Nature Genetics — Stratified
LDSC paper
« Extension: variant specific continuous annotations
+ Gazalet al (2017) Nature Genetics
« Tissue specific variant level annotations independent of
GWAS results
* Deep Leaming methods
* Zhou et al (2015) Nature Genetics, Zhou et al (2018)
Nature Genetics, Lai et al. (2022) PLoS Comp Bio
« Avsecet al. (2021) Nature Methods

15

model (a somewhat oligogenic view)
Generalized linear mode! for SNP effects given K annotations

B = (1- m)d + mg(®)
2= Pr(yi = 1|ad)
m ] X
log (=" = a+ AZI ad;
aarelog fold enrichment of functional genomicfeatures

* Suggested reading: Wen (2016) AcAS

17

Figure: Finucane et al. (2015) Nature Genetics
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Figure: Wen et al. (2016) AJHG
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Annotations improves fine-mapping resolution

wifeet 3

observed effect 3

abserved

cor(ef. ) = 1.0

Integrating functional information prioritizes the left SNP.

19

Recall the toy example

Probability of association assuming one effect variable,
LR

R+ R = 0.87 R+R =0.13
What if wedetermine apriori that SNP 1 is twice as
important asSNP 2?
2x R LR _
>RAR P Ry

21

Genome-wide approach with SLDSC

Asingle locus may not have enough power to leverage
annotation enrichment

* Genome-wide evaluation of thousands of annotations can
increase power of fine-mapping

* Leadto newloci to discover
Functional enrichment can be done under the same:
framework

« Prioritize genomic features / tissues/ cell-types
Enrichment coefficient may be transferrable cross
population

» Weissbrod et al. (2022) Nat. Genet.

23

100

Recall the toy example

Probability of association assuming one effect variable,

R _oy R o
R+R " R+R

20

Fine-mapping with functional annotations

Recall the BVSR model
y= Xb+ e
e~ N0, 0*I)
y; ~ Bernoulli(rr)
brly~ o)
b—le" )

Keyidea: 1, prior inclusion probability, can be modelled by
enrichment of functional annotations

22

Functionally informed fine-mapping in UK Biobank

In analyses of 49 UK Biobank traits, PolyFun+ SuSE
identified >32% more fine-mapped variant-trait pairs
compared to using SUSIE alone.

w0 PolyFun » SUSE (2,025 PP » 0.9 SNP-trat par)
S (2292 PIP > 095 SNP-rat pas)

g

No.ofne mappod SNPs

Figure: Weissbrod et al. (2020) Nat. Genet. 18
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Example: SuSIE with functional informed priol

Caution: disease specific enrichment

A m— 5000 przaos
152027349 fooe 00 g e
. g 3B Puoces
. . 3 28 w0
[<isome | 15024 M5 -0 S
chrt VPS#5_ PLEKHOT ANP3RE CA14 S o8
iN-Glut OCR £y F £} ?
N og8 H b e
N.2a8ea | G ar
e | o e 3
NEG SGR | el thiien
%ot
oo I . o
Homoer : . uem 13

Figure: Zhang et al. (2020) Science
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Figure: Zhang et al. (2020) Science
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. . .. R @ Motivation
Multivariate analysis in genetic

association studies ® o

GaoWang, PhD. © Meta-analysis: a multivariate regression prospective
Advanced Gene Mapping Course, May 2024

The Gertrude H. Sergievsky Center and Department of Neurology @ Muitivariate adaptive shrinkage and fine-mapping

Columbia University Viagelos College of Physicians and Surgeons

1 2

Beyond per trait per variant association studies

Statistical fine-mapping (multiple regressors)

+ Identify non-zero effect variables by accounting for LD
Motivation Meta-analysis (multiple responses)
o * Integrate information across multiple conditions / studies
“‘Causal” variants across multiple conditions?
+ Cross-population fine-mapping; colocalization; pleiotropy;
mediation; . . .

3 4

The problem The problem

sl Mathylation

: For a genetic variable analyzed in two condiions:

Expression .

“causal” in trait 1 & 2 | assodiation data for 1 & 2)

&

SNPs within S00KD radius of ABCAT tra

102



The problem

For a genetic variable analyzed in two condiions:

“causal” in trait 1 & 2 | association data for 1 &2)
Denotedataas D1 and D2, and use indicator variables

yi, y2
for variable having effects in 1 and 2, and hyperparameters
o

P(yi1= 1,y2= 1|D,D2, ©)

Meta-analysis review

9

Fixed effect and random effects models

Different assumptions on effects across studies

« Fixed effect model: all studies shareacommon effect size
* Randomeffects model: effect sizes are random variables
from anundertying diistribution

11

Multivariate

Figure: Pleiotropy or Linkage?

Meta-analysis: a multivariate
regression prospective

10

Fixed effect (FE) model

Let B, betheobservedeflet sze of studyi, 1= i<k ands 2
its variance. The true effect sizeis 8. The observed effect is
modelled as

ﬁ' = N(Bvi“
with likelihood )
function

. koo k E A me
1P = PEIR = [TPG1H - [Tep - 2 B0

12



Fixed effect (FE) model

Let B, bethecbservedefiet sizeofstudyi, 1= i<k ands 2
its variance. The true effect size is 8. The observed effect
is modelled as
B~ NB
with likelihood funcion -
. k . k k (‘g‘_ 2]
1B = PBIA = TTPE1B = [Texo - T g5

Letwi = 1/s% betheweightof studyi. The MLE of
summary effectis
o B

S Inverse variance weighting

13

Random effects (RE) model

Let B, betheobservedeffiet sizeofstudyi, 1< i< k ands 2
its variance. Let i be the true effect size of study i. The

observed effectis modelled as
BB ~N(Bis), B~ N(B.
L o)
with likelihood
function i £ g
PBlpo) = 1w~ Z%]»
& [RASH

REhasweight wx = 1/(s%+ 0?); summary effect Scan be
similarly computed as FE, replacing wi with w;*. o canbe
estimated (e.g. , MLE).

15

Fixed-effect model multivariate analysis

Effect sizes are exactly the same between two studies,
i 1
1

Usixed = Qfx 11

17

104

Random effects (RE) model

Let B, bethecbsenvedeflectszeof studyi, 1< i< & ands 2
its variance. Let (3 be the true effect size of study i. The
observed effectis modelled as

Biﬁr"’ 55i)s i~ s
1B, ~ N(B s 5} 52) NB

with likelihood
function . L G pp ]
i) <[l mmgew- 2 EC A

14

Multivariate model(s) for effect

Consider a parametric mode! on effect sizes acoss studies,

Bly= 1~ MVN(, U)

Consider 2 studies, e.g. height GWAS in Europeans and
Africans.

16

Random effects model multivariate analysis

Effect sizes are different between two studies, but are from the
same i

i 1
10
Urandom = G 01

18



Other multivariate models

i 1
1 p
Upartial = gx
iieid Pl
where |o| < 1. This contains the two meta-analysis models
as spedid cases!

19

Analogy to popular multivariate models

(some necessary but, not sufficient)

* Colocalization correlation matrix:
i 1 p1
o1

« Condition specific correlation matrix:

i 1 i 1
10 00
00 01

21

The problem

For a genetic variable analyzed in GWAS and eQTL studies:

P(yz= 1,ye= 1|De,De, ©)

23

Other flexible multivariate models

More generally,

U=

e
R

2

* Pro: more generic than Usixed and Urandom
+ Con: 3 parameters to deal with, comparedtoone 0® |

20

Analogy to popular multivariate models

(some necessary, but not sufficient)

* Mediation:
Unediation = G o P

* Genotype-  Trait1-  Trait 2.
» Effect on trait 2 should be smaller than that on trait 1.

22

Colocalization method: coloc

coloc [Giambartolomei et al. (2014) PLoS Genet ]

+ OnX: “one causal” assumption

. Y: the null + 4 combinations given “one
causal

. In1 butnot2

. In2 butnot1

. In 1 and 2 but not the same variable

. In 1and 2 and the same variable (colocalization)

. No association in both data 1 and 2

aAWN

24



Colocalization method: eCAVIAR

6CAVIAR[Hormozdiari et al. (2016) Am. J. Hum. Genet ]

* OnX: multiple effect variables

* OnY: each effect variable can be
1. In1 butnot2
2. In2 butnot 1
3. Inboth 1 and 2
4. No association in both data 1 and 2

25

Colocalization method: enloc

enloc[Wen et al. (2017) PLoS Genet]
« Key difference: cross-condition effects not independent
+ eQTL signals are enriched in GWAS

27

enloc two step procedure

1. Obtain P(ye = 1) andP(ye = 1) using fine-mapping
2. Fit the enrichment model via multiple imputation

29

106

eCAVIAR effects assumption

26

Colocalization method: enloc

enloc[Wen et al. (2017) PLoS Genet]

+ Key difference: cross-condition effects not independent
+ eQTL signals are enriched in GWAS

But how?
+ Through a simple logistic link using eQTL as an
annotation forj
T
g | _ 5= at ay.
andin this context

m:= Pye= 1ly= 1)

28

Connections between colocalization methods

» eCAVIARIs a special case of enfocwith a= 0.
* colocis a special case of “one causal” fine-mapping
based enloc with fixed, high(!) a value by defaut.
* Recent coloc extension: coloc version 5, aka SuSiE-coloc
+ Wallace (2021) PLoS Genetics
* https://chrlswallace.github.io/coloc/

30


https://chr1swallace.github.io/coloc/

Connections between colocalization methods

» eCAVIARIs a special case of enfocwith a= 0.
* colocis a special case of “one causal’ fine-mapping
based enloc with fixed, high(!) a value by defauit.
*Recent coloc extension: coloc version 5, aka SuSIE-coloc
« Wallace (2021) PLoS Genetics
* https://chrlswallace.github.io/coloc/

Summary: pattern and scale of effect size correlations,
represented as different prior models.

alzlole

FRlE

Figure: HyPrColoc, Foley et al. (2021) Nat. Comm.

Assuming a single causal variant in the lodi.

More phenotypes, more complications

-
.. or, .'- or,| ™ @l oo
"

Figure: Plausible patterns of sharing

35

ctical

Pra

+ Choice of prior

« Bestto estimate enrichment a from data

* a€ [0, 5] suggestedby > 4,000 GWAS+ GTExdata
* LD reference mismatch: underestimate a, thus power loss

Hukku et al. (2021) Am. J. Hum. Genet.

32

Multivariate adaptive
shrinkage and fine-mapping

+ Foragiven variant: the less assumption made on
multivariate effects, the more parameters to
estimate.

+ FE and RE models are restrictive but easy to fit.
« Different variants: may fit in different multivariate
effect models

36


https://chr1swallace.github.io/coloc/

A naive mixture model

“FE and RE are equally likely for any
variant”: i 1 i 1

U, + 05
X

mixe

= 0.5%

JRSHE
JSHCY

SPSY
R o

Prior allows for possibility of both; data will determine where
posterior lands.

37

Pattems of sharing: factor analysis

Decomposing effect estimates, B= LF+ E

— —
’ O 1
- | |‘I| T e

Factor3; pre: 0016, Factor 4 pve 001

tissue

Figure: Sparse factor analysis of GTEx data

39

Multivariate effect size sharingin eQTLs

Figure: Quantitative characterization of eQTL effects
heterogeneity in GTEx

41
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A data-adaptive mixture model

Instead of making assumptions, can we leam from data:

+ What are the latent structures for multivariate effects?
* How often does each structure appear?

and use these to construct the mixture model?

38

Incorporating all possible pattems

Multivariate effects of avariant follows the -th pattem with
probability 77x:

1
1.6 0.001
0.001  0.02

i 1
24 03
03 15

U,

mixe
d

This is the Multivariate Adaptive Shrinkage Prior.
+ Step 1: estimated 77« via EM algorithm using data across

= mx + X + X

genome.
+ Step 2: apply this prior to each variant in association
mapping.

40

Application to multivariate fine-mapping

Figure: mvSuSiE fine-mapping with adaptive shrinkage model

Zou et al. (2023) biorxiv
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Multi-trait fine-mapping methods & challenges

SVSE | CAFER PAWTOR | WTHESS SayessUR e macevar Fyrrco
[
I
I
[
[ ]
L ]
|
I I
| |
SUR: oo oG
o)
3

43

GWAS application: 16 blood traits in UK Biobank

Analysis overview
« Sample size 248,980; 975 candidate regions fine-mapped
* Average #SNPs per region 4,776; maximum 36,605

45

GWAS application: 16 blood traits in UK Biobank

Many more signals identified compared to fine-mapping per
each trait

mYSUSIE 1-SNP
8

20 50
SUSIE CSs

0 T
SUSIE 1-SNPCSs

47
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Comparison to other methods

44

GWAS application: 16 blood traits in UK Biobank

Analysis overview
+ Sample size 248,980; 975 candidate regions fine-mapped
+ Average #SNPs per region 4,776; maximum 36,605

Top pattems of effect size sharing inferred from data:

i platelet T‘ '-'__ ! =
> s T “ Compound wirite blood cell
5 - Red blood =
I cell

46



Complex phenotype prediction and
transcriptome-wide association
studies

GaoWang, Ph.D.
Advanced Gene Mapping Course, May 2024

The Gertrude H. Sergievsky Center and Department of Neurology
Columbia University Vagelos College of Physicians and Surgeons

Transcriptome-wide association study (TWAS)

Contributions of multiple genetic variants to complex traits
through their impact on molecular phenotypes

ndiicual TWAS

Figure: Gusev et al. (2016) Nat. Genet.

TWAS challenge: association vs causality

Alternative
E. Expression mediates
- TRAIT | Desired case

F. Trait mediates (no cis-GE effects)
m Only identified iftrit effects gene in is
and trait represented in expression panel
G. Independent effects at same SNPs
Unlikely to detect for multiple SNPs.

Figure: Gusev et al. (2016) Nat. Genet.

110

Motivation: eQTLs are enriched in GWAS signals

Causality: e Difrertial  Cinical
o0 Phenotypes

Gen
Counfounder Ezson

SNP—> RNA —> Trait

eQTL GWAS
Pleiotropy: ‘Sample 1 mpls 2
RNA TWAS

SR
2sampi R

Figure: Heinig (2018) Front. Cardiovasc. Med.

AS challenge: association vs causality

A. GE independent of trait
Well-controlled: Supp. Table 9

B. Trait independent of GE
Well-controlled: Supp. Table 59

C.All independent
oF TRAIT | subsumed by (A and B)
D. Trait effects GE independently of SNPs
e gt e o

Figure: Gusev et al. (2016) Nat. Genet.

Null

TWAS challenge: technical considerati

Ideal TWAS setup
* Homogenous population
« Tissue and cell-type specific
« Training data-set is large and complete (N > 200)
But in reality
« Cross population TWAS aplications
« Multiple tissue and cell-types
« Availability of individual level data vs summary statistics




TWAS methods overview

PrediXcan DPR N
Fist WA, use Use non. TMOS
ciasicnel as parametic OPR s Multssue two-

predition mode predcton model stage anayss

E E |
TWAS CoMM PR

Use BSLMM as The frt koot
preccton model based ference

Porzonal
plicropic efects

Figure: Zhu and Zhou et al. (2021) Quantitative Biology

Simple regression method

LETTERS

Common polygenic variation contributes to risk of
schizophrenia and bipolar disorder

‘The International Schizophrenia Consortium*
Univariate
Regression

M
Y =3 AV
k=1

Other penalized

J.R. Statist. Soc. B (2005)
67, Part2, pp. 301-320

Regularization and variable selection via the
elastic net

Hui Zou and Trevor Hastie Penalized regression
Stanford University, USA
3 o @
4E-N
LEDI S
k=1

1Y =3 XiBrll2 + MBIl + Aol Ball2
k

11

Univariate TWAS methods overview

—

M
Y =) BXi+e J

k=

1
Regression Penalized regression
m e @

- S
‘ I = XiBkll2 J ‘ IV =3~ XiBrll2 + MllBlx + Ml\r’fz\lq
L ( « J

These methods can also be used for Polygenic Risk Score
(PRS) calculations

8

Ridge regression/ BLUP

REPORT

GCTA: A Tool for Genome-wide Complex Trait Analysis

Jian Yang,* S. Hong Lee,! Michael E. Goddard,23 and Peter M. Visscher!

Penalized regression

M
v =Y AR,
k=1

Ridge

1Y =" XiBell + Aal|Bal2
k

10

Bayesian variable selection regression

OPEN B ACCESS Freely available online. QIPLOS | cenencs

Polygenic Modeling with Bayesian Sparse Linear Mixed
Models

Xiang Zhou', Peter Carbonetto, Matthew Stephens’2*
M M
Y:Zﬁ;{.‘Xk-FZﬂka-%—e
k=1 k=1
B ~ N(0,0%)
B ~N(0,0%)

MultiBLUP: imp SNP-based p: for traits
Doug Speed and David J Balding

Genome Res. published oniine June 24, 2014
Access the most recent version at doi10.1101/gr.169375.113

12



Choice of methods: cross validation

&% TWAS / FUSION

y

13

Multivariate TWAS methods overview

Leverage similarity between molecular phenotypes

Genotype matix

T3 mion SNPs

« UTMOST, Yu et al. (2019) Nature Genetics
* MR-JTI, Zhou et al. (2020) Nature Genetics
« mr.mash, Morgante et al. (2023) PLoS Genetic (to

appear)

15

An omnigenic view of genetic regulations

Uncorrelated
<o

A B

Gene regulatory network

Figure: Liu et al. (2019) Cell

17

112

Likelihood based approach

ouput
0= 75.8.94.08.08)

Figure: CoMM, Yeung et al. (2019)

Also see Yuan et al. (2022) likelihood based Mendelian
Randomization

14

A. Equal Effects

B. Independent Effects. C. Mostly Null

n

RMSE relative to mrmas!

RMSE relative to mr.mash
L
= ==
===
e
=
== -
_
RMSE relative to mmash
8 &

Tt3i567887 753356783810
tissue. tissue

T23i567881
tissue.

D. Equal Effects + Null E. Shared Effects in Subgroups

E108 E .
2 B A 21.10.
2 N 2
o4 5
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w 2 i ew e ow
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Multi-omic Strategies for

Mediator-enriched TWAS
A. MeTWAS scheme

1. Model mediators Mj. ... My,

SNPslocalto  and obtain Wy, ... m | Intensities of mediators
mediators My, My Incidence or

S 7 g
2. Find imputed M = prevalence of trait

(M, .., My

v ¢ )
e 3 Model Y, with fixed 4. TWAS test
= M and random X; of association

Figure: Bhattacharya et al. (2020) PLoS Genet.
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Multi-omic Strategies for TWAS

Distal-eQTL Prioritization via Mediation Analysis
B. DePMA scheme

Distal eQTL s
X,

« 1.1 Hy: TME = afyfy = 0
is rejected
Append X; with X < 3, TWAS test

2. Estimate w; of association

with full X

Mpsgg,"e = Incidence or
e prevalence of trait

Figure: Bhattacharya et al. (2020) PLoS Genet.
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Deep leaming to predict molecular traits

[

Avsec (2021) Nature Methods

20

21

Missing regulation in eQTL and GWAS

The missing link between genetic
association and regulatory function

Noan Connaty ®, Sumaya Nazeen Daie e Hunenb S Jon Stamtoyannopouies, ung Chun,
s Corsapa®, Cristopher A Casea® Shami R Sumyasy'™

by applying a gene-based approach we found limited evidence that the baseline expression of
trait-related genes explains GWAS associations, whether using colocalization methods (8% of genes
implicated), transcription-wide association (2% of genes implicated), or a combination of regulatory
annotations and distance (4% of genes implicated). These results contradict the hypothesis that most
complex trait-associated variants coincide with homeostatic expression QTLs, suggesting that better
models are needed. The field must confront this deficit and pursu this ‘missing regulation.”

Connaly et Dacemisr 2022, efe; ls e Mostafa e 3l + rchard 2022

22

23
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Multi-omic Strategies for

Ao

C. le biological

Regulation via TF
binding, chromatin
o methylation

Figure: Bhattacharya et al. (2020) PLoS Genet.
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Multivariate TWAS hands-on

statgen-setup launch --tutorial twas

21
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TWAS and fine-mapping: variable selection

Eep—
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Predicted sxpression
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TWAS and fine-mapping: variable selection TWAS and colocalization: pleiotro

A 00 % ool 00X o0l, C. cwas \ Verticali_l)lzlesiotropy Horizontal Pleiotropy
| | 4 U,
. / —®O-GL0 Locus
o
“ ~— O —
Traits /l 4 Model
y=2p%+ Y .
o et arant 8 Noneaaa gene i Trait A
Gene ot
B. Standard TWAS S ; .
Q B~ g NOG2) + (1 = 15) - 5, Trait B Trait A Trait B
@ _’® _’® - @ O 1y NO0) + (L= 7)) 3y Figure: Jordan et al. (2019) Genome Biology
Figure: Zhao et al. (2022) biorxiv
24 2

25 26

TWAS + colocalization: pleiotropy AS and colocalization: statistical framework

* M = iyl + Gfi + e, en ~ N (0,621
/ Y =pyl +yM + GPy +ey.ey ~N(0,621)
S
v bk « “locus level’, Pr(y /= O|Data) « Pr(y/= 0)Pr(Data)
I i » * Pr(y/~= 0) = Pr(coloc) x Pr(twas)
PrediXcan, SMR, FUSION Coloc, Enloc, eCAVIAR, Sherlock * Data' z-score from TWAS'

" . Keyidea: Testy = 0, not to estimate y whichis
* Image credit: Haky Im @UChicago Mendelian Randomization.
« “Locus level” colocalization: Hukku et al. (2022) AJHG; .

Okamoto et al. (2023) AJHG.

26 27

27 28

TWAS and Mendelianrandomization

Figure: Zhu and Zhou (2021) Quantitative Biology

TWAS can be viewed as two-sample MR — using various |V
selection methods. 28

29
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Genotype Pattern Mining For
Digenic Traits

Research Interests

Development of analysis methods for genetic data, genetic linkage and association analysis.
Current topics: Digenic disease mapping: disease prediction based on genotype patterns.

Tmplementation in computer prograns, dissemination on website

Collaboration with researchers world-wide on their data

Recent publications: [1-7] #1 now fieely available from
https:/github,conyjurgotthandbo

Advanced Gene Mapping Course, April 2024 1. Terwilliger. I.D. and Ott. J. (1994) Handbook of human genetic linkage Johns Hopkins
University Press
2. Horpaopan. S. eral. (2020) Shared genomic segment analysis with equivalence testing
R Jurg Ott, PhD Genet Epidemiol 44, 741-747. DOT:10.1002/gepi.22335
Jurg Ott, Ph.D., Professor Emeritus 5 Okazaki, A. et al. (2020) Population genetics: past. present, and future. Human genetics.
SONO g Professor Emeritus and Director 1-10. DOT:10.1007/500439-020-02208-5
Rockefeller University, New York c/ The \1/_, Laboratory of Statistical Genetics 4 Okazaki, A. ef al. (2021) Genotype pattern mining for pairs of interacting variants
Rockefeller University underlying digenic traits. Genes 12. 1160. DOL:10.3390/genes 12081160
https://lab rockefelleredu/ott ‘Rg}cﬁfe[Tﬂ = New York, NY 10065 5. Okazaki. A. and Oft, J. (2022) Machine learning appmanhes 10 explore digenic
S\ q o inheritance. Trends Geret. DOI10.1016/j.tig.2022.04.01
ps://iurgottgi )U"’?ﬂmy - Zuiga?oﬁc:rif\i‘s::u M6 onT.andPa Overview of fiequent p'\nem mining. Genomics Inform 20.
o g P 5
ott@rockefelleredu TS PR Etp 3211003 7

7. Zhang. Q. efal. (2023) A muli-threaded approach to genctype parern nining for
enic disease genes. Front Genet 14, 122251
$9/fzene.2023.1222517

detectin

PH +1 646 321 1013 DOL10.

Oft "Genotype Patterns" 2

: Frequent Pattern Mining
TOPICS https:/ /www.philippe-fournier-viger.com/spmf/

O Science develops independently in different fields
B Frequent Pattern Mining O Thi

rty years ago, supermarkets started collecting huge amounts of consumer data
B Human gene mapping

7 at their cashiers. Consumer habits - if someone buys bread and milk, how likely
22 will they also buy wine?
O  Apriori algorithm (Agrawal et al, ACM SIGMOD Conference on Management of
B Newer algorithms: eclat, fgrowth Data 1993; 207-216): Efficient search fﬁ)r ﬁ'eque.nt s”ets of items (“itemsets”,
— - patterns) purchased by a consumer (“transaction”). (1) Development of

O Case-control association analysis 2| association rules, that is, conditional probablhtles P(Y |X), with Y and X being

B GWAS: Main effects in genetic association studies 7 items or itemsets. (2) Apriori property: “If an itemset is infrequent, all its
supersets will be infrequent”. Recursive search for longer patterns.

O Mining consumer databases
W The Apriori algorithm (30 years ago)

B Digenic traits (20 years ago)
B MDR, Multifactor Dimensionality Reduction (20 years ago) O Research published in conference proceedings, less so in traditional journals.
B Differences in interaction between cases and controls - O Other implementations of search algorithms, e.g. fpgrowth (written in C)
W AprioriGWAS (10 years ago) (hitps://borgeltnet/software himl), SPMF (in java). Huge memory demands.
B Newest approach, Gpairs program
B Analysis of AMD dataset
Ott "Genotype Patterns” 3 Ott "Genotype Patterns” 4

Digenic Traits

, , Genetic Interactions between Variants
Ming & Muenke (2002) Am | Hum Genet 71, 1017 (review)

Schaffer A (2013) | Med Genet 50, 641-52 (review) Okazaki & Ott (2022) Trends in Genetics 38 (10):1013-1018; DOI:10.1016/j.tig.2022.04.009
Gene 1 GENE 2 1. Traditionally, disease association has been carried out at the level of alleles or
Muration Phenotype Muration Phenotype genotypes. The total number of pairs can be prohibitively large. While this level of
Synergistic: . . v . analysis generally requires the most effort, it also entails the highest degree of
Rp ROMI Normal RS Normal precision in the sense that disease-causing elements can be directly traced down to
RP ROMI* Normal RDS Normal -
Bardet-Bicdl uusz\ e Normal BBSG1 Normal nucleotides.
3:2::: iz:x:t 852 iz:’:ﬁ 2. Working with pairs of variants provides some economy of computational effort but
Hirschsprung, RET Normal EDNRBS% Normal may ‘dilute’ a signal from a single genotype pair when all nine genotype pairs in a

Severe insulin resistance
Modifier:
Juvenile-onset glaucoma

Normal PPPIR3A 1" Normal pair of variants are analyzed jointly.

Adult-onset glaucoma CYP1B1 Normal 3. Finally, focusing on pairs of genes represents the most economical approach but is

Usher 1 e ST 3 MYO74>e0 s Normal also the most imprecise among the three strategies. Also, focusing on genes disregards
Congenital nonlethal JEB. COLI7A1 Juvenile JEB LAMB3 " Normal susceptibility elements outside of genes. Distant-acting transcriptional e cers have
More severe ADPKD — PKDI1 Less severe ADPKD ~ PKD2721524¢ Less severe ADPKD g N N
More severe hearing loss  DENAT Mild hearing loss Mild hearing loss been known for over 10 years to affect susceptibility to human disease and noncoding
WS2/0A MITE P 2Ws2 Normal RNAs have been shown to be associated with many diseases, for example, cardiac
More severe WS2OA  MITF™” 2Ws2 Normal
hypertrophy.
Ott "Genotype Patterns” 5 Ott "Genotype Patterns” 6
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https://lab.rockefeller.edu/ott/
https://jurgott.github.io/
mailto:ott@rockefeller.edu
https://borgelt.net/software.html

Finding disease-associated pairs of
variants or genotypes

O Multifactor Dimensionality Reduction (MDR)
Ritchie MD, Hahn LW, Moore JH. Power of multifactor dimensionality reduction
for detecting gene-gene interactions ... Genet Epideniol 2003;24:150-157

O Zhang Q, Long Q, Ott J. AprioriGWAS, PLoS Comput Biol.
2014;10(6):€1003627
Apriori applied to GWAS: In the absence of strong main effects, we need to
directly search for genotype patterns (at two [or more] variants) with different
frequencies in cases and controls, without consulting main effects.

O  Applying off-the-shelf pattern search algorithms
Chee C-H, Jaafar |, Aziz IA, Hasan MH, Yeoh W. Algorithms for frequent itemset
mining: a literature review. Artificial Intelligence Review. 2019;52(4):2603-21

O  Construction of Bayesian network
Guo 'Y, Zhong Z, et al. Epi-GTBN: An approach of epistasis mining based on
genetic Tabu algorithm and Bayesian network. BMC Bioinform 2019;20:444

Oft "Genotype Patterns” 7

Gpairs program: All pairs of genotypes, schizophrenia data
https:/ /labrockefeller.edu/ott/programs /GPM
https://github.com/jurgott/gpm prog

O  Schizophrenia case-control data: 1,044 cases and 2,052 controls genotyped
for 892,850 SNPs. Pruned and focused on males.

O  Evaluate all pairs of genotypes for SNPs. For each SNP pair, analyze each
of the 9 genotype pairs: 81,972,176, 883 genotype pairs tested.
Distribute work over many threads (CPUs, up to 192 CPUs in new PCs).
For each genotype pair, X, make 2 x 2 table:

O Min. 20 occurrences of any genotype
pair (support)

O  Each table analyzed by Fisher test

O peon = min(#tests X prom, 1)

No. of individuals
Phenotype, Y With X_| Without X
[Affected, "case” a_ | b
Unaffected, "control" c | d

O 69 genotype pairs significantly more frequent in cases than controls
O  Genotypes — variants — genes: Network of 17 genes
o . ification: ¢ = 0 — . i
Ott "Genotype Patterns” 9

Cross-Validation

O Estimates of PPV for the same data that furnished the predictions
— tend to be too good

O Solution: Develop predictors in a set of data and apply the
predictors to a new set of data.

O Same data: Build model in 90% of the data and apply resulting
predictors to 10% of the data — 10-fold cross-validation

O Better approach [1]: Leave-one-out method, L1out. Remove i-th
individual from data and develop predictor — apply to i-th
individual. Do this for all individuals.

O Implement Llout (1) for Gpairs and (2) for polygenic risk score,
PRS, as implemented in plink with the --score function.

O 1. Agresti (2019) An introduction to categorical data analysis. Wiley, Hoboken NJ

Oft "Genotype Patterns” 11

11

116

Exhaustive search for interacting SNPs

O “Discovering Genetic Factors for psoriasis through
exhaustively searching for significant second order SNP-
SNP interactions”

O Kwan-Yeung Lee, Kwong-Sak Leung, Nelson L. S. Tang & Man-Hon Wong.
Sci Rep 2018;8:15186

O  Abstract: To deal with the enormous search space, our search algorithm is
accelerated with eight biological plausible interaction patterns and a pre-
computed look-up table. After our search, we have discovered several
SNPs having a stronger association to psoriasis when they are in
combination with another SNP...

Oft "Genotype Patterns" 8

Prediction vs. Significance

O  Presence of a given genotype pair,
X, as an indicator of disease

No. of individuals
Phenotype, Y

With X_| Without X
[Affected, "case” o b

Unaffected, "control” c | _d

O Given a “case”, what is the probability the test is significant?
Power = sensitivity = a/(a + b)

O Given presence of X in an individual, what is the probability that
individual is a case? Positive predictive value, PPV = a/(a + ¢),
also called confidence in machine learning.

O Lo et al (2015) Why significant variants aren’t automatically good
predictors, PNAS 112 (45). DOI: 10.1073/pnas.1518285112

Ott "Genotype Patterns” 10

10

Decision Rules
DeWan et al, ...wet age-related macular degeneration. Science, 19 Oct
2006. DOI: 10.1126/ science.1133807

O  Gpairs: For a number N of best predicting genotype pairs, call an
individual a “case” if she/he carries 20+ of such genotype pairs.

O Polygenic Risk Score: For N best predicting variants, call an individual a
“case” if she/he has a score above the 95" percentile of controls.

Positive Predictive Value, PPV

09 —_
085 Polygenic Risk Score

Genotype patterns

N, Number of genotype pairs / SNPs

0 2 4 6 8 100 10 140 160 180 200

Oft "Genotype Patterns” 12
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https://lab.rockefeller.edu/ott/programs/GPM
https://github.com/jurgott/gpm_prog

From cross-phenotype associations to
pleiotropy in human genetic studies

Andrew DeWan, PhD, MPH
Associate Professor of Epidemiology
Director, Yale Center for Perinatal, Pediatric and Environmental Epidemiology
Yale School of Public Health

Yale scroor or pur

Caalvanancs m diferent genes

® Gonoticari

Solovieff et al. Nat Rev Genet. 2013 July ; 14(7): 483-495. doi:10.1038/nrg3461.

3

Examples in humans

Marfan syndrome

— FBN1 (fibrillin-1)

— thinness, joint hypermobility, limb elongation, lens dislocation,

and increased susceptibility to heart disease.

Holt-Oram syndrome,

— TBX5 (transcription factor)

— cardiac and limb defects
Nijmegen breakage syndrome

— NBS1 (DNA damage repair protein)

— microcephaly, immunodeficiency, and cancer predisposition

117

Pleiotropy

» Phenomenon in which a genetic locus affects more than
one trait or disease

* Molecular level
— Single gene with multiple physiological function

— Two domains of a single gene product with different functions
and affecting multiple phenotypes

— Gene product with a single function that affects multiple
phenotypes acting in multiple tissues

+ Statistical level

— Alocus displaying cross-phenotype associations is often
considered pleiotropic

— Can be at the variant, gene or region level

Early example of “pleiotropy”

Gregor Mendel documented one of the earliest examples of
pleiotropy in his pea plant experiments

Violet flowers
- seed coats = brown-grey
- axils = red and spotted

White flowers
- Seed coats = white
- Axils = white and unspotted

4

47 0 Gorman)

Pleiotropy and complex disease
comorbidity

« Examples of correlated (comorbid) disease
— Obesity, hypertension, dyslipidemia, type 2 diabetes
(metabolic disorder)

— Depression, anxiety, personality disorders (psychiatric
disorder)

— Asthma, obesity (pro-inflammatory conditions)
» Why do certain disease occur together

— Causality

— Shared environmental risk factors

— Shared genetic risk factors




Pleiotropy and complex disease
comorbidity

Hypertension

Asthma

Dyslipidemia

.., Overlap a fined

low heterogeneity (relative to the individual phenotypes)

Pleiotropy and complex disease comorbidity

Detecting shared genetics and/or molecular pathways
between comorbid diseases can help us understand exactly
how the etiology of the diseases overlap

Etiologic overlaps:

- provide opportunities for novel interventions that prevent

or treat the comorbidity, rather than preventing/treating
each disease separately

facilitate drug repurposing (that is, known drugs targeting
a pleiotropic locus may be repurposed to treat other
diseases controlled by that locus, precluding the need for
the development and testing of a brand-new drug)

Pleiotropy in gene mapping

Mapping a single genotype to multiple phenotypes has the
potential to uncover novel links between traits or diseases

It can also offer insights into the mechanistic underpinnings of
known comorbidities

It can increase power to detect novel associations with one or
more phenotypes

Pleiotropy and complex disease
comorbidity

« Pleiotropy-informed analyses consider multiple
phenotypes together and take into account the
correlation between the phenotypes

— Analyzing multiple correlated phenotype (e.g.
comorbid diseases) is equivalent to analyzing a single
narrowly-defined phenotype with low heterogeneity

Shanya Sivakumaran, ¢ Felix Agak
Teri Manolio,s Igor Rudan,! Paul McKei

Abundant Pleiotropy in Human Complex
Diseases and Traits

pi Theodoratou,¢ James G. Prend
1 James E. Wilson,! and Harry Campbe

3 Lina Zgaga, '

The American Journal of Human Genetics 89, 607-618, November 11, 2011

Table 6. _Extent of Plelotropy In Different Disease Clasies

Discase Class

= £

p Value® p Value®

Metabolic syndrome 9 a8s)

s 106677 o001 3183 W o17) 00066

o001 sas) 15805.2) osise

* Fiiners xacttstp value,

10
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A practitioners’ guide for studying pleiotropy
in genetic epi studies

[ ——

st

stical Analysis of Multiple Phenotypes in Genetic Epidemiological Studies:From Cross-
Associations to Ploiotropy.

Pleiolropic o I i roview;

1= nocessary o reaizs the pudic heslh potental o picropcoc.

Al e For
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Guidelines for generating robust
statistical evidence of pleiotropy

Discover CP

associations

13

Analytic options for discovery of
CP associations

[roeer]
\
\ IHN\HH\HI‘\IH‘\‘X‘(

+ Univariate methods examine the association between a given SNP and each
trait separately

+ Multivariate methods examine the association between a given SNP and
each trait by modeling the traits jointly

15

Univariate methods are by far the most
commonly used to detect CP associations

+ Univariate methods include (but are not limited to) the
methods you've discussed in class so far:

« allelic Chi-Square test
« genotypic Chi-Square test
* regression-based methods
* The overall approach is to:
+ obtain univariate association p-values for each phenotype

« declare CP associations at genetic loci that are statistically
significantly associated with each phenotype

Cross-phenotype (CP) associations

Statistical associations between a single genetic locus — a single
gene or a single variant within a gene — and multiple phenotypes

Note that the dashed lines denote uncertainty
about whether the SNP has a direct effect on the
phenotypes.

14

Analytic options for discovery of
CP associations

[

Univariate Multivariate

depends on:

Choice between te and

+ Types of data available on our phenotypes of interest
+ Summary statistics vs. individual-level data?
- Are the phenotypes measured on the same subjects?

« Distribution of the phenotypes (e.g., quantitative or disease trait)

16

Hypothetical example: Discovery of CP
associations for hypertension and heart
disease by using logistic regression

Step 1. Fit two univariate regression models within PLINK
E[hypertension] = By + 1 * SNP
|/ Elheart disease] = B + B1 * SNP

Word of caution: The univariate tests of association should be
marginal tests (conducted irrespectively of the second phenotype)
NOT gonditional tests (conducted on a subset defined based on
absence/presence of the second phenotype). In this example, what
that means is that the regression for hypertension should be fit on all
subjects irrespectively of their heart disease status; and the
regression for heart disease should be fit on all subjects
irrespectively of their hypertension status. More on this later!

[

17
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Hypothetical example: Discovery of CP
associations for hypertension and heart
disease by using logistic regression

Step 1. Fit two univariate regression models within PLINK
E[hypertension] = By + B1 * SNP
E[heart disease] = By + 1 * SNP

Step 2. For a given SNP, examine p-values for 31 from gagh model.

+ P-value for #, in hypertension model = 1.03 x 10-12
+ P-value for #; in heart disease model = 6.02 x 109

Step 3. Declare CP associations at a given SNP, if the p-values for f31 in
gach model surpass the study significance threshold.

+ Assuming the standard GWAS significance threshold (alpha=5 x109), there
isa with both hypertension and heart
disease at this particular SNP. Therefore, we have sufficient statistical
evidence to declare a CP association at this SNP.

Using multivariate methods to increase the
power to detect cross-phenotype associations

19

20

A Comparison of Multivariate Genome-Wide Association
Methods

Tessel E. Galesloot', Kristel van Steen’?, Lambertus A. L. M. Kiemeney™, Luc L. Janss™",

pL0S One | wwplosoneorg ' Apil 2014 | Volume 9 | tsue 4 | e95923

/EE
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Table 1. Simulation scenarios,

# wraits sssocisted whh QTL Hertabiliy (W) ettt size (a) = A ()
0 v v e 0 somoveer oo10a
- somaunor oos

J a; am, ® s
406101571 oumal pone 0095573.01

21

A comparison of univariate and multivariate
GWAS methods for analysis of multiple
dichotomous phenotypes

Yasmmyn D. Salinas', Andrew T. DeWan', and Zuoheng Wang?

1Department of Chronic Disease Epidemiology; 2Department of Biostatistics,
Yale School of Public Health, Yale University, 60 College St, New Haven,
Connecticut, USA

Genet. Epidemiol. 41 (7), 689-689

23

22

Simulation scenarios

1 hy2=0.1%,h,?=0% [-0909] P1=P2=10%
P1=P2=20%
P1=10%, P2 =20%
P1=20%, P2=10%
2 h2= h?=01% [-0.909] P1=P2=10%
P1=P2=20%
P1=10%, P2 =20%
P1=20%, P2=10%
2 hy2=0.1%.h,? = 0.05% | [-0.9,0.9] P1=P2=10%
P1=P2=20%
P1=10%, P2 =20%
P1=20%, P2=10%

24



PLEIOTROPY PRESENT
equal effect sizes
Figure 2. Power when both phenotypes are associated with the SNP (h,? = h,? = 0.1%) 2

=P, =10% " Py=10% and P, = 20%
MdtFhn  —GUM  ~GEE  —Unvarste ” Vb GO GEE  Unwaa

88

Fower (]
€
Power (%)
vssEzas

Cross-phenotype correlation

Cross-phenotype corrlation

- P, = 20% and P, = 10% - Py=Py=20%
s [ TMRen G —GEE —Unverts [ wnenen oo —oe —umari

2 Results for GLMMs are shown for v, < 0.5 only, since the models experienced convergence issues for fyy > 0.5.

Problem: CP associations need not be
indicative of pleiotropy

26

Biological pleiotropy

Independent associations between a genetic locus (A)
and multiple phenotypic outcomes (Y)

o The SNP has a direct effect on each phenotype.
(Note that direct or causal effects are depicted
SNP with solid lines).

P1

28

Spurious pleiotropy

Artifactual associations with multiple phenotypes due to issues related
to study design, confounding, or associations with markers in strong
linkage disequilibrium* with multiple causal variants in different genes

25
Biological
pleiotropy
CP associations
Mediated Spurious
pleiotropy pleiotropy
27
Mediated pleiotropy
Association between a genetic locus (A) and an intermediate
phenotype (M) that causes a second phenotypic outcome (Y)
Anon-genetic causal link between M and Y
induces an association between A and Y,
even in the absence of a direct effect of Aon Y.
29

“Linkage disequi is the d of alleles

30




Spurious pleiotropy

Artifactual associations with multiple phenotypes due to issues related
to study design, confounding, or associations with markers in strong
linkage disequilibrium* with multiple causal variants in different genes

or

Confounders of the
relationship between the
phenotypes induce spurious
cross-phenotype associations

P1 P1

Spurious pleiotropy

Artifactual associations with multiple phenotypes due to issues related
to study design, confounding, or associations with markers in strong
linkage disequilibrium* with multiple causal variants in different genes

d of alleles.

“Linkage is the

*Linkage is the d of alleles.
Spurious pleiotropy
Artifactual associations with multiple phenotypes due to issues related
to study design, confounding, or associations with markers in strong
linkage disequilibrium* with multiple causal variants in different genes
or
Variables associated with the phenotypes and the
SNP induce spurious cross-phenotype associations
*Linkage is the d of alleles.

Pleiotropy exercise (Parts 1 and 2)

Univariate:
Phenotype 1 P<5x10°

P<5x10°
o wmediation

Univariate: P<5x10%

Phenotype 2

35

32

Spurious pleiotropy

Artifactual associations with multiple phenotypes due to issues related
to study design, confounding, or associations with markers in strong
linkage disequilibrium* with multiple causal variants in different genes

on either phenotype.

‘ The SNP does not have a direct effect ‘

*Linkage is the d of alleles.

34

Pleiotropy exercise (Parts 1 and 2)

Univariate:
Phenotype 1 Pesx10%

P<sx10%
- Mediation

Univariate: Pesx10%
Phenotype 2

36



Guidelines for generating robust
statistical evidence of pleiotropy

Discover CP
associations

Dissect CP
associations

3

37

Mediation analysis: Data requirements

+ Al phenotypes must be m

the same subjects Total Effect
+  Temporality must be ascertained @ il . @
Direct Effect
+  The occurrence of the
intermediate variable M must 5, 0

precede that of the phenotypic
outcome variable Y

Indirect Effect

39

Mediation analysis: Assumptions

Typically met in genetic epi studies!

+ There must be no unmeasured: o Efest”

« confounders of the total effect o

\

«  confounders of the relationship @ Direot Effeat " @
between SNP A and the .
mediator M 8 0

« confounders of the relationship .
between mediator M and @/
phenotypic outcome Y

Indirect Effect

41

123

Mediation analysis provides a tool
for dissecting CP associations

* Mediation analysis decomposes the
total effect of the SNP (A)on a
phenotypic outcome (Y') into:

Total Effect

@

- Direct effect: effect of Aon Y Direct Effect

that occurs independently of an

intermediate phenotype (M) B /6
+ Indirect effect: effect of Aon Y w

that occurs through the \O/

intermediate phenotype M Indirect Effect

38

Mediation analysis: Assumptions

+  There must be no unmeasured: R r=—

«  confounders of the total effect o

+  confounders of the relationship @ Direot Effect " @
between SNP A and the :
mediator M 5 0

«  confounders of the relationship S\
between mediator M and @/
phenotypic outcome Y

Indirect Effect

40

Mediation analysis: Assumptions

*  There must be no unmeasured: o Efes”
« confounders of the total effect o
« confounders of the relationship @ Direot Effect . §
between SNP A and the “
mediator M 8 "0
« confounders of the relationship ’ .
between mediator M and \@)/
phenotypic outcome Y \\
Indirect Effect

Requires adjustment for known confounders to prevent bias
(Note: this effectively restricts the use of mediation analyses to datasets
in which data on such variables have been collected)

42



Mediation analysis:
Regression-based approach

+ Requires fitting two regression models,
one for mediator M and one for
phenotypic outcome Y: 0,

[ EMla,c] = po+Bra+ pic ] ;
« E[Y|a,m,c] =0+ 01a+ 0m+ 64 B, 8

N

Indirect Effect

Total Effect

Direct Effect

Assesses the effect of Aon M,
while controlling for measured
confounders (C)

Requires fitting two regression models,
one for mediator M and one for
phenotypic outcome Y:

 E[Mla,c] = o+ Bra+ P
|- E[Y la,m,c] :HO+H1a+62m+54c|

Assesses the effect of Aon Y,
while controlling for both Mand C

Mediation analysis:
Regression-based approach

Total Effect

@ 6,

Direct Effect =

By 82

N®

Indirect Effect

44
Guidelines for generating robust
statistical evidence of pleiotropy
" 0 Classify them as examples
C Cl
associatons | L) | assooatons | [y | ofbiological. mediated;or
46

Mediation analysis: Interpretation

+ Mediated pleiotropy

LSNP Alis associated with
mediator Mand the total effect of A on phenotypic

outcome Y's equal to its indirect effect (i.e., the Total Effect
direct effect is equal to 0). o
« Biological pleiotropy e
@ Direct Effect @

+ SNPAIs associated with mediator M, and the total
effect of SNP A on phenotypic outcome Y is equal
Ic; its direct effect (i.e., the indirect effect is equal to By “ 6
0)

Incomplete mediation; SNP A s associated with p
mediator Mand A has both direct and indirect ™)
effects on phenotypic outcome Y (i.e., the total
effect is equal to the sum of the direct and indirect
effects)

Indirect Effect

43
Mediation analysis:
Regression-based approach
* Requires fitting two regression models, R
one for mediator M and one for
phenotypic outcome Y: ® 0 ®
« E[M|a,c] = Bo+ B1a+ Bic Direct Effect  *
< E[Y|a,m,c] =60+ 01a+ 0m+ 64 8, 0,
+ The parameter estimates from these \\@)/
models (namely 1, 61, and 6,) are
used to estimate the direct and indirect Indirect Effect
effects
45
Mediation analysis: Interpretation
Mediated pleiotropy
LSNP Ais associated with
mediator Mand the total effect of A on phenotypic _
outcome Yis equal to its indirect effect (i.e., the Total Effect
direct effect is equal to 0) N
\
ion SNP A s associated with .
Bappeaee S dssmeonser | (D O
effects on phenotypic outcome Y (i.e., the total .
effect is equal to the sum of the direct and indirect N ‘8
effects) ' 2
Biological pleiotropy y
SNP Ais associated with mediator M, and the total \\@)/
effect of SNP A on phenotypic outcome Y is equal
to its direct effect (ie., the indirect effect is equal to Indirect Effect
0)
47
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Mediation analysis:
Interpretation

« Spurious pleiotropy
+ SNP Ais not associated with

mediator M after controlling for
measured confounders

Total Effect

O @

Direct Effect =
81 76

N©® 7

Indirect Effect

mediation R package

> med.fit<-gim(W1~rs1_2, data=combined, family=binomial(‘logit"))
logit'))
" boot=TRUE, boot citype="bcar, sims=1|

> med.out<-mediate(med fitout fit, treat="rs1_2", mediator="
> summary(med.out)

Causal Mediation Analysis

Nonparametric Bootstrap Confidence Intervals with the BCa Method

Estimate 95% CI Lower 95% Cl Upper p-valu
03

ACME (control) 0.02152  0.01823 0.
ACME (treated) 0.02199  0.01868 0.03
ADE (control) 0.00723  0.00415 001
ADE (ireated) 000771000443 __001
002922002461 0.0 ]
Prop. Mediated (control) 0.73634  0.65429 0.84

Prop. Mediated (treated) 075247067272 085
(CME (average) 002175 001847 003
000747 000426 001

[Prop. Mediated (average] 074441066254 0.84

000)
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Empirical searches for pleiotropic loci
for asthma and comorbidities

Asthma-obesity comorbidity

Effect Modifiers

|

Obesity/BMI |:> Asthma

p—

o~

Shared environmental
risk factors.

51

Discovery and Mediation Analysis of Cross-Phenotype Associations Between
Asthma and Body Mass Index in 124132

Yasmimyn D. Salnas", Zuoheng Wang, and Andrew T. DeVian

oo St HowHore, T GSS2 ook a3y s

A Bl 20211951 85.94

Study design

« Two parts:

Genome-wide search for cross-phenotype associations
with asthma and body mass index

Follow-up mediation analysis to dissect genome-wide
significant CP associations

53

Study population

« N = 305,945 White, British subjects from the UK Biobank (a
population-based prospective cohort study of > 500,000
subjects, aged 40-69 years at baseline)

ank”
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Phenotype definitions

« BMI at baseline (kg/m?):

- calculated based on height and weight measurements
collected by trained UK Biobank staff at the recruitment
sites

+ Asthma diagnosed prior to baseline (yes/no):

- ascertained via the question “Has a doctor ever told you
that you had asthma?”

- Note: In mediation analyses, two subgroups were created

based on age-at-diagnosis
] uk
biobank

Statistical Methods

( QC in PLINK )
( Esfimation of genetic correlation using BOLT-REML )
= nivariate association analyses using
K linear mixed effects models in BOLT-LMM
( "Search for overlapping signals between asthma and BMI )
([ Assessment of asthma-BMI refationsfip in the UK Biobank GWA sample ]
o
= ; BT ToTat
&l of potential ofthe )
( Follow-up mediation analysis in ‘mediation’ R Package )

55

Overlap in GWA signals

Association with BMI among the 1,457 SNPs with genome-
wide significant p-values for asthma

<005 mp<5x1DS 4p<sxi0e wNotassociated wihBMI
Figure 1. Overlap in GWA signals ‘asthma and BMI. Results for asthma are for the
analysis of all asthmatic subjects (35,373 asthmatics vs. 270,572 non-asthmatics). Results for
BMI are for the quantitative BMI analysis (n=305,945). Both analyses are sex- and age-

adjusted. The threshold for genome-wide significance was alpha=5x10+.

57

Regional plot around rs705708 for BMI
(blue) and asthma (red)

Plotted SNPS[JTTTT AT TR 11110 W11 00BN W0 0111 0T

Sl

15

564 5656 565
Postion on chr12 (Mb)
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5
Overlap in GWA signals
Association with asthma among the 1,699 SNPs with
genome-wide significant p-values for BMI
s
@%)
#p<005 ® p<5x105 % p<5x 100 sNatassociatod wihashma
Figure 1. Overlap in GWA signals between yna and BMI. Results for asthma are for the
analysis of all (35,373 . 270,57 asthmati Results for
BMI are for the quantitative BMI analysis (n=305,945). Both analyses are sex- and age-
adjusted. for g dl Ipha=5x10°.

Cross-phenotype associations in 12q13.2

‘Table 2. Cross-phenotype associations in 124132+

BP Effectrsterencealle | EAF
[sesei31 [ GIA o
(s

03452
o3
03470

ERBBT | 56,
ERBBS

nI1171759%
2292239

B3| 56488913 | AG 04712
nAT17177 | ESYTT | S6518408 | TG 06180 |10¢ (102109 ] 250x10°

Abbreviaions: P base-pair ; BMI = body mass index; C1 s raio; SNP.
polymorphism

. Results shown for SNPs with p < Sx10% or ssthma snd p < 0.05 for BI,

© Pvalu from BOLT-LMM, derived uing he tandard “inintsiml mixd moe.
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Decomposing the effect of rs705708 on BMI
via mediation analysis

61

Conclusions

rs705708 has a positive direct effect on asthma
+ Stronger in magnitude for childhood asthma

rs705708 has a negative direct effect on BMI
- Consistent in magnitude and direction in analyses
including childhood vs. adult asthmatics

This suggests that locus 12q13.2, tagged by rs705708, has
pleiotropic effects on asthma and BMI.

63

What if we expand this
investigation to look at more
phenotypes correlated with

asthma?

65

127

Among childhood asthmatics
(n=4,817) and common set of non-
asthmatics (n=181,304)

total effect =

0656

direct effect = -0.0655

15705708 > BMI

+ N /" varies by sex
W
indirect effect = -0.0001*

Population Average

Adult asthmatics (n=16,801) and
common set of non-asthmatics
(n=181,304)

total effect

560

direct effect = -0.0582

1s705708 > BMI

+ 5 St

W

indirect effect = 0.0022

Population Average

Note: Effect estimates shown are adjusted for common determinants of asthma and
BMI: age, sex, breast-feeding status, exposure to maternal smoking, and smoking
status at asthma diagnosis (adult analyses only). Unless otherwise noted by an
asterisk(*), all paths are significant at the 0.05 level.
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Conclusions

12q13.2 is multigenic and our CP associations span genes
CDK2, RAB5, SUOX, 1ZK4, RPS26, ERBB3, and ESYT1.

1705708 is the top regional BMI signal and resides in ERBBS3.
The top regional asthma signal, rs2456973, resides in IZKF4.
While rs705708 and rs2456973 could be in LD with the same
causative variant in either ERBB3 or IKZF4 or another gene in

12q13.2, it is also possible that each variant could tag a distinct,
trait-specific causative variant in different genes.

Therefore, locus 12q13.2 displays pleiotropic effects on
asthma and BMI, but this may not be an example of pleiotropy
at the gene level (biological pleiotropy).

64

Asthma, T2D and anthropometric
measures

%Jte)sity is a well-established risk factor for both asthma and

— While highly correlated, waist circumference (WC) can provide
distinct information on adiposity as it is a measure of visceral
obesity, sreciﬂcaIIyWC adjusted for BMI. WC is often used in
studies of chronic diseases.

— Increased WC has been shown to be an additional risk factor for
T2D and asthma even after adjusting for BMI

Elevated blood glucose and T2D have been linked to
increased risk of asthma in adults, and conversely, asthma
hgslbeen associated with increased risk of developing T2D in
adults.

Height is a highly heritable polygenic trait; there is evidence
that shorter individuals have an increased risk for developing
T2D and individuals with childhood onset asthma have shorter
stature as adults compared to non-asthmatics
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Variants in JAZF1 are associated
with asthma, type 2 diabetes, and
height in the United Kingdom
biobank population

‘Analysis of subjects of genotypes and
phenotypes available (N=438,282)

[white British (N=409,615) | [ White non-Britsh (N=49,352) |

Subject QC (N=42,863) Subject QC (N=5,179)

ry: Replication:
Unrelated White British Unrelated White non-British
(N=307259) (N=39,133)

biobank’

67

Phenotypes

Asthma: defined by either ICD-10 code (field 41270, J45 or J46) or
self-reported diagnosis by a doctor (field 6152).
T2D: defined by either ICD-10 code (UK Biobank field 41270, code
E11) or self-reported diagnosis by a doctor at > 30 years of age
(fields 2443 and 2976). Individuals with type 1 diabetes [self-
reported diabetes that occurred < 30 years of age or E10] or
gestational diabetes [self-report (field 4011) or 024] were excluded
from both cases and controls.
Anthropometric measurements:
— Waist circumference (WC), adjusted and unadjusted for BMI
— Height
— Weight
- BMI
— When used as outcomes, WC, BMI, height, and weight were
transformed using rank-based inverse normal transformation as
implemented in R

69

Variants in JAZF1 with genome-wide significant
associations with asthma, T2D and at least one
anthropometric measure
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Discovery

Replication

N=13,407,279 (Discovery)

N=13,793,916 (Replication)

Genotypes were imputed by UK Biobank and used in the analysis; INFO > 0.8 and MAF > 0.001

68

demographics

Discovery and replication sample

Asthma  Asthma  T20 T2 WC  BMI Height Weight
Cases  Controls  Cases  Controls (em)  (kg/m?) {em) (ke)
T T R
Nmean (sd) W72 RF0 B4 ags @) (923) (1587
—— 7 s U2 119 el loEd 167708
‘Sex (N [3] male) (4213) (4662) (6265 @500 (4587) (4s87) (4587 4s.87)
Ao atrecnitment w047 seol s s s
(mean sd) SoMB(BIE) HBITE) (oo SDEBM g  moo) (800 (800
W TE% T
Nmean (sd) se2 Mels 265 B (335 @e) (21 (625
Regcaion 204 1622 1610 16%% 1939 1930 1991 1939
‘Sex (N[5 male) (4215) (4439)  (61.33) @307)  (44.09) (4408)  (a4.06) (44.09)
Age at recruitment 59.34 E 5544
(mean[sc) 5526(830) 50816 705 BB g1 @) @) (819
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Collider Bias
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Univariate fine-mapping results in the JAZF1 region for
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asthma, T2D and height

Mediation results for the two variants in JAZF1 with cross-
phenotype associations for asthma, T2D and height

74
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JAZF1

75

JAZF1 encodes a protein with three zinc fingers and acts as a
transcriptional repressor.

It is member of a chaperone complex that orchestrates acetylation at
regulatory regions controlling the expression of many genes
involved in ribosome biogenesis.

Work on the Jazf1 knockout mouse induced pluripotent stem cells
su%gesis JAZF1 is involved in differentiation of B-cells and glucose
homeostasis.

JAZF1 appears to limit inflammation in adipose tissue and mice
overexpressing JAZF1 have lower body and fat weight.

In mouse airway epithelial cultures, JAZF1 expression was shown to
be necessary for multiciliated cell differentiation, which is important
for removing contaminants from the airway.

These functional studies suggest the plausibility of the role of JAZF1
in asthma and T2D, but do not suggest a genetic link between these
phenotypes.

Previous associations with JAZF1

Previous studies have found variants within JAZF1 to be associated
separately with T2D, obesity phenotypes, as well as, height

These findings include at least one study that reports a significant
association with SNPs in JAZF1 with WC adjusted for BMI.
—~ Our findings also suggest that previous associations with SNPs in
JAZF1 with WC adjusted for BMI are likely due to the same collider bias
we observed, and the variants are associated with height, not adiposity.

There is evidence JAZF1 is associated with child-onset and possibly adult-
onset asthma

76

Conclusions

77

While previous studies have identified associations with variants in JAZF1
associated with some aspect of all three phenotypes, this is the first time
that asthma, T2D, and anthropometric measurements have been analyzed
simultaneously i the same dataset and the first attempt at dissecting
whether there are overlapping causal variants and/or biological pathways
for these phenotypes

This study provides the strongest evidence for an association of variants in
JAZF1 with asthma compared to previous studies

Variants in JAZF1 are associated with asthma, type 2 diabetes and height
which provides a promising link between these three phenotypes, but the
fine-mapped variant(s) for asthma, type 2 diabetes and height are unique.
These results are consistent with biological pleiotropy at the gene-level for
all three phenotypes.

Mounting evidence that pleiotropy is more common atthe gene:-level
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Univariate:
Phenotype 2

Pleiotropy exercise (Part 3)

P<5x10¢

P<5x10¢
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Mendelian randomization:
An Introduction

Andrew DeWan, PhD, MPH
Associate Professor of Epidemiology
Director, Yale Center for Perinatal, Pediatric and Environmental Epidemiology
Yale School of Public Health

Yale scrioon or pUBLIC HEAITT
1 2
“ . ” —— = BMI and Bloodstream Infection (BSI)/Sepsis
The “Obesity Paradox l S Mortality ]

et Statue Wit Woraly n Aduts Wit

Areas of Concern (BMI/BSI as an example)

« Selection Bias: If obesity is associated with BSI risk, non-obese
patients may have other characteristics that cause their BSI that in
turn are more strongly associated with mortality

* Reverse Causation: if measured BMI is affected by BSI

« Confounding: if factors such as chronic diseases and smoking habits
that affect both BMI and BSI mortality are not adequately adjusted
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Mendelian randomization

* Mimic randomized trial using genetic data as instruments for
exposures

« Leverages information on genetic variants that segregate randomly at

conception
\ +
\ F &
« If an association between the instrument and outcome is detected, a Ve i
causal relationship for this association is strengthened N Pr 7
7 8

MR Assumptions

* The genetic instrument (G) is associated with the exposure (X)

* The genetic instrument is not associated with any confounder (U) of
the exposure-outcome association

* The genetic instrument is conditionally independent of the outcome
(Y) given the exposure and confounders

= Mendelian randomisation results

Mean difference (95% CI)

Continuous outcomes

Dairy consumption on systolic blood pressure (serving =
Uric acid on blood pressure (5D S —— -
10 -0 o o5 10 15 20 25 30
Binary outcomes 0dds or hazard rato (95% C1)
Uric acid on heart disease (SD)" ot -
Vitamin D on mortality (20 nmol/L)"
CRP on heart disease (5D} — =
LDL.C on myacardial infarction (SD) e S S
HDLC on myocardial nfarction (5D)* by
BMIon coronary heart disease (SD)” =
04 07 10 13 16 19 22 25 28

10

CRP and Heart Disease

tootée_ Alcle 2 Peralisle higher Parallele sk
polymorphism  froquency* jparticpantst mean n CRP mean in CRP ‘o for CHD
o OSECmg/L  (95%C), me/L [0}
153093077 006 19/15133/96807 - 0.2101710024) 093 087101.00)
51205 067 43/40527/172567 - 01801610020 1.00 0.98101.02)
51130864 030 41/37145/157 905 - 0.1301210015) 098 096 101.00)
151800947 094 31/31636/93507 0.26(023100.29) 099 (094 101.03)

01 0 01020304 085090095 1 1.05 110

Risk ratio* (95% C1) Risk ratio* (95% C1)
for CHD per 1 SD for CHD per 15D

Circulating usual concentrations of CRP higher ln CRP (mg/L) higher In CRP (mg/L)
Adjusted for age, sex, and ethnicity 149 (14010 1.59)
Further adjustedt —_— 1.33 (12310 1.43)

Genetically raised concentrations of CRP$
SNP analyses.
Haplotype analyses

1.00 (0.90t0 1.13)
1.00 (0.89to 1.12}
08 1 12 14 16 18

BMI and CHDIStrokelType 2 Diabetes

b,

Stroke.

Diabetes

11

132




One-sample vs. two-sample designs

One-sample

« Genotype(s), risk factor and
outcome all measured in the
same set of study subjects

Two-sample

« Genotype(s) and risk factor
measured in one set of study
subjects and genotype(s) and
outcome measured in a separate
set of study subjects

* Individual level data must be

available * Can use summary statistics or

individual level data

One-sample vs. two-sample designs

Assumption/lssue

One-sample

Two-sample

Instrument variable related to risk

factor

Confounders

Pleiotropy

Weak instrument biases towards
the confounded regression result
Can (and should) check this for
measured confounders

Multiple methods to explore this
issue (including MR-Egger)

Weak instrument biases towards
the null

Not often possible when using
summary statistics

Multiple methods to explore this
issue (including MR-Egger) and may

be more powerful with large
consortium datasets since methods
tend to be statistically inefficient
Subgroup analyses Possible if large sample sizes and
data on relevant risk factors are
available

Only possible if individual level data
are available

Bias from adjustments made in
GWAS

N/A as all adjustments made in the
same set of subjects

Summary data may or may not
have been adjusted

13 14
Selecting genetic variants for an instrument Instrument strength
* Single or multiple variants * Measured using the F statistic in the regression of the IV on the
exposure
L ) o _N-K-1, R
* Current recommendation is to select variant(s) that are significantly F= e =
associated with the exposure at the genome-wide level
. . . . R2: proportion of the variance of the exposure explained by IV
* Want a strong genetic instrument to avoid weak instrument bias N: sample size
* Asingle variant or variants with modest effects in small samples are likely to ! P . .
have Tow power and can suffer from bias K: number of genetic variants
« If selecting multiple variants these should not be in LD and assumes General Rule: F < 10 is an indication of a weak instrument
negligible gene-gene interaction among variants
15 16
Pleiotro ; .
Py U Testing MR: Wald Ratio
« Assumption that the IV is not /\
associated with Y independently P * Simple ratio of the effects of the
from X G: Ly X Y instrument variablg on the ~
* Presence of pleiotropy can bias the : . outcome over the instrument
causal estimate \ ; variable on the exposure ~ 7Y
« Sensitivity analyses such a5 MR- oo AL + Can be implemented in both one BIV = —
Egger can be used to test whether or T andotwo sarr|1ple demg:; el B
i i * One sample can use elther a single
o Beioyopy assumption has variant or a GRS zX
disease pr 150 nreuse oL crtosterat « Two sample design that uses
= multiple variants requires a
method for combining Wald Ratios
17 18
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Testing MR: 2 stage least squares (2SLS)

« Single continuous instrument
(GRS)
* Only for one sample method

* Regress X on G

* Calculate genetically predicted
values of X

« Assumes a linear relationship

* Regress Y on genetically
between exposure and outcome

predicted values of X
* Fix the standard errors (e.g.
sandwich estimator)

Testing MR: Inverse variant weighted

* One or two sample designs

For each variant calculate the Wald ratio:

* Tends to give more reliable s T
results in the presence of Bj= V_
heterogeneity and when using /
large number of instruments

Combine into an overall estimate using a
formula from meta-analysis literature:

* Fixed (assumes no heterogeneity ~ Zj\A/JZ-O';Jg Ej
across SNP) or random effects BIVW =—

52 =2
meta-analysis 2jy5oy;

19

20

Testing MR: Weighted Median

* Calculate the Wald ratio for each instrument
« Select the median value according to the weighted method

Testing MR: MR-Egger
* Provide a valid causal estimate in the presence of some violations of the

MR assumptions (mainly pleiotropy)

* MR consisting of a single study with multiple IVs is analogous to a meta-
analysis

BoR B BB B BB B A dos * Bias resulting from pleiotropy is analogous to small study bias in meta-
o ) o o analysis
Poventle(p) 3 15 23 3% 5 % & 75w % s * Small studies with less precise estimates tend to report larger estimates than big
Weighting | oss 085 studies with more precise estimates
S 045 o4 * Regress the standard normal Blockers in myocardial infarcton Magaesium in myocardial infarction
7 st o wn o3 oz h S _
oz oz deviate (odds ratio divided %1; 5 gg? Bisiss
EE o by its se) on the estimate’s &9 LY
o ’ . precision (inverse of the se) ¢ .
h gencticvariant
E o oo * Without bias, intercept = 0, ¢ .y ) .
* Valid estimate when more than half of the genetic variants satisfy the IV and in the presence of bias 2 o 5 o g
assumptions the \nler:ept is a measure of o N ——— LI w1z
. . . ot i
* No single IV contributes more than 50% of the weight eymmety e s s s 5 "
Egger -
P Databases and software
i is
¥ . Table 3 | Databases of genome-wide association study results
LR Number Integrated with
. CuRs " Data source Description of traits statistics package?
Bos MR-Base A curated database of genome-wide Over 1000 Yes

crosing

0 Kl ey

pay

% E S

Cave st fy Gauet e f

association study results with
integrated R package for MR”
PhenoScanner A curated database of genome-wide Over 500 Yes
association study results with
integrated R package for MR*”
GWAScatalog _ Searchable database of genome-wide  Over 24000 No
association study results™
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Body mass index and risk of dying from a
bloodstream infection: A Mendelian
randomization study

Tormod Rogne'23*, Erik Solligard™?, Stephen Burgess**, Ben M. Brumpton
Julie Paulsen(®, Hallie C. Prescott» %", Randi M. Mohus 5™, Lise T. Gustad '3,
Arne Mehl'2, Bjern O. Asvold»®'?, Andrew T. DeWan"*, Jan K. Damas"*1%*

PLOS Medicine | https://doi.org/10.1371/journal.omed.1003413  November 16, 2020

6.7.8

Assess the causal association between BMI and risk of and mortality
from BSI by overcoming the limitations of previous observational
studies by conducting an MR study in a general population of
approximately 56,000 participants in Norway with 23 years of follow-up

Study Population

« The Trondelag Health Study (HUNT) is a series
of cross-sectional surveys carried out in Nord-
Trondelag County, Norway

* 130,000 inhabitants who are representative of
the general Norwegian population in terms of
morbidity, mortality, sources of income and age
distribution

* Based on HUNT2 survey conducted in 1995-
1997 with 65,236 participants, 55,908 of whom
had complete data for the analysis

25 26
Outcome
0o-1757
144 (62) 24(59)
e ) o * Linked to all prospectiyelK recorded blood cultures at the two
3 o1 (7 community hospitals in the catchment area (Levanger and Namsos
050 15 269) Hospitals) as well as St. Olav’s Hospital in Trondheim (tertiary referral
P ) center)
o) e * Data on blood cultures were available from January 1, 1995 through
397 (19.4) 64(18.2) the end of 2017
Son e * Date of death and emigration out of Nord-Trondelag County were
102003 obtained from the Norwegian population registry
* BSI was defined as a positive blood culture of pathogenic bacteria
oy bl 710 * BSI mortality was defined as death within 30 days of BSI diagnosis
or <1 hgorous sty
27 28
Genetic Instrument Analysis Methods
* Based on a BMI meta-analysis of ~700,000 individuals ... e s * Fractional polynomial model (suggestion of a nonlinear relationship
* 939 of 941 SNPs identified as associated with BMI (p<5x10¢, two between BMI and BS) . X i .
SNPs did not pass imputation quality control) . 2-s_tage Ieast_squares (with sandwich estimator) for analyses assuming
. . a linear relationship between exposure and outcome
* Genetic risk score (GRS) was calculated for BMI using the --score .
command in PLINK (version 1.9) and weighted based on the effect * Sensitivity analyses
estimates from the meta-analysis * MR Egger (random effects)
* INW
i . o . * Weighted median
* GRS (939 variants) explained 4.2% of the variation in BMI in the « 2-sample (using Yengo et al. for SNP-exposure associations)
population (F-statistic = 2,461)
29 30
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Instrument-exposure associations
* Instuments ———— 95% Cis MR Egger MAEqeerasncl — — = W
E) E3
Bodv mass index
S5 Table.
WROR Lover Upper Pusle imerept Lower  Upper Pater STROBE-MR: Guidelines for strengthening the reporting of
Oncampic Mendelian randomization studies
e e o e R Authors (in alphabetical order):

George Davey Smith, Neil M Davies, Niki Dimou, Matthias Egger, Valentina Gallo, Robert
Golub, Julian PT Higgins, Claudia Langenberg, Elizabeth W Loder, J Brent Richards, Rebecca
C Richmond, Veronika W Skrivankova, Sonja A Swanson, Nicholas J Timpson, Anne Tybjaerg-
Hansen, Tyler J VanderWeele, Benjamin AR Woolf, James Yarmolinsky

Peer] Preprints | https://doi.org/10.7287/peer].preprints.27857v1 | CC BY 4.0 Open Access | rec: 15 Jul 2019, publ: 15 Jul 2019
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Some Advanced MR analysis approaches

Gy U, Gy U
Strong evidence Interventional \ - \ \ ~ \

of causation

Systematic
review of RCTs.

RCT

Cohort
Case control
Ecological

Very weak evidence Observational
of causation »

instument soecton aad horizontal pleiotopic modoling. Sci. Adv. 8, asbS7ad (2022)

37 38

COMRBASE “sammi| 3 o . BMI and Lung Cancer

http://app.mrbase.org/ |
& e . e
\ a5z - om0
T - ——
J

Extract SNP effects from
outcome GWAS

ot 0r 1 12
e sonly  Etmated R per kol s nBMI(99% 1)

Lung(G)

outcome effects

ndgm)

Snaskarn x s G010 800y

MR estimates and
sensitivity analyses

39 40
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Di y and of Loci with Lipid Levels

Afulllst of authors and affilations appears at the end of the article.
# These authors contributed equally o this work.

Abstract
Low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol,

triglycerides, and total cholesterol are heritable, modifiable. risk factors for coronary artery
disease. To identify new loci and refine known loci influencing these lipids, we examined 188578

individuals using genome-wide and custom genotyping arrays. We identify and annotate 157 loci

associated with lipid levels at P < 5x10-%, including 62 loci not previously associated with lipid
levels in humans. Using dense genotyping in individuals of European, East Asian, South Asian,
and African ancestry, we narrow association signals in 12 loci. We find that loci associated with
blood lipids are often associated with cardiovascular and metabolic traits including coronary artery
disease, type 2 diabetes, blood pressure, waist-hip ratio, and body mass index. Our results

illustrate the value of geneti
biological mechanisms regulating blood lipids o guide future genetic, biological, and therapeutic
research.

data from individuals of diverse ancestries and provide insights into

A comp ive 1000 based g

association meta-analysis of coronary artery disease

A full list of authors and affations appears at the end of the article.
# These authors contributed equally to this work
Abstract

Existing knowledge of genetic variants affeq

£ risk of coronary artery disease (CAD) s largely
ide association studies (GWAS) analysis of common SNPs. Ley

based on genome-wi g phased
haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of 185 thousand
CAD cases and controls, interrogating 6.7 million common (MAF>0.05) as well as 2.7 million low

variants. In addition ‘most known CAD loci, we

ragin

frequency (0.005 5
identified 10 novel loci, ¢
implicate biological processes in vessel walls. We observed intra-locus allelic heterogeneity but
little evidence of low frequency variants with larger effects and no evidence of synthetic
association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD
showing that genetic susceptibilty to this common disease is largely determined by common SNPs.
of small effect size.

ht additive and two recessive. that contain candidate

enes that newly

4
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The Ethics and
Regulation of Human
Subjects Research

CONSULTING GROUP

Wayne Patterson, PhD
Senior Consultant

Tuskegee Study of Untreated Syphilis
in the Negro Male (1932-1972)

CONSULTING GROUP.

The Nuremberg
Code (1947)

Ten Basic Principles, including:

of s

“The experiment should be conducted as to avoid all innecessary
physical and mental suffering and injury..."

believe that death or disabiing injury wil oceur; except, perhaps, in

subjects.”
“During the course of the experiment, the human subject should be at
y toan end i he h

)

be impossible.”

g
prepar at any stage, il

resdtin injury, disabilty, or eath to the experimental subject.

National Research Act (1974)

Required the creation of the National Commission for
the Protection of Human Subjects of Biomedical and
Behavioral Research.

CONSULTING GROLP

The Ethics of Conducting Research with
Humans: The Belmont Report (1979)

= Beneficence o
= maximize benefits, minimize risks

= Justice It
= Who should bear the burdens of the
research?
= Who should benefit from results?

= Respect for Persons
= Autonomy
=« Protect those with diminished autonomy

CONSULTING GROUP.

Food & Drue Administrati
(jurisdiction: clinical investigations of drugs, devices, biologics)

The Belmont Report was the basis for
federal requirements of human
research protections

* 45 CFR 46 Subpart A (‘Common Rule’)
* Subpart B (Pregnant Women, Fetuses, and
i i Viable !

* Subpart C (Prisoners),
* Subpart D (Minors)

* 21 CFR 50: Protection of Human Subjects

* 21 CFR 56: Institutional Review Boards

* 21 CFR 312: Investigational Drugs P
* 21 CFR 812: Investigational Devices CONSULTING GROUP




Itis Federal Policy for the
Prot&ehcﬁon of Human Subjects

What is the
Originally promulgated in 1991, with
Co n;{mlo r; no %igni |cgnt cha%ges, until 1/21/19!
uier

Rockefeller’s Federal Wide Assurance
FWA) certifies compliance with this

e o oy e e o
Rule agencies...)

TSR |

First Question: Is your
activity “human subjects
research” (HSR)?

CONSULTING GFOUP.

Start with the Common Rule
First assess:

Does the activity involve Research?

CONSULTIVG GROUP.

11

v'19 federal agencies follow the new
Common Rule, e.g.,
* DHHS, including NIH (45 CFR 46,
Subpart A)*

What's so - Do (32 CFR 219)
= NSF (45 CFR 690)
CO mmon + Department of Energy (DoE) (10 CFR
about the o .
* Veterans Administration (38 CFR 16)
Common « Department of Education (DoEd) (34
CFR 97)
Rule?

*FDA is within DHHS, but also has its own

regulations

*DolJ has not signed on yet

Specifically:

1. Is it HSR according to the Common Rule?
2. Is it HSR according to FDA?

(could be both!)

CONSULTING GROLP

143
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Common Rule Definition of
Research:

“..a systematic investigation, including
research development, testing and
evaluation, designed to develop or
contribute to generalized knowledge...”

(Both parts of the definition must be met)

CONSULTING GROUP

12



Part | of the definition:
What's a Systematic Investigation?

an activity that involves a prospective plan

which incorporates data collection, either

quantitative and/or qualitative, and data
analysis to answer a question

Does a case study involve a systematic
investigation?

CONSULTING GROLP.

13

An activity is not likely to be
generalizable if the intent is:

The evaluation or improvement of a process, practice, or
program at the site where the activity is being conducted

Results only to be applied to populations, or inform practice

within the target population or within the site where the activity
is being conducted

Implementation and evaluation of an evidence-based practice,
process, or program (is it functioning as intended within the site
where the activity is being conducted or with the local target

population mnn
COUNG G

15
Once you determine if the activity is or is
not human subjects research according to
the Common Rule...
You may still need to assess if the activity is
human subjects research according to FDA
hrp
17

Part Il: What does ‘designed to develop
or contribute to generalizable
knowledge” mean?

...designed to draw general conclusions:

v'what we know about what is being tested is not
yet firmly established or accepted;

and

v'the activity is not dependent on the unique
characteristics of the target population or system in
which it will be implemented

CONSULTING GAOLP

14

If the activity IS research:

Does the research involve human subjects
according to the Common Rule?

A living individual about whom an investigator conducting
research:

(i) Obtains information or biospecimens through intervention
or interaction with the individual, and uses, studies, or
analyzes the information or biospecimens; or

(ii) Obtains, uses, studies, analyzes, or generates identifiable
private information or identifiable biospecimens.

CONSULTING GROLP

16

FDA Decisions

Rgfgsl E)'?&SSE‘,’%! Wﬂ;ﬁ an FDA-regulated test article (i.e.,

Does the activity involve Human Subjects?

An individual who is, or becomes, a participant in research,
eitll;ler asar cipier}l't of tp‘e tﬁs"t rticle or as a control. A

sul lject may be either a healthy human or a patient. Also
included in the FDA human subject definition: The use of a
biological specimen —even if de-identified-from an individual
used to test an investigational device

Does the activity involve research (clinical investigation)?
Any experiment that involves a test article and one or more

human subjects... mnn
D

18



If the activity IS human
subjects research, next
question: Is it exempt
from the federal
regulations? *

*this does not mean exempt from institutional r D
reviewl
CONSULING GROLP

19

Exemption #4: Secondary research uses
of identifiable private information or
identifiable biospecimens can be
exempt under this category, if at least
one of the following criteria is met:

21

Exemption 4(ii)

Identifiable private information...is recorded by the
investigator in such a manner that the identity of the
human subjects cannot readily be ascertained directly or
through identifiers linked to the subject, the investigator
does not contact the subjects, and the investigator will
not re-identify subjects;

i)

23

There are 6 HSR categories of research
that are Exempt from IRB Review
Focus on: Exemption #4

Secondary research* for which consent is not required
*Secondary research only! (i.e., re-using identifiable information and/or

identifiable biospecimens that were, or will be, are collected for another
reason, e.g,, clinical or research)

|

20

Exemption 4(i)

The identifiable private information or identifiable
biospecimens are publicly available;

22

Exemption 4 (iii)

“The research involves only information collection and
analysis involving the investigator’s use of identifiable
health information when that use is regulated under 45 CFR
parts 160 AND 164, subparts A and E [HIPAA], for the
purposes of “health care operations” or “research” as those
terms are defined at 45 CFR 164.501 or “public health
activities and purposes” as described under 45 CFR
164.512(b)”

CONSULTING GROUP.

24



Exemption 4 (iv)

The research is conducted by, or on behalf of, a Federal
department or agency using government-generated or
government-coll d information obtained for ch
activities, if the research generates identifiable private
information that is or will be maintained on information
technology that is subject to and in compliance with section
208(b) of the E-Government Act of 2002, 44 U.S.C. 3501 note, if
all of the identifiable private information collected, used, or
generated as part of the activity will be maintained in systems of
records subject to the Privacy Act of 1974, 5 U.S.C. 5523, and, if
applicable, the information used in the research was collected
subject to the Paperwork Reduction Act of 1995, 44 U.S.C, 3501
et seq.

25

If the activity IS human
subjects research, but does
not qualify for exemption, it
is HSR that is not exempt,

, itis subject to federal
regulations governing human
research protection...

..including review by a
federally mandated
Institutional Review Board
(IRB)

CONSULTING GFOUP.

27

For a non-exempt study to qualify for
Expedited (not full IRB Board)
Review...

...The research must be all of the following:

* no greater than minimal risk

* not involve prisoners (per OHRP guidance)

* not be classified

* not involve identifiable data that would place subjects at risk of
criminal or CIVI| ||ab|||ty or be damaging to the subJects financial
standing, employability, insurability, reputation, or bi
stlgmanzmg f |t could reasonable protections must be in place

so that risks related to invasion of privacy and breach of
confidentiality are no greater than minimal, and

* Fit into one or more of these categories:

29

What are the ethical standards that
should be considered for all exempt
studies?

mmwu:s:.mmmummmumm

interactons with particpants, the
arion DN/A-ﬁﬂ:nmlmam:-d

CONSULTING GAOLP

26
Two Types of Non-Exempt Review
1. Expedited Review
2. Full Board Review
hlr]p
28

If the nonexempt
research doesn’t qualify
for expedited review, it
must be reviewed at a
convened IRB meeting.

CONSULTING GROUP

30



https://www.govinfo.gov/link/uscode/44/3501
https://www.govinfo.gov/link/uscode/5/552a
https://www.govinfo.gov/link/uscode/44/3501
https://www.hhs.gov/ohrp/regulations-and-policy/guidance/categories-of-research-expedited-review-procedure-1998/index.html
https://www.hhs.gov/ohrp/regulations-and-policy/guidance/categories-of-research-expedited-review-procedure-1998/index.html
https://www.hhs.gov/ohrp/regulations-and-policy/guidance/categories-of-research-expedited-review-procedure-1998/index.html

Whether expedited or full board,
a study must meet federally-
defined criteria in order to be

approved

i.e.,
“The .111 Criteria”

CONSULTING GROLP

§ 46.111 Criteria for IRB approval of
research.

(a) In order to approve research
covered by this policy the IRB shall
determine that all of the following
requirements are satisfied:

CONSULTING GROLP.

31

1. Risks to subjects are minimized:

(i) By using procedures which are consistent with
sound research design and which do not
unnecessarily expose subjects to risk, and

(i)  Whenever appropriate, by using procedures
already being performed on the subjects for
diagnostic or treatment purposes

h/rp

CONSULTING GROUP.

33

3. Selection of Subjects is Equitable

Consider:

* The setting in which the research will be conducted

* Who is included, who is excluded? Does it make
scientific sense? Ethical sense?

« If applicable: Are children in a study involving a test
article that hasn’t first been tested in adults?
Pregnant women before non-pregnant women?

* Costs or compensation that may impact ‘fairness’

* Screening and recruitment?

* What about non-English speakers? m

CONSULTING GROUP.

35

32

2. Risks to subjects are reasonable in
relation to anticipated benefits, if any, to
subjects, and the importance of the
knowledge that may reasonably be
expected to result

CONSULTING GROLP

34

4. Informed consent will be sought from
each prospective subject or the
subject's legally authorized
representative, in accordance with, and
to the extent required by, §46.116

If not:

Are ALL the criteria for waiving informed
consent or for altering/excluding specific
elements of informed consent met?

CONSULTING GROUP

36


https://www.ecfr.gov/current/title-45/section-46.111
https://www.ecfr.gov/current/title-45/section-46.111

5. Informed consent will be
appropriately documented or
appropriately waived in accordance with
§46.117

If not:

Does the research meet one of the
allowable criteria to waive
documentation?

[ =]
=1

CONSULTING GROLP.
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7.When appropriate, there are
adequate provisions to protect the
privacy of subjects...

Consider:

* Settings where recruitment, consent, and research
procedures and interactions will occur

* Provisions to ensure privacy for each of the above

* Provisions to ensure privacy when contacting or
soliciting information from subjects

Ex
=1

CONSULTING GROUP.
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A closer look at data security: minimize the risk

of disclosure or breach of data
+ Obtaining the data
* What is the sensitivity of the data? Are all the data points that will be

a;cf‘ssed or gathered for the research necessary to achieve the objectives
of the research?

* Recording the data
* What (if any) identifiers, including codes, will be recorded for the
research?

+ Storing the data

+ Where will paper research records, including signed consent forms, be
stored? How will paper records be kept secure and restricted to
authorized project personnel?

+ Where will the electronic research data be study be stored (University-
provided database application like REDCap, IT file server, etc.)?

+ Ifthere a key that links code numbers to identifiers, that list should be
kept separate from the caded data, including copies of signed nformed

consen 's. Additionally, access to that list/key must be restrictec
authorized research personnel.

41

6. When appropriate, the research plan makes
adequate provision for monitoring the data
collected to ensure the safety of subjects

* What data will be monitored for safety purposes?
When? How?

* Who will be responsible for evaluating safety data?
Is a DSMB needed?

* Stopping Rules?

* Communication plan of findings to investigators
and IRBs (from the IRB of Record or Sponsor)

CONSULTING GAOLP

38

...and to protect the confidentiality of
subject data
General:

* How will the data/biospecimens be stored?

* If identifiers will be removed or replaced, is there a
p ssﬁlllw?that such information/biospecimens could be re-
identified?

* Will the data/biospecimens be shared/transmittes
transterres tc/) B | party or othem%e il oseud ér
released? How?

* Is there a potential risk of harm to individuals if the
data/biospecimens are lost, stolen, compromised, or
otthgrgwse used in a way contrary to the parameters of the
study’?

* Plans for data retention and destruction?

CONSULTING GROLP.

40

Data security, continued

* Transporting or transmitting the data

* If any research data will be collected on a mobile device, such as an
electronic. (:blet, cell Fhone, or lre\eés activity tracker, details are gieded
regarding the physical security of the device, electronic’security, and how
the transf?‘r of data from device to research storage location will be securely
accomplished

* If any research data will be directly entered/sent by subjects over the
internet or via email, will a University-provided database application (like
REDCap) be used, or'is there an encrypted tunnel to the site/application?

* Access to the data
+ How will the investigators ensure only approved research personnel have

access to the stored research data? Password-protected files, role-based
security, etc.?

* Sharing of the data
. W'\g data be }ransferred or disclosed toor from the University? Is 3 %Dn(ratt
or data transfer agreement necessary? What (if any) identifiers will be

included? How will the da;a be s gurely transferred or disclosed (University-
approved secure file transfer, etc.)

42




Using Social Media in your
research

Recruitment
* Seek to normalize social media recruitment to the extent
possible, drawing analogies to traditional recruitment efforts
* Ensure that the proposed online recruitment strategy complies
with all applicable federal and state laws, e.g.
* Recruitment advertisements
* Web site “Terms of Use”
« Tell potential subjects that information shared via social media is
not secure.

s ot

CONSULTING GROLP.
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Using Social Media in your

research

Recruitment
* Ensure that proposed social media recruitment strategies
respect all relevant ethical norms, including:
« Proposed recruitment does not involve deception or
fabrication of online identities
Proposed recruitment does not involve members of research
team ‘lurking’ or ‘creeping’ social media sites in way:
members are unaware of
rategy mu nsitive o the privacy of potential participants
o o R e B oa RS ot Rarired
« Recruitment will not \_nvulvs advancements or contact that
ould embarrass or stigmatize potential subjects

ttps//catalyst harvard.edu/pdfregulatory/Social_Media_Guidance.pdf

CONSULTIG GFOUP.

45

Using Social Media in your research
Data source

* A key issue in observational research using
social media is whether the proposed
project meets the criteria as human subjects
research, and if so, what type of review is
needed

* |dentifiable/de-identified data
* Minimal risk/greater than minimal risk

CONSULTIVG GROUP.
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Using Social Media in your
research
Recruitment

* Assure compliance between recruitment techniques
and policies/terms of service of relevant websites.
* Ifa proposed technique conflicts with website policies and
terms of service, request a written exception from the site,
OR
« Depending on IRB policy, provide a statement explaining why
the recruitment strategy warrants approval without an
explicit exception, to be evaluated by the IRB with input from
institutional legal counsel.

CONSULTING GAOLP
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Using Social Media in your

research

Recruitment

* Enlist enrolled participants to facilitate introduction
Eetween Pembers 6 t|r ne tworf( Rt th
research team. Ensure that consent will be obtained
from current ﬁartlapants before they approach
rp]embers of their online network for recruitment via
their network or

nsure that a communicatjon plan is in place for
ow the researcH]team wﬁl handle onhie

communication from enrolled partlupants that
threatens the integrity of study

https://catalyst harvard.edu/pdf/regulatory/Social_Media_Guidance.pdf

CONSULTING GROLP
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Using Social Media in your research
Data source

* How is the data collected, transferred, etc.

+ Specify if research data will be collected as part of
the recruitment process via social media. If so,
describe what data will be collected. If that data is of
a sensitive or confidential nature, describe how that
data will be transferred to secure institutional
servers and how will it be protected upon receipt.

CONSULTING GROUP
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And (111.b) When some or all of the subjects are likely to be vulnerable to
coercion or undue influence, such as children, prisoners, individuals with
_impaired decisi king capacity, or it i

6. ERiReaEl

or
ersons, g have been included in the
study to protect the rights and welfare of these subjects.

(set aside issues with children, pregnant women/fetuses, prisoners,
regulations for which are codified in the Common Rule subparts-—-more
on that in a moment)

* What are some considerations when determining if additional
safeguards are necessary and sufficient?
* Examples:
* For economically disadvantaged...is there payment? What
is the amount? schedule?
* For educationally disadvantaged...is the consent process

particularly simplified? Should there be a witness to the
consent process?

CONSULTING GROLP.

49

CONSULTING GROUP
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That’s it for the .111 criteria...
but that’s not all!

regnant Women?
Subpart B of 45 CFR 46

Prisoners?
Subpart C of 45 CFR 46
Children?
Subpart D of 45 CFR 46
Department of Education (ED)?
Family Educational Rights and Privacy Act (

e liphspice)
and the Protection of Pupil Rights Amendmerit (E2RA) (34 CFR 98)
s o

Investigational Drugs, biologics, devices?
FDA regulations at 21 CFR 50, 21 CFR 56, 21 CFR 312, 21 CFR 812

HIPAA?
45 CFR art.160 and Subparts A and E of Pt 164

CONSULTING GAOLP
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http://www2.ed.gov/policy/gen/guid/fpco/index.html
http://familypolicy.ed.gov/ppra?src=fpco
http://www2.ed.gov/about/offices/list/ocfo/humansub.html
http://www.access.gpo.gov/nara/cfr/waisidx_07/45cfr160_07.html
http://www.access.gpo.gov/nara/cfr/waisidx_07/45cfr164_07.html

Genetic risk prediction

Genotype of an individual > Life-time risk of genetic disorders

(Common sNPs) (Common complex genetic disorders)

Model-based estimates of effect sizes
E 1 effect-size distribution
g
[ d
. s
H .
5 Mot
]
e o e
v
T et e
Median effect size 0’Connor, Nature Genetics 2021

12,000 independent GWAS signals for height!

= Vi S s 215 115 e s o P+ P
R ——

renes sz Yengo et al, Nature 2022

Effect sizes of individual variants are very
small

* Genotype at a single locus carries very little
information about phenotype.

* It does not mean that one cannot predict phenotype
from genotype.

« Accuracy (F) of an ideal genetic predictor equals
heritability.

BLUP — Best Linear Unbiased
Predictor

* Infinitesimal model

* Genetic effects are random

* Prgdict the expected genetic
effect

T —

S . A ]
Aol

G+ (y—1q)

151




Accuracy of polygenic prediction in
cattle

Poor transferability between breeds!

Measuring risk of myocardial infarction

Coronary Risk Prediction in Adults
(The Framingham Heart Study)
FETER WE. WASON, VD, WLUAM P GASTELLL WD,

It

and WL B KAEL,

S S e o e ey
e b o Gt ey o 200 0
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~3500 subjects < 35 years old

LDL levels and risk of disease

‘Aawals of Internal Medicine ARTICLE

Nonoptimal Lipids Commonly Present in Young Adults and Coronary
Calcium Later in Life: The CARDIA (Coronary Artery Risk Development
in Young Adults) Study

15-20 years

LDL levels and risk of disease

.
0181 mmol/L (<70 mg/dt)

0o 011:81-2.56 mmol/L (70-99 mg/dL)
[12.55-3.34 mmol/L (100-12 mg/dL)

41 [@337-412 mmol/L (130-160 mg/dL)
124,14 mmol/L (160 m/dl)

White Men L

10

LDL levels and risk of disease

01,81 mmol/L (<70 mg/dt)
11.81-2.56 mmol/L (70-99 mg/dL)
[12.59-3.34 mmol/L (100-129 mg/a)
E13.37-4.12 mmol/L (130-160 mg/dL)
124,14 mmol/L (2160 mg/d)

Average LDL United
States

White Men

Selecting populations for treatment

11

12
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Why estimate genetic risk?

+ An estimate of the long-term risk at birth

* Genetic risk can be combined with biomarkers and clinical
features

* Genetics explains about 50% of risk. One cannot predict
risk any better than that but 50% is a non-trivial
proportion of risk

Applications in humans

ENOME
(;QESE?\'RCH

s et ik o dsase o genome ide

/genic variation contributes to risk of
ind bipolar disorder

Common pol
schizophrer

* LD-prune
« Exclude SNPs of very small effect

13

14

Extensions of BLUP — multiple variance scales
and binary phenotypes

MultiBLUP: Speed and Balding. Genome Research 2014
Bayesian analysis: MacLeod et al. Genetics 2014
BSLMM Zhou et al. PLOS Genetics 2013

GeRsl: Golan and Rossett. AJHG 2014

Methods that work with summary statistics

* Summary statistics are easily available

* Most methods require a separate small individual level dataset to
tune parameters

15 16
LDPred —a BayeSian method USing summary Extreme tails in the distributions of genetic risk scores are
statistics highly predictive
. .
™ Highest 15—
b Wgresx |
N{oO, hf h babilif : 3
M{‘ ( W)w.n,,m wiy ®
0 with probability (1 - p). :;
| TEAEEIETE
Also, check Bayesk
Khera et . 2018
17 18
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With some caveats

Falbabdost

Linear models for genetic risk prediction

AT
T4

Genotype of SNP j and individual {
Genetic risk of i /

individual i
Effect size of SNP /.

19

20

“Polygenic scores” can leverage summary statistics from a large
GWAS study

Estimated effect size
Predicted genetic risk

“Polygenic scores” can leverage summary statistics from a large
GWAS study

=Y By
2

Estimated effect size

Predicted genetic risk

sampling error

Non-causal SNPs

Estimated effect sizes (§,)

21 22
“Polygenic scores” can leverage summary statistics from a large P-value thresholding can be reformulated as “shrinking”
GWAS study estimated effect sizes
[ Prvalue Threshalding | [ Pvalue Thresholding ]
=) Bixy 9= Y 1B < )y
7
: Causal SNPs
Estimated effect sizes (§,) Estimated effect sizes (§,)
23 24
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The optimal polygenic score can be constructed with
“conditional mean effects”

9i= LR 1l

i

Conditional mean effect

Weighted effect sizes

Estimated effect sizes (§)

Goddard et al. 2009

Accounting for LD in summary data is a major challenge

« Correlation between apparent true genetic effects

Estimated effects B

True effects b b
[ B
* 1D effect
LD block

25

26

Accounting for LD in summary data is a major challenge

« Correlation between apparent true genetic effects

Estmated effectss By .

True effects: 5 8
+ Correlation between sampling errors

e e
e e e e
—O0—0— —e e —
—0—06— —0—0—

GWAS Controls GWAS Cases

Our approach (“Non-Parametric Shrinkage” or NPS)
* No explicit specification of genetic architecture prior, thus “non-
parametric”

« Learn conditional mean effects directly from training data

* Fully account for correlation in summary statistics

27 28
Our approach (“Non-Parametric Shrinkage” or NPS) Partitioned risk scores
Individual i
* No explicit specification of genetic architecture prior, thus “non- ]
parametric u B cwasssignificant
* Learn conditional mean effects directly from training data [ ] Gia = Zﬁwu'(w <181)
1. How to estimate E[B; | ] without a Bayesian prior on § HI
L] | J—
u i o
« Fully account for correlation in summary statistics o G Z”’ i@ <1fy1 < @)
2. How to deal with LD o B o
5] Gy = Y B I0B1 < @)
29 30
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Piecewise linear interpolation on shrinkage curve

Estimates of genetc effcts in GWAS daa ()

Parition SNP ino K subgroups:
Se=0 b <IB| <be)

Partitoned risk scores: G,

Re-weighted effect sizes

i

Partition 1 Partition K

Estimated effect sizes (§,)

How to deal with LD?

31

32

Decorrelating linear projection P

?
2

AB/ab

ala Ala AA

isalocal LD matrixand £ = @ A Q" by eigenvalue decomposition
21=0A1Q" = (@A V) (a"1/2QT)

Accuracy of the 5% tail

el
‘ I ‘ Y

e oo Chun et al. AJHG 2020

Dreotpe

33

34

Other shrinkage methods: PRS-CS

ﬁJ~N(oA%¢wj). y~g

Prior density of f;: central region

BayesR

0 with probability 7, ,
~ N(0,y,03)  with probability 7,,
Bjlm, a'fg

~ N(0,yc03)  with probability 1 — "¢ 7.

Lassosum — extension of LASSO

35

36
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LDAK-Bolt-Predict

b Existing Tools New Tools
(same prior parameters for all SNPs) (SNP—specifc prior parameters)

A e

£ £ SN
Erjse7  ENdse7 Emdse-7

A

" P N e
Emdse-7 EMfise7  EMl2er Endlzes EEse-7

What makes PRS non-transferrable?

« Differences in allele frequencies between populations
« Differences in LD between populations

« Differences in effect sizes (although likely a minor contribution)

37

38

Slight differences in genetic effects between
populations

Genetic correlations between populations are close but not equal to 1.
They are not uniformly distributed along the genome.

eatarmal
Musernal

GCroal abelc et . =8, 7

Canal$,

Hou et al., Nature Genetics 2023

39

40

b Mota-analysis comparing
within admized versus cross continental
African versus Europaan —~-
East Asien versus Europsan -
Within admoxed -
0 02 o4 08 10

Estimated ¢

Hou et al, Nature Genetics 2023

PolyPred

Palypred

Large European sample
(n>100.000) BOLT-LWM fsctsizes.

A o
L

PolyPred offect sizes

t

Smaltraning sample
o targetcohort (1 - 500)

Weissbrod et al, Nature Genetics 2022

41

42
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Forces responsible for genetic change

Mutation |-«

Ne

[~
Population structure @ Fsr

N

2.5x10-8 (Nachman & Crowell) 1.8x10-8 (Kondrashov)

NGS estimates ~1.2X10¢ per nt changes genome
~70 per nt changes genome

Other events: indels (10°)

repeat extensions/contractions (107°)

Mutation rate is variable along the genome

st DNA e

=Y

$S

é
Replication fidelity ~DNA damage  DNA repair CpG deamination

Regional variation of mutation rate

Context dependence of mutation rate

Mutations

Number of de novo mutations per
individual

il' ey

40 80 120 160
Number of de novo mutations per proband

od 1

Jonsson et al., Nature 2017

Genetic drift
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Drift is a random change of allele
frequencies

Genatic Diif in 100 Diploids

Alele Frequency

0 20 40 60 80 100 120 140 160 180 200
Generation

Effective population size

* In an idealized model, the intensity of
genetic drift depends on population size
(mean squared change in allele frequency is
proportional to 1/Ne)

« In more realistic situations, effective
population size (Ne) is a parameter
characterizing intensity of drift

Past Population Size

sy SOt spltanc hottlenedk, ool

Time kya)

European second bottleneck,

23| growth begins

51| Accelerated growth begins

Today

Africans (N<424000) o /" Europeans (N,=512,000)

20%

Tennessen et al. Science 2012

11

Drift depends on population size

Allele frequen

1
S 10 15 20 25 30 35 40 45 50
Generations

8
Demographic history
10
Selection
12

159



Most functional mutations are deleterious

Selective effect of mutation
L

r 1
Deleterious Neutral Advantageous

Functional

New
mutation
Nonfunctional

Selection indicates functional mutations, whether or
not the tested trait is under selection

13
Conservation can be due to very weak
selection!
e . b either 6
s — selection coefficient
Kekpow (1-¢) N. - effective population size
e
\
\ Complete
behavior \
\
\
\
: <
10¢ 10° 10+ 10  Selection coefficient, s
15
Methods of mathematical
population genetics
17

Selection coefficient

« Selection coefficient (s) is the expected
relative loss of fitness due to the
sequence variant

« Variants with selection coefficients less
than ~1/Ne are insensitive to selection.
This is the drift barrier

14
Basic facts about human genetic variation

« Nucleotide diversity (density of nucleotide
differences between two randomly chosen
chromosomes) is about 0.001

* Most common SNPs are very old (~300-400K
years old)

« Protein coding regions are showing clear signs
of selection (reduced diversity and excess of
rare alleles)

Dynamic of allelic substitution

Mathematically, allele frequency change in a population
follows a one-dimensional random walk

time




Diffusion approximation Coalescent theory

Instead of modeling a population, we can model our sample

Random walk that does not jump long distances can be Time goes backwards !
approximated by a diffusion process

8¢(x,p,t) _ 6M¢(x,p,t) . 1 antp(x,p,t) t
ot ax 2’

19 20

Signatures of purifying selection

Reduced variation

Commonly used summary statistics
to characterize variation

Excess of rare alleles

21 22

Number of segregating sites Nucleotide diversity
= 2 Z 4., di-number of nucleotide differenced
nn—1) U between sequences i and j

A A AT@A . ., »

«TCAREGTC GCGATC

.ggiggggiigégiggi\gg. - n=(n'+1)22pk(l—m) px— allele frequency at site k
.TCABGTCAAGHIGATCATG . . .

.TCAAGTCAAGCGATCA[GG . . .

.TCAAGTCAAGCGAECAGG . . . n —the average density of nucleotide differences

between two sequences
k — number of sites variable in the sample

density of segregating sites is also frequently used
k is dominated by rare alleles mis dominated by common alleles

n — per nucleotide heterozygosity

k strongly depend on sample size # is independent of sample size

23 24
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Site Frequency Spectrum (SFS)

° pe—

. h\ [ — { N

numborof stos
o0 om0
ot rmberof s

02

dered i froguency derved i roguency

SFS — expected number of variants at every frequency

25

Presence of recurrent mutations induces
dependency of the shape of SFS on mutation
rate!

« Rapid recent growth of the human population
« Rapid growth of available datasets

Lok ot al., Nature 2016

Agarwal & Przeworski, eLife 2021

Harpak ot al., PLOS Genetics 2016

27

The effect of recurrent mutation

5 count allele

Ny Byrapes

29

A standard model of allele frequencies in a
sample

@ Free recombination between sites
o 7 branch length subtending i
descendants \
© 0: mutation rate parameter
o L: number of sites / length of
sequence

i T bt R L
If every segregating site originated from just a single mutation, the distribution of allele
frequencies (shape of SFS) does not depend on mutation rate!

Both #and k depend on mutation rate linearly!

26

Amutation rate model at the basepair resolution identifies the mutagenic effect of
Polymerase Il transcription

*, Evan M. Koch! ™", Joshun S

wding H. L, Shiil

Boson, MA. USA
larvard Medial choal, Boston, MA, USA
A

Recurrent mutation in the ancestry of a rare variant

28

Constant Population Size

n: rare allele count _k: number of latent mutations
Pyt

30



More generally, we can sum over
latent mutations

5 count allele

Desai & Plotkin., Genetics 2008

pln) = Z‘u(n (k) * sum over recurrence

x
Elr) « sum over partitions, €.
ol = 32 3 g (n=5k=3): 1+143, 24241

() =1

k ~ Poisson(0E[ Teorar])  latent mutations

« p(n): allele frequency distribution
« p(kln): recurrence distribution

* 7 total branch length with i descendants
® Tious: total size of the genealogy

* i: mutation rate per generation

© 6: scaled mutation rate

Predict SFS for high mutation rate sites from
low mutation rate sites

100 >
Jo| == towrmte =110
10 High rate (u=3x 107

o Recurence extrapolation

(T T T

W10
Allele count

Estimate E[7] by assuming no recurrent mutations at low-rate sites

33

In order to measure selection, we
need a good handle on mutation rate!

RESEARCH

HUMAN GENETICS
Population sequencing data reveal a compendium
of mutational processes in the human germ line

Vidiri . Selarsiy1 Rustn A Sodator, Ean Koeh®, Ry . MeGinty™.
a1 Goldman”,Ryan D.Hemareez", Kathloen Bares', AdufoCorea™,
teban & Burchard™ Patick T llna”, Stephen . HeGarvey ™™, Bracon . Micha ™",
Vesan Ssan R St T Welss 2,
Do K. Amatt?, Join Blangero™, rc Boswinke™, Jang He™. Courtoey Morigomery™,
D.C. R, Jerome 1. Rtter,Kent 0. Taylar, Jenfer . Brody. Vi D Ids Chre™,

NHLBI Tans-Oicsf rocson Hodicne (TOPMed) C
TOPMed Populstion Genetis Working Group,Chrisin Glsser?,
Peter V. Knarchnko?, Sham Sunya

of genomic data

The origin of human mutation in light

Viodinir & Seplyarsh

35

32

o n=2e09 pn=201e-08 p=2.07e-07
2 1w "
§ 10! ! 10
S 1
3 w

This works very well on real data

10 10t 0 10

10' 10
Allele frequency

w0 w0 w0 w0
Allele frequency Allele frequency

34

Features of mutation rate variation

Direction of transcription and

replication (DNA repair recruitment) ) )
Regional variation associated

with replication timing

Methylation rate (CpG transitions)
Enzymatic demelythation rate (CpG transversions)

Regions mutagenic in arrested oocytes

Mutagenic LINE elements
Sequence context
Transcription by RNA polymerase Iif

Transcription factor binding in testis

36
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Deamination and demethylation

Component 10
or e e

0125) oa oo o
—

oozs
Pt R B
e

Component 11

CPG>ARG CPG>GPG

37

Oocyte-specific process

Clustered de novo mutati
of maternal origin

39

Am J Hum Genet 26:669-673, 1974
MALLON v. . FRIEMAN, M.D.
The Age of a Rare Mutant Gene in a Large Population

‘Take0o MARUYAMAY

41

Oocyte-specific clusters

Cluster

¥

<50kb

164

38
Roulette: estimating mutation rate
for each possible human mutation
J + :/ +
40

At a given frequency deleterious and

advantageous alleles are younger than
neutral

Maruyama effect (1974): at any frequency advantageous ,
or deleterious alleles are younger than neutral alleles

Frequency x

Frequency 0%
Time

4

42



Intuition: shorter trajectories require

fewer lucky jumps

o0z

—2 (weaklyceleteious)
— 10 dsterious)

oots

H
Frequency x E

Frequency 0% _—7 T
Shorter rajectory: 4 Jumps)| g

[ Longer trajectory: 6 jumps \

Intrmeciate alee roquency ()

Time

I 4
L4 Kiezun et al. PLOS Genetics 2013
43 44
Neighborhood clock Ancestral Recombination Graph (ARG) is the
(fuzzy clock) full representation of the geneology
ACGT
m,(AaT){
* * mz(C»G]i (23) Ams(G>Q)
° . . | T
6 e (T->A)
i N N e o
TGGT JGGT TCET ACCT ACGA
evomtioaton e Variant Toesvarnt e
45 46

Stabilizing selection is the most common
type of selection on a quantitative trait

Tree sequences

Inferring whole-genome histories in large
population datasets

Jerome Kelleher 5°, Yan Wong, Anthony W. Wohns ©, Chaimaz Fadil®, Patrick K. Albers
and Gil McVean:

gonco
o Stabilizing selection
5 : 5 = e Selection may be related or unrelated to the trait
47 48
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Technically, non-neutral genetic variation
should not exist!

Forces to maintain variation:
Selection

Mutation

49

Shades of pleiotropy

Koch & Sunyaev Front. Genet. 202

51

ssible theoretical models

NEEERN

Koch 8 Sunyaev Front. Genet. 202

50
A highly pleiotropic model
A '1:'«"1 B

Hyperspherein |

\~— &/ (focal trait)
< St

2%

Probability Density
s
o

0.0

2

g = 0 2
Effect size (in units ofy/ (wz/n)s\

Simons et al, PLOS Biology 2018]

52
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Functional annotation of
genes and variants

Map variants onto genomic annotation

Watch for multiple transcripts!

Watch for conflicting annotations!

Nonsense variants

One of most significant types of variants usually leading to the
complete loss of function.

Nonsense variants are enriched in sequencing artifacts

Important considerations: i) location along the gene, ii) does the
variant cause NMD? iii) is the variant in a commonly skipped exon?

Tool: LOFTEE

Selection inference from frequency of individual
SNVs

Change in allele
frequency

= Mugftion + Selection + Drift

N

Of the order of 108 Demographic history  Population structure

Focusing on rare deleterious PTVs

PTV — protein truncating variant
(a.k.a. nonsense)

Combine all PTVs per gene — we assume that they
have identical effects

Consider each gene as a bi-allelic locus — PTV / no
PTV

Selection inference using combined frequency of
PTVs

Change in allele
frequency

= Mutation +  Selection +

Assuming string selection and a very large population,

combined frequency of rare deleterious PTVs is expected to be
Poisson distributed with A=U/hs
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Applicability of the Mutation-Selection Balance Model to
Population Genetics of Heterozygous Protein-Truncating
Variants in Humans

Donate Weghorn,""'* Daniel . Balick " Chistopher Cassa,” Jack A Kosmicki** Mark ). Daly**
David R.Beier* and Shamil R Sunyaev**

O

3
=

x €W
Vet

N

Fold change relative to deterministic case

0.005 0.010 0.050 0.100 0500 1

Heterozygous selection strength, Snet

Loss-of-function observed/expected upper
bound fraction (LOEUF)

* LOEUF is based on the number if segregating sites as the statistic

* LEOUF assumes Poisson distribution for the number of segregating

sites. It computes the expectation. The constraint metric is based on
the Poisson likelihood ratio upper bound.

Treating combined PTVs as a bi-allelic locus

* We can use the total frequency of PTVs in the locus

* Theoretically, we can simply treat all PTV variation as a single bi-allelic
locus with high mutation rate

40

P(Shetl&.B)
8

20

Distribution of selection coefficients

P(nag, By, N, p) = f Pois(n| shet, N, W) InvGauss(spee|ay, B InvGam(a) InvGam(B)dsher
P(Setla, By N, 1) o Pois(n| sper, N, ) InvGauss(spetl o, Bo)InvGam (a) InvGam(B,)

10 0.001 0.010 0.100 1

Heterozygous selection coefficient, spa:
Cassa, Weghorn, Balick, Jordan et al. Nature Genetics

10

Distribution of selection coefficients

1) The approach fails if selection is weak
2) The approach fails if mutational target is small
3) These considerations are important for regional constraint scores

4) Overall, the approach is non-informative in case of recessivity

Overcoming constraints on the detection
of recessive selection in human genes
from population frequency data

Daniel J. Balick,'>*+> Daniel M. Jordan,*** Shamil Sunyaev,'>** and Ron Do***
A Recessive test set
s
B ]

or] ———+——— 3
e _— =18

R p=37x10

eoona s _ p=oai0

s —_— p=000010

pnasecons — p=2ax10

)
‘ience ofslecion +

11
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Ad log of in 98:

Kathie Y. Sun’*, Xiaodong Bai*, Siying Chen’, Suying Bao?, Manav Kapoor', Joshua
Backman’, Tyler Joseph?, Evan Maxwell, George Mitra!, Alexander Gorovits?,
Adam Mansfield’, Boris Boutkov!, Sujit Gokhale, Lukas Habegger’, Anthony
Marcketta', Adam Locke?, Michael D. Kessler’, Deepika Sharma?, Jeffrey Staples’,
Jonas Bovijn, Sahar Gelfman', Alessandro Di Gioia!, Veera Rajagopal’, Alexander
Lopez', Jennifer Rico Varela’, Jesus Alegre?, Jaime Berumen?, Roberto Tapia-
Conyer?, Pablo Kuri-Morales?, Jason Torres?, Jonathan Emberson®*, Rory Collins’,
Regeneron Genetics Center’*, RGC-ME Cohort Partners®, Michael Cantor*, Timothy

lati h el £5 N

mutations in humans to their evolutionary
fitness costs
Ipsita Agarwal'“+, Zachary L Fuller", Simon R Myers?, Molly Przeworski'*

Thornton’, Hyun Min Kang?, John Overton’, Alan R. Shuldiner’, M. Laura Cremonat, )
Mona Nafde!, Aris Baras’, Goncalo Abecasis, Jonathan Marchini’, Jeffrey G. Reid!, Prior distribution on hs
‘William Salerno*®, Suganthi Balasubramanian'® : . o eﬁfr;ss”:ﬁmm ey P(hs| g, 1, 6)
Ll:lk ™ ' sampios
A et — [ —
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Tony Zeng!*, Jeffrey P. Spence!*, Hakhamanesh Mostafavi’, Jonathan K. Pritchard! iz
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Petrovski et al. PLOS Genetics 2013

15

16

Dominant and recessive genes

e Mod of Inheritance in Molecular Diagnoses [Baylor] {d] Baylor feluctA
< hatbn < hotbins < hatbins
100 Mods of Inheritance o0
oo s [
o s 3
g w £
H H
§ w0 oo 2
i@ &
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o ox
203 01 oo oo | oo oot shetc she>  shere e
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Age of onset, penetrance and severity

D,T:j![a,TTj;:;mI ‘,AI:

17

169

18




Concordance with the mouse knockout data

[a] Orthologous mouse knockouts by phenotype

s_hetbin

100%

40%

20%

Percentage of genes in each bin, by phenotype

M vibie
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20

Applications to Mendelian genetics —
large cohorts make Mendelian genetics a data science

De Novo mutations in ASD

. 1000 ol 0531
020
Article
Evidence for 28 genetic disorders discovered §on
by combining healthcare and research data : '
] g
EE 0.10 §
o 2 i s H
e — L : H
fp———— Alson Yeung">,Holgr G. Yok’ DociphringDevelopmental isordrs S, ®
ot pena 200
: 7 w0 s P Class 15L1200  Class 1 pli <09 and Case 2
Fuscao 0 00 novo prteintruncatng vrars
o Class 1 137),P=7x10"
£196% confidonco s — Fomaining PTVe (1 - 256, P 0.7
DeNovoWEST — a method to identify significant recurrent de novo mutations
controlling for mutation rate, weighting genes with shet and
weighting variants using variant effect predictors
Kosmicki et al. Nature Genetics 2017
Heritability Enrichment » Pl e L )
Burden” heritability enrichment
1004 RE
b c
1 N FIS 8 a Common
‘% 7 Townsend L7 = Ultrarare
20 6 BMI |, Diabetes g6
5| Heiant Neuroticism, S5
g Platelet_ §
g 104 4] count 24
B 3°
57 £
2 g2
Proporton of variants common / owreq) 1 !
2 = 5,bin 1 (stongest seecton)  (0.02% /0.04%) o}
< b2 (0.03% /006 .
Lombing (004% /0.08%
- o i 2 3 4 5 6 7 8 1 2 3 4 5
i © Shrbins 445 (weakest selocion) _ (0.11%/0.47%) Common-variant heritabilty enrichment Constraint qintiles.
1 A S o e in consirained genes

cve
Gazal et al. Nature Genetics 2018

Weiner, Nadig et al. Nature 2023
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0.100

Fraction de novo, 7

0,001

Selection in the present-day population

e Fraction of de novo mutations (out of all variants)
approximately equals selection coefficient.

{/ This result does not depend on phenotypic
+ ascertainment.
*\ %
Y
/ol

/
[ —

0001 0010 0100 1
Shet (deter istic, NFE)
e (RHIAGEC, NFE) Weghorn et al., MBE 2019
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Article

Reduced reproductive success is associated
withselective constraint onhuman genes

itpei/doiora/101038/641586-022.04549-9 _ Eugene J.Gardner™, Matthow D.C. Nevile Kailin . Samocha’ Koron Barclay™",
Received: 21 May 2020 Martin Koll Kirov’ )

Variants involved in splicing

R @i %'@@ @0

[ }—#ynyuray—P(y)n—ad B3] [ES§ AGhurags————

T ISE  ISEISS
3'Splicesite Exonic substitutions ' Splice site  Deep intronic
mutations mutations mutations

1) Variants in canonic splice sites
2) Variants in exonic or intronic splicing enhancers
3) Gain of splicing variants

Experimental Methods: Minigene Assay and
Massively Parallel Splicing Assay (MPSA)

Computational Predictions: SpliceAl,
MMSplice and other methods

SpliceAl training

—a

- _, mmm

acalm

pre-mRNA GENCODE
GTEX

sequences.

Identify cryptic splice mutations

‘wildtype.
: .
2

mutant

De novo pathogenic mutations
22228222 cryptic splice: 10%
SpliceAl

protein coding: 90%

Missense variants: computational predictions

His66Arg.
P23946: Chymase precursor v
TSNCPSKFCGFLIRRNFYLTAR B CAGHS TEVILG AHN ITEEEDTHQ

Sequence alignment

1

NEVLTAAR

NEVLTAAH CAGREIMVILGAH!
TAAH

Al

10 Char
203 char

[/ se =0

PREDICTION

Does the mutation fit the pattern of past
evolution?

n VVSTZDLEAPSSTKLDER
STSELJAGSTTRLE.
SELGVPSTLKVNEK
Statistical issues:

-sequences are related by phylogeny
-generally, we have too few sequences

- el
dog
. fish
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Does the mutation fit the pattern of past
evolution?

We assume a constant fitness landscape: what is good for
fish is good for human!

We can estimate whether the mutation fits the pattern of
amino acid changes.

We can also estimate rate of evolution at the amino acid site

Protein structure view

—_—
Iy,

i N

Most of pathogenic mutations are important for stability (good news?).

AAG is difficult to estimate.

Unfolded protein response pathway has to be taken into account.

Heuristic structural parameters help but less than comparative genomics.

PolyPhen2

Inter

y
Sequence
MSA creation profile based scores.
nomogysaarn
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o ROC confidence
3

Structure
E‘% amno i lume 30 visuslzation
S Z P scostiesiurans A
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> Siacr
s P~
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Annotation

Annotation
ACT_SITE 66, 110 208

www.genetics.bwh.harvard.edu/pph2 Adzhubei, et al. Nature Methods 2010

SIFT is based on multiple sequence alignment
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Umbrella methods - CADD

Phylogenetic Tree 60 different annotations
User provided

variants

- conservation
SIC

yioP, GERP.
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H3K9AC, DNase-Seq
~functional pr n
amino acid change, TF moti disruption
tic context
CoG content, base transversion,
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score variants
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annotate

v
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12 PHRED scaling

use model to
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CADD score
simulate variants

Umbrella methods - REVEL

Random Forest Simplified

AnESvs
= Neural variants

Tistencn = Disease variants
Random Forest __— | s
‘—/ 4 ~—
DS N X s
N N 2 H
b v de dbdb bk o db d0ds K
Tree-1 Tree-2 Tree-n
Class-A Class-B Class-B

I

Majority-Voting |

005 0.15 025 0.35 045 055 065 075 0.85 095
REVEL Score

[Final-Class
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Umbrella methods

* VEST4 — also an umbrella method using Random Forest

* VARITY — a new method using Gradient Boosting and focusing on de
novo mutations and ultra rare variants

Weakly deleterious mutations

« Multiple independent lines of evidence suggest abundance of weakly
deleterious alleles in humans

» Weakly deleterious variants may occur in highly conserved positions

» Weakly deleterious alleles probably contribute to complex phenotypes but
not to simple Mendelian phenotypes

13 14
Conservation can be due to very weak selection! Constant fitness landscape
£ i il be either f
. . A A
" s— selectlpn coefﬁcle_nt ) b B
K=K,2V, (1 _iv) N, - effective population size
(1=e") ‘For humans estimated to be ~ 10 000 ‘
K/Ko n: \
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e \ Complete
Neutral Ve \\ conservation
behavior \

\
\
o NS
10¢ 10° 10+ 102  Selection coefficient, s
15 16
Epistatic interactions Compensatory mutations
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b B
A
B
17 18

174



Ridges on the fitness landscape

Dobzhansky-Muller incompatibility

Fixation of
New mutation new mutation
. A
X izl W

A6
(u:z:\ (u::\

Ancestral ]
) &8/ ot
A/ié\\ —__ —_— //a E\\

et =)
( ) ~,_./ D )
| "—— | \ )
L - . N

S L a0 N —
\(/A i {//A e\

Nature Reviews | Genetics
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Looking at vertebrate species

e

" Ray-finned Roderts Dinosaurs
Sharks  fish  Amphbians Primees & rabbts Crocodles & birds

Pre-orbital
fenestra

Amriotic egy

Bony skeleton

Vertebrae

Many human pathogenic mutations are found in
vertebrates

HumVar "Disease”
(22,207 variants)  ClinVar "Pathogenic"
(10,596 variants)

-

</

5.5-6.5% of presumably
pathogenic human
mutations are detected in
mammals

24,304,185

Found in MultiZ 100-Way alignment
(24,307,128 variants)
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Zebrafish model

Normal

Model of Bardet-BiedI
Syndrome (obesity, renal
failure, vision loss)

Caused by defects in primary
cilium Class |
-

® Embryonic convergence /
extension phenotype in
zebrafish

Class Il

Easily scorable phenotype e

Images: Phoebe

Testing double mutants

P Z)S) Human gene with @
No injection R
3 disease mutant a
Knockdown @ Double mutant @
(no suppression) "
Rescue with Double mutant
human gene (full suppression)

Images: Phoebe
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A newly identified gene

0 062
thi e T e [EAAETet

N
ARcTec| [EARATEE
I\
f
JAVAVNAYAY ’/\/\/\

Global developmental delay
microcephaly

feeding issues

failure to thrive

abnormal muscle tone

low immunoglobulins
frequent respiratory infections

normal female microarray
metabolic testing - negative
extensive genetic testing —
negative

BTG2 TTN
Compound het

NOS2 LAMA1
Compound het

Stephan Frangal
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The mutation is a reversal to the mammalian
ancestral state

BTG2

H. sapiens

P. troglodytes
G. gorilla

M. musculus

R. norvegicus

H. glaber

S. domesticus
B. primigenius
E. ferus caballus
F. catus

C. lupus familiaris
D. novemcinctus
G. gallus

Y

.

.

M
M
M
M
M
M
M
M
M

ARXRAXXXX e XXe e
<< <<<<<<< e 0o ™
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New methods directions

« Machine learning techniques have the potential to solve the epistasis problem

« Measures of population level constraint have the potential to solve the
problem of distinguishing between strongly and weakly deleterious mutations.

EVE — Variational Autoencoder

For sacn proven

Bayesian variational autoencoder
g constaint at each postion by loaring
the istributon of sequences I evolutionary data.

One-hot encoding of reconstruction :

Evolutionary index Gaussian mixture mode!

£ - o P
M Plxyl0)

Approximating the.

wpe | Frazer et al., Nature 2021

Large Language Models (VariPred)

=

I [ 1

S '

o e
© 075 o721 07 0746 orze 078 o751 i
® oses oses 0823

onyun Oy embeckdogs LR+ embeddng

Lin et al., biorxiv 2023

PrimateAl-3D

3D Convolutional
Neural Network
t—{ 3D conv., (1,1,1)

Voxelization

Human variants

Batch norm. & ReLU .
e e Common primate variants)

3D conv., (333
com oSl Language models

Batch norm. & RoLU
— =  —
Repeat 3x O 1
2z G B Variational Transformer
channels 84 Autoencoder

Batch norm. & ReLU

Fixed species MSA Dropout & sigmoid
& Ol ] Loss function

Pathogenicity predictions'
for 20 amino acids

o —

\

PrimateAl-3D

Gao et al., Science 2023
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Applications

* Mendelian genetics

* Rare variant association studies

Rare variant collapsing study

Disease Control

Rare variant collapsing study

Disease Control

Functional variants Neutral variants

Predicting functional consequences increases
power

* Inclusion of neutral variants reduces power of the test

* Combining variants with vastly different effect sizes reduces power of the
test

* Most groups limit the tests to nonsense, splicing and missense variants that
are predicted functional

* Assigning quantitative weights is probably a better approach, but nobody
uses it in practice

10

Damaging missense variants (as predicted by PrimateAl-3D) are
enriched among de novo mutations in developmental disorders

-+ pathogenic missense
~ benign missense g

3
g
g
4
3
H
2
3
2
8

observed/expected

————
PTV benign pathogenic 06 07 08 09
missense missonse PrimateAl-3D threshold

PrimateAl-3D > 0.621

0
synonymous  missense

Consequence

Gao etal., Science 2023

Burden heritability is significant for damaging
missense variants (as predicted by PolyPhen2)

o
-3
B

&

Proportion of variants
Burden heritability (%)
&

°

Uttrarare

Ultrarare Rare Common Rare
(n=5379,342) (n=1,564,529) (1 =32,539)

Variant group: B pLoF B Missense: damaging @ Missense: benign B Synonymous
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UK Biobank results (Wang et al.)

e — 08
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Oddsratio

Variant grouping: nonsense, splicing, missense predicted by REVEL and MTR

Count of associations

UK Biobank results (Backman et al.)

1000

Burden Association
I pL0Fs only

I pLOF and deleterious missense variants only
W shared

Singletons  0.001% _ <0.01%  =0.1%
Allele frequency bin

Deleterious missense variants:

SIFT

PolyPhen2

LRT

Mutation Taster

13

Experimental technologies — deep mutational
scanning (DMS)
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S R aat

Wei & Li, Frontiers in Genetics 2023
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MC4R example

o

Lotta et al., Cell 2023

Non-coding variants

Regulatory variants

* Regulation: variants in promoters, enhancers,
silencers, insulators

—
chromatin modifiers
dist

— -
promoter/

Bancer| @ ¥~ chromatin remodelers

(e
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core promoter

Non-disease alleles of large effect

W > s
e N
% & Eye color
v

Light
pigmentation

R

13310 WOMG et

Lactase tolerance al o

Ultraconserved elements

PN AccEs recy s anine FIPS sowoar

Deletion of Ultraconserved Elements
Yields Viable Mice

Zoonomia conservation

J‘&%}iv@

Christmas, Kaplow et al., Science 2023
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Heritability enrichment

25 8
A « Mammals (phyloP) B
« Primates (PhastCons)

- 20

£

e

§ 15

= 4
g0

‘g 2

5

0% 5% 10% 15%
fraction of genome constrained (1% bins)

Distance to constrained base

Sullivan, Meadows et al.

. Science 2023

‘ W Mammals (Zoonomia) M Primates (Zoonomia) Ml Other Constrained
Non-synonymous (0.3%) = |

Promoter: ENCODES3 (0.3%) :
Mammals: GERP (0.8%) - |
Fine-mapped: GTeX eQTLs (1%)
Proximal enhancer: ENCODES (1.1%)
Exon (1.4%)

Mammals: Zoonomia (1.5%)

Functional

Primates: Zoonomia (1.6%) = —

Primates: 46way (1.9%) - [ ]

Mammals: 46way (2.1%) -

Mammals: 29M (2.5%) [IEEE
Vertebrates: 46way (2.9%) [IIINE-

Distal enhancer:ENCODES3 (6.3%) | | —

o 5 1 25 0
Heritability enrichment Conditional effect (~log,,p)

Population constraint in non-coding regions

Article

The sequences 0f150,119 genomesin the UK
Biobank
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Extreme purifying selection against point mutations
in the human genome
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Population constraint in non-coding regions
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Chromatin accessibility

nucleosome-free
enhancer region
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DNase | hypersensitive sites
nucleosome
nucleosomefree opogition region  "2"SCrIPON

nucleosome promoter region

Chromatin modifications

K4me1 K4me3
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Epigenomics

EPIGENETIC MECHANISMS.
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Enrichment of GWAS signals in regulatory elements

Crohn's disease QRS duration

Fold snrichment of SNPs in DHSs ©

WO oh 8

GWAS P-value threshold

RS N R
GWAS Pvalu threshold

B Multiple sclerosis
@ immune ool (1-15)

0
24 (s
O brainn-72)

3 other (n=264)

A F S FI S Maurano et al., Science, 2012
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Enrichment of GWAS signals in regulatory elements
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Trynka et al., Nature Genetics, 2014

Partitioning heritability

1000 Genomes Imputed SNPs

0 Mean observed aze-tt

0 Expected (% SNPs)

18003 14002 200-01

Nnslss]==

ng UTR Promoter DHS Inronic Intergenic
(1380 640 @80 G OW (019

Gusev & Price, AJHG, 2014

Funclonal category

15
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Heritability partitioning across annotations

Finucane et al., Nature Genetics, 2015

Application — function informed fine-mapping

Functionally informed fine-mapping and polygenic
localization of complex trait heritability

s, i1, Christ
Steven Gazal ©', Armin P. Schoech’
Luke O'Connor’, Matti Pirinen®*#”, Hilary K. Finucane:

" Ran Cu’, Jacob Ulirsch©*,
" Yakir Reshef’
34 and Alkes L. Price 195

« Estimate heritability enrichment and convert the estimates into prior
probabilities

* Use these prior in fine-mapping (with SuSiE or FINEMAP)
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Translating GWAS findings into mechanistic
models

GWAS peak

}

Controlled model system

!

Biochemistry

Human Genetics all the way

GWAS peak

N

Endophenotype Endophenotype

Gene expression (eQTL)

Molecular phenotype (molecular_QTL)

19 20
Causality Co-localization
Mediation Same causal variant
G E P G E P
Independent effects Distinct variants
E
e
3 LD I
Reverse causation
G P E G — P
21 22
Co-localization problem Methods
Ma
- 4 1 Couststes
: 3 N N o Coloc
?., % “““““ eCAVIAR
L B R um
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Genetic variants differ between Mendelian
and complex traits

* Complex trait variants * Mendelian & somatic cancer
variants

« Small effect size * Large effect sizes

* Extremely large number of loci

« Mostly non-coding (regulatory)  * Mostly coding
* Are in “putatively causative”
genes

* Small number of loci

25
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The basic model
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By now we know that most complex trait loci never harbor mutations of large effect

Hypothesis

* Most genes involved in Mendelian components of complex traits are
also causative for cognate common forms.

* Variants involved in common forms alter regulatory sequence of
these genes.

* This in turn induces changes in gene expression; regulatory variants
are eQTLs.

Genes and phenotypes
(for complex traits, GWAS is restricted to non-coding variants)

Mend. trait GWAS trait Tissue Overall, 139 genes

Breast cancer Breast cancer | breast mammary tissue

89 (64%) fall under a GWAS peak

Small ntestine terminal fleum

Crohn disease Crohw's disease | colon sigmo of a cognate complex trait
colon ta

Dysipidera Toer

Hyperipidemia oL adipose Examples include:

Tangers disease whle blood

Duarfsm Height sletal muscle

LDL Receptor under
a GWAS peak for LDL Cholesterol

Teart Ul appendage
Blood pressure Blood pressure | kidney
heart lft ventricle
Trver
oL adipose tissue

whole blood

Dystipidemia
Hyperlpidemia Estrogen receptor under
pancress a GWAS peak for breast cancer
scltal musclo

ipose

Mnogenic diabetes | Type Il diabetes
whole blood
<l intesting tarminal fleum
Ulcerative colitis | colon sigmoid

colon transverse

These genes are highly likely to

Ulcarative colitis

mediate the effects of regulatory variants

Statistical methods to locate the causative
gene under GWAS peak

* Closest gene to peak

* Colocalization methods
- Jum
* Coloc
* eCAVIAR

« Transcriptome-wide association
* FUSION

* Chromatin marks
* Fine-mapping using SuSiE
* Locate fine-mapped variants under chromatin modification peaks

Distance of fine-mapped SNPs (by SuSiE) to the
closest gene

ol o
® e % .' .
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4 « ° had . o .
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o .
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Gene A '—‘} Qene B GeneC
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Colocalization of GWAS and eQTLs

GeneAeQTL  GeneBeQTL  GeneCeQTL

Methods effectively compare the shape of two peaks.
Colocalization often returns multiple hits per locus.
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Transcriptome-wide association (TWAS)

< - o = 3
Ten ETE O cenepeqrl

TWAS often returns multiple hits per locus.

Results

endeion 1 Sacoman

W e

Genes

I cene uncer ek witheamt.

Method

Connally et al., eLife, 2022

Our curated genes rarely

colocalize

e This s true across all tested traits
e We also tried a chromatin method
o It worked better
o Inlarge part because it favors the
closest gene

But why?

Are eQTLs specific to...

e certain cell types?
e certain developmental stages?

e certain environmental conditions?

Are there inconsistent relationships...

e between gene expression and protein levels?
e between rate of transcription and gene expression?

10

| find it highly surprising that

* A context independent large change in expression of LDLR due to a
nonsense mutation leads to a large phenotypic change

* A smaller change in expression does not affect LDL levels, while non-
coding effect on LDLR does

Quantifying genetic effects on disease mediated
by assayed gene expression levels

Douglas W. Yao ©', Luke J. 0'Connor 27, Alkes L. Price ©%* and Alexander Gusev 0755

Where Are the Disease-Associated eQTLs?
Benjamin D. Umans,"* Alexis Battle,”** and Yoav Gilad'*

Limited overlap of eQTLs and GWAS hits due to systematic

differences in discovery

Hakhamsnesh Mostafavi®, Jefirey P. Spence!, Sabin Naqvi', Jonathan K. Pritchard" %
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‘Ardicle

Modeling eQTL effects at  |fingiecelicaimodelsreveal dynamic
single cell resolution

Or continuous state
(e.g., activation)

Expression
{TH

AA AB BB
Genotype

Expression

AA AB BB
Genotype
Nathan et al., Nature 2022

Nathan et al Nature 2022
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