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Getting Started 
 
You will have two ways to run the exercises on the cloud or locally on your computer.   
 
To run on the cloud: 
 
Unless otherwise announced your username on the cloud is  
 
https://statgenetics.github.io/statgen-courses/<firstname_lastname> 
 
Please use the name that you used on your registration form.  For example if your name is Jane 
Smith then the link is https://statgenetics.github.io/statgen-courses/jane_smith. 
 
You can also run the exercises locally on your computer.  We do not recommend doing this if you 
have a Mac M1, M2, or M3 chip since the exercises can run very slowly.  
 
Please see the following wiki for additional information https://github.com/statgenetics/statgen-
courses/wiki/How-to-launch-course-tutorials 
 
Please view the following videos to install Docker on your computer 
 
For MAC  
https://www.youtube.com/watch?v=DRCDNBlxZ-w 
 
For Windows PC 
https://www.youtube.com/watch?v=sxv45NCSFMk 
 
For Ubuntu Linux 
https://www.youtube.com/watch?v=3K-sGzxsyK0 
 
How to install and run course exercises 
https://www.youtube.com/watch?v=OgHvRVtIIog 
 
For more detail, please read our course wiki  
https://github.com/statgenetics/statgen-courses/wiki/How-to-launch-course-tutorials#use-your-
own-computer 
 
Please go to https://statgen.us/Tutorials  to install course tutorials. 

https://statgenetics.github.io/statgen-courses/jane_smithme
https://github.com/statgenetics/statgen-courses/wiki/How-to-launch-course-tutorials
https://github.com/statgenetics/statgen-courses/wiki/How-to-launch-course-tutorials
https://www.youtube.com/watch?v=sxv45NCSFMk
https://www.youtube.com/watch?v=3K-sGzxsyK0
https://www.youtube.com/watch?v=OgHvRVtIIog
https://github.com/statgenetics/statgen-courses/wiki/How-to-launch-course-tutorials#use-your-own-computer
https://github.com/statgenetics/statgen-courses/wiki/How-to-launch-course-tutorials#use-your-own-computer
https://statgen.us/Tutorials
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Launching Exercises 
 
Please use the following commands to launch the exercises if you are running them locally on your 
computer. Note you must first set-up docker on your computer which was described on the previ-
ous page. For cloud computing please just click the appropriate folder to perform each exercise.  
 
To perform the exercises on your computer please open a terminal and type the command 
./statgen-setup to open Jupyter lab. Next, copy the generated link and paste it your browser.  
Depending on which exercise you wish to perform enter one of the folders listed below.   
 

•  PLINK QC and Substructure 
o plink 

• FASTLMM & GCTA* 
o Fastlmm_gcta 

• Epistasis (PINK & CASSI)*  
o epistatis  

• Data Quality Control and Annotation of Sequence data 
o ngs_qc_annotation 

• REGENIE  
o regenie 

• Power and Sample Size Estimation* 
o Web-based 

• TWAS  
o twas 

• Fine-mapping (SuSiE) 
o Finemapping 

• Multivariate fine-mapping (mvSuSiE) 
o multivariate_finemapping 

• Pleiotropy* 
o pleiotropy 

• Mendelian Randomization One-Sample (MRbase)* 
o Web-based 

• Mendelian Randomization Two-Sample* 
o Mendelian_randomization 

• Polygenic Risk Score (LDpred2) 
o  ldpred2 

 
*Run get-data command if you don’t see the data for the exercise already loaded.   
 
*There is a handout available for this exercise in this booklet.  For all other exercises the instruc-
tions to perform the exercise are available in the Jupyter Notebook.  
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Genome-wide Association Analysis - Data Quality Control 

Copyright © 2024 Merry-Lynn McDonald, Isabelle Schrauwen & Suzanne M. Leal 

Introduction 
In this exercise, you will learn how to perform data quality control (QC) by removing markers and samples 
that fail QC quality control criteria. You will also examine your samples for individuals that are related to 
each other and/or are duplicate samples. Each sample will also be tested for excess homozygosity and 
heterozygosity of genotype data. Each SNP will be tested for deviations from Hardy-Weinberg Equilibrium. 
These exercises will be carried out using PLINK1.9 and R. 

1. Using PLINK

PLINK can upload data in different formats please see the PLINK documentation (https://www.cog- 
genomics.org/plink/1.9/input) for additional details. The data for this exercise is in PLINK/LINKAGE file 
format. There are two files: a pedfile (GWAS.ped) and a map file (GWAS.map). Please examine these files 
and the PLINK documentation. Please note the commands must be given in the directory where the data 
residues. 

Navigate via the command prompt to the directory which contains the files for the exercise. Type plink in 
the command prompt and make note of the output. Next type: 

plink --file GWAS 

Note, that PLINK outputs a file called plink.log that contains the same output which you see on the screen. 
To see all options, type plink --help for more information. Determine how many samples there are in your 
data set and fill in Oval 1 of the flowchart below. 

2. Data Quality Control

a. Removing Samples and SNPs with Missing Genotypes.

You will exclude samples that are missing more than 10% of their genotype calls. These samples are likely 
to have been generated using low quality DNA and can also have higher than average genotyping error rates. 

plink --file GWAS --mind 0.10 --recode --out GWAS_clean_mind 

Examine GWAS_clean_mind.log to see how many samples are excluded based on this criterion and fill in 
Box 1. 

Create two versions of your dataset, one with SNPs with a minor allele frequencies (MAFs) >5% and the 
other with SNPs with a MAFs <5%. 

You will now remove SNPs with MAFs>5% that are missing >5% of their genotypes and then remove SNPs 
with MAFs<5% that are missing >1% of their genotypes. SNPs which are missing genotypes can have 
higher error rates than those SNP markers without missing data. 

plink --file GWAS_clean_mind --maf 0.05 --recode --out MAF_greater_5 
plink --file GWAS_clean_mind --exclude MAF_greater_5.map --recode --out MAF_less_5 

plink --file MAF_greater_5 --geno 0.05 --recode --out MAF_greater_5_clean 

Fill in Box 2a. 

plink --file MAF_less_5 --geno 0.01 --recode --out MAF_less_5_clean 
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Fill in Box 2b. 

Merge the two files. 

plink --file MAF_greater_5_clean --merge MAF_less_5_clean.ped MAF_less_5_clean.map -- 
recode --out GWAS_MAF_clean 

 
A more stringent criterion for missing data is used, samples missing >3% of their genotypes are removed. 

 
plink --file GWAS_MAF_clean --mind 0.03 --recode --out GWAS_clean2 

 
Fill in Box 3. 

 
b. Checking Sex 

 
Error of the reported sex of an individual can occur. Information from the SNP genotypes can be used to 
verify the sex of individuals, by examining homozygosity (F) on the X chromosome for every individual. F 
is expected to be <0.2 in females and >0.8 in males. To check sex run 

 
plink --file GWAS_clean2 --check-sex --out GWAS_sex_checkingUse R to examine the 
GWAS_sex_checking.sexcheck file and determine if there are individuals whose recorded sex is 
inconsistent with genetic sex. 

 
R 
sexcheck = read.table("GWAS_sex_checking.sexcheck", header=T) 
names(sexcheck) 
sex_problem = sexcheck[which(sexcheck$STATUS=="PROBLEM"),] 
sex_problem 
q() 

 
NA20530 and NA20506 were coded as a female (2) and from the genotypes appear to be males (1). In 
addition, 3 individuals (NA20766, NA20771 and NA20757) do not have enough information to determine if 
they are males or females and PLINK reports sex = 0 for the genotyped sex. Fill in the table below: 

 
Table 1: Sex check  
FID IID PEDSEX SNPSEX STATUS F 
NA20506 NA20506     
NA20530 NA20530     
NA20766 NA20766     
NA20771 NA20771     
NA20757 NA20757     

 
Reasons for these kinds of discrepancies, include the records are incorrect, incorrect data entry, sample 
swap, unreported Turner or Klinefelter syndromes. Additionally, if a sufficient number of SNPs have not 
been genotyped on the X chromosome it can be difficult to accurately predict the sex of an individual. In this 
dataset, there are only 194 X chromosomal SNPs. If you cannot validate the sex of the individual they 
should be removed. For this exercise, we are going to assume that when the sex was checked, we found it 
was incorrectly recorded (i.e. these samples were male). Therefore, this error could simply be corrected. 

 
Question 1: Why do you expect the homozygosity rate to be higher on the X chromosome in males than 
females? 
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c. Duplicate Samples 
 

The following PLINK command can be used to check for duplicate samples: 
 
plink --file GWAS_clean2 --genome --out duplicates 

 
Open the duplicates.genome file in R with the following command: 

 
dups = read.table("duplicates.genome", header = T) 

 
We are interested in the Pi-Hat (the estimated proportion IBD sharing) value. You may notice that there is 
more than one duplicate (Pi-Hat=~1). Also, examine the output for pairs of individuals with high Pi-Hat 
values which can indicate they are related. The amount of allele sharing [Z(0), Z(1) and Z(2)] across all 
SNPs provides information on the type of relative pair. 

problem_pairs = dups[which(dups$PI_HAT > 0.4),] 
problem_pairs 

 

Table 2: Duplicate and Related Individuals 
FID1 IID1 FID2 IID2 Z(0) Z(1) Z(2) PI_HAT 

        
        
        
        

F1D1- Family ID for 1st individual; ID1 - Individual ID for 1st individual; F1D2- Family 
ID for 2nd individual; ID2 - Individual ID for 2nd individual; Z(0)- P(IBD=0); Z(1)- 
P(IBD=1); Z(2)- P(IBD=2); PI_HAT-P(IBD=2)+0.5*P(IBD=1) ( proportion IBD ) 

 
Question 2: How many duplicate pairs do your find (hint: Pi-Hat = ~1)? Do pairs with a Pi-Hat = ~1 have 
to be duplicate samples? What is another explanation? What proportion would you expect a parent/ child to 
share IBD? Can you find any such relationship?  
 
 
 
 
 

 

Note: Pi-hat can be inflated and individuals appear to be related to each other if you have samples from 
different populations. This explains why we observe pairs of individuals with Pi-hat >0.05 since three 
distinct populations were analyzed. Additionally, this phenomenon can be observed if a subset(s) of 
samples have higher genotyping/sequencing error rates, which creates two or more “populations” and the 
individuals within these “populations” incorrectly appear to be related. 

 
Using this R script please observe how many sample pairs have pi-hat >0.05: 

 
problem_pairs = dups[which(dups$PI_HAT > 0.05),] 
myvars = c("FID1", "IID1", "FID2", "IID2", "PI_HAT") 
problem_pairs[myvars] 

 
Create the following txt file: 

 
1344 NA12057 
1444 NA12739 
M033 NA19774 

 
name it ‘IBS_excluded.txt’ and save it to the folder with your PLINK data. Give the command: 

plink --file GWAS_clean2 --remove IBS_excluded.txt --recode --out GWAS_clean3 

Fill in Box 4 and Oval 3. 3



As part of QC usually the data is examined for outliers by plotting the 
first and second principal or multidimensional scaling (MDS) 
components. Using a subset of markers that have been trimmed to 
remove LD (r2<0.5). Principal components analysis (PCA) and MDS 
will be performed in the second part of the exercise to detect outliers 
and control for populations substructure. Outlier can be due to study 
subjects coming from different populations e.g. European- and 
African-Americans or batch effects. If it is suspected that outliers are 
due to study subjects having been sampled from different populations 
than data from HapMap can be included to elucidate population 
membership, e.g. for a study of European-Americans if African- 
American study subjects are included they would cluster between the 
European and African HapMap samples. If you perform this type of 
analysis you should remove the HapMap samples and re-estimate the 
MDS or PC components before adjusting for population substructure 

or stratification. For this exercise data is used from HapMap Phase III which consists of CEU (Europeans 
from Utah), MEX (Mexicans from Los Angeles) and TSI (Tuscans from Italy). Three clusters can be 
observed that consist of the three data sets but no extreme outliers are observed. This data set is being used 
for demonstration purposes. Different populations should be analyzed separately and the results can be 
combined using meta-analysis. In part two of this exercise MDS and PC components will be constructed 
and analyzed. 

d. Hardy-Weinberg Equilibrium (HWE):

To test for HWE we will test separately in each ancestry group and by case-control status. Therefore, we 
will need to use information on ancestry and cases-control status. Please note that this should be tested in the 
3 different populations separately (CEU, MEX, TSI), but due to the small sample sizes, we tested it in the 3 
populations together for example purposes. It should also be noted if the sample sizes are small it is difficult 
to detect a deviation from HWE. 

plink --file GWAS_clean3 --pheno pheno.txt --pheno-name Aff --hardy 

Using R examine the file plink.hwe and look for SNPs with p-values of 5x10-8 or smaller. 

hardy = read.table("plink.hwe", header = T) 
names(hardy) 
hwe_prob = hardy[which(hardy$P < 0.00000005),] 
hwe_prob 

Using a criterion of p <5x10-8 to reject the null hypothesis of HWE, how many SNPs fail HWE in the 
controls? Fill out Oval 5 and Box 4. Using the same criteria, how many SNPs fail HWE in the controls? 
Complete Table 2 with this information. 

Table 3: Hardy-Weinberg Equilibrium 
Cases Controls 
SNP Pvalue Population(s) SNP Population(s) Pvalue 
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Oval 1 
N =  DNA 

samples 
N = _ _ SNPs 

Box 1 
_ _ DNA samples 

missing >10% of 
calls (MIND 0.10) 

Oval 2 
N =  DNA samples 
Nsnp = _ _  SNPs 

Box 2b 
_ _ SNPs (MAF <5%) missing 

>1% genotypes (GENO 0.01)

Box 4 

_ __  Individuals with inconsistent 
_ __  Duplicate pairs 
___ Individuals excluded due to 

relatedness 

Box 2a 
_ _ SNPs (MAF >5%) missing > 

5% of genotypes (GENO 

Box 3 
_ _ DNA samples failed missing 

> 3% of calls (MIND 0.03)

Oval 3 
N =  DNA samples 
Nsnp = _ _  SNPs 

Box 5 
SNPs in controls out 
of HWE with p<10--7 

Oval 4 
N =  DNA samples 
Nsnp = _ _  SNPs 

There are a number of SNPs with HWE p-values in the range of 10-5 to 10-6 in the controls. Based on above 
criterion they will not be excluded however, if they reach genome-wide significance during association 
testing they SNPs should be further investigated to ensure there is no genotyping error. You can now fill in 
Box 5 and Oval 4. 
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Answers to Questions: 

Oval 1 and 2 also and Box 1 information: 

PLINK v1.90b4.9 64-bit (13 Oct 2017) 
Options in effect: 

--file GWAS 
--mind 0.10 
--out GWAS_clean_mind 
--recode 

Random number seed: 1515434515 
16384 MB RAM detected; reserving 8192 MB for main workspace. 
Scanning .ped file... done. 
Performing single-pass .bed write (6424 variants, 248 people) [Oval 1]. 
--file: GWAS_clean_mind-temporary.bed + GWAS_clean_mind-temporary.bim + 
GWAS_clean_mind-temporary.fam written. 
6424 variants loaded from .bim file. 
248 people (125 males, 123 females) loaded from .fam. 
1 person removed due to missing genotype data (--mind) [Box 1]. 
ID written to GWAS_clean_mind.irem . 
Using 1 thread (no multithreaded calculations invoked). 
Before main variant filters, 247 founders and 0 nonfounders present. 
Calculating allele frequencies... done. 
Warning: 6 het. haploid genotypes present (see GWAS_clean_mind.hh ); many 
commands treat these as missing. 
Total genotyping rate in remaining samples is 0.996863. 
6424 variants and 247 people pass filters and QC [Oval 2]. 
Note: No phenotypes present. 
--recode ped to GWAS_clean_mind.ped + GWAS_clean_mind.map ... done. 

Box 2a information: 

PLINK v1.90b4.9 64-bit (13 Oct 2017) 
Options in effect: 

--file MAF_greater_5 
--geno 0.05 
--out MAF_greater_5_clean 
--recode 

Random number seed: 1515435189 
16384 MB RAM detected; reserving 8192 MB for main workspace. 
Scanning .ped file... done. 
Performing single-pass .bed write (5868 variants, 247 people). 
--file: MAF_greater_5_clean-temporary.bed + MAF_greater_5_clean-temporary.bim + 
MAF_greater_5_clean-temporary.fam written. 
5868 variants loaded from .bim file. 
247 people (125 males, 122 females) loaded from .fam. 
Using 1 thread (no multithreaded calculations invoked). 
Before main variant filters, 247 founders and 0 nonfounders present. 
Calculating allele frequencies... done. 
Warning: 6 het. haploid genotypes present (see MAF_greater_5_clean.hh ); many 
commands treat these as missing. 
Total genotyping rate is 0.996858. 
2 variants removed due to missing genotype data (--geno) [Box2a]. 
5866 variants and 247 people pass filters and QC. 
Note: No phenotypes present. 
--recode ped to MAF_greater_5_clean.ped + MAF_greater_5_clean.map ... done. 

Box 2b information: 

PLINK v1.90b4.9 64-bit (13 Oct 2017) 
Options in effect: 

--file MAF_less_5 
--geno 0.01 
--out MAF_less_5_clean 
--recode 

Random number seed: 1515435255 
16384 MB RAM detected; reserving 8192 MB for main workspace. 
Scanning .ped file... done. 
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Performing single-pass .bed write (556 variants, 247 people). 
--file: MAF_less_5_clean-temporary.bed + MAF_less_5_clean-temporary.bim + 
MAF_less_5_clean-temporary.fam written. 
556 variants loaded from .bim file. 
247 people (125 males, 122 females) loaded from .fam. 
Using 1 thread (no multithreaded calculations invoked). 
Before main variant filters, 247 founders and 0 nonfounders present. 
Calculating allele frequencies... done. 
Total genotyping rate is 0.996913. 
59 variants removed due to missing genotype data (--geno) [Box2b]. 
497 variants and 247 people pass filters and QC. 
Note: No phenotypes present. 
--recode ped to MAF_less_5_clean.ped + MAF_less_5_clean.map ... done. 

Box 3 information: 

PLINK v1.90b4.9 64-bit (13 Oct 2017) 
Options in effect: 

--file GWAS_MAF_clean 
--mind 0.03 
--out GWAS_clean2 
--recode 

Random number seed: 1515435827 
16384 MB RAM detected; reserving 8192 MB for main workspace. 
Scanning .ped file... done. 
Performing single-pass .bed write (6363 variants, 247 people). 
--file: GWAS_clean2-temporary.bed + GWAS_clean2-temporary.bim + 
GWAS_clean2-temporary.fam written. 
6363 variants loaded from .bim file. 
247 people (125 males, 122 females) loaded from .fam. 
0 people removed due to missing genotype data (--mind) [Box 3]. 
Using 1 thread (no multithreaded calculations invoked). 
Before main variant filters, 247 founders and 0 nonfounders present. 
Calculating allele frequencies... done. 
Warning: 6 het. haploid genotypes present (see GWAS_clean2.hh ); many commands 
treat these as missing. 
Total genotyping rate is 0.99716. 
6363 variants and 247 people pass filters and QC. 
Note: No phenotypes present. 
--recode ped to GWAS_clean2.ped + GWAS_clean2.map ... done. 

Answer to Question 1: Why do you expect the homozygosity rate to be higher on the X chromosome in 
males than females? 

Because males only have one allele for each SNP on the X chromosome they will appear homozygous. 

Table 1: Sex check 
FID IID PEDSEX SNPSEX STATUS F 
NA20506 NA20506 2 1 PROBLEM 1 
NA20530 NA20530 2 1 PROBLEM 1 
NA20766 NA20766 2 0 PROBLEM 0.2292 
NA20771 NA20771 2 0 PROBLEM 0.2234 
NA20757 NA20757 2 0 PROBLEM 0.2141 

Table 2: Duplicate and Related Individuals 
FID1 IID1 FID2 IID2 Z(0) Z(1) Z(2) PI_HAT 
M033 NA19774 M041 NA25000 0.0000 0.0000 1.0000 1.00 
1344 NA12057 13291 NA25001 0.0000 0.0025 0.9975 1.00 
1444 NA12739 1444 NA12749 0.0026 0.9807 0.0168 0.51 
1444 NA12739 1444 NA12748 0.0026 0.9949 0.0025 0.50 
F1D1- Family ID for 1st individual; ID1 - Individual ID for 1st individual; F1D2- Family 
ID for 2nd individual; ID2 - Individual ID for 2nd individual; Z(0)- P(IBD=0); Z(1)- 
P(IBD=1); Z(2)- P(IBD=2); PI_HAT-P(IBD=2)+0.5*P(IBD=1) ( proportion IBD ) 
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Question 2: How many duplicate pairs do your find (hint: Pi-Hat = ~1)? Do pairs with a Pi-Hat = ~1 have 
to be duplicate samples? What is another explanation? What proportion would you expect a parent/ child to 
share IBD? Can you find any such relationship? 
There are two duplicate pairs and also a trio (two parents and a child). Parent/child relationships will have a 
Pi_Hat value of ~0.5, but so will sibpairs. We can tell that this is a parent child relationship by examine Z(0), 
Z(1) and Z(2). We will retain only one sample from each duplicate pair and the parents NA12749 and 
NA12748. If you perform mixed-model analysis related individuals can be retained in the sample. 

Oval 3 information 

PLINK v1.90b4.9 64-bit (13 Oct 2017) 
Options in effect: 

--file GWAS_clean2 
--out GWAS_clean3 
--recode 
--remove IBS_excluded.txt 

Random number seed: 1515440989 
16384 MB RAM detected; reserving 8192 MB for main workspace. 
Scanning .ped file... done. 
Performing single-pass .bed write (6363 variants, 247 people). 
--file: GWAS_clean3-temporary.bed + GWAS_clean3-temporary.bim + 
GWAS_clean3-temporary.fam written. 
6363 variants loaded from .bim file. 
247 people (125 males, 122 females) loaded from .fam. 
--remove: 244 people remaining. 
Using 1 thread (no multithreaded calculations invoked). 
Before main variant filters, 244 founders and 0 nonfounders present. 
Calculating allele frequencies... done. 
Warning: 6 het. haploid genotypes present (see GWAS_clean3.hh ); many commands 
treat these as missing. 
Total genotyping rate in remaining samples is 0.997225. 
6363 variants and 244 people pass filters and QC [Oval 3]. 
Note: No phenotypes present. 
--recode ped to GWAS_clean3.ped + GWAS_clean3.map ... done. 

Table 3: Hardy Weinberg Equilibrium 
Fail Cases Fail Controls 
SNP pvalue SNP pvalue 
None  

PLINK v1.90b4.9 64-bit (13 Oct 2017) 
Options in effect: 

--exclude HWE_out.txt 
--file GWAS_clean3 
--out GWAS_clean4 
--recode 

Random number seed: 1515442367 
16384 MB RAM detected; reserving 8192 MB for main workspace. 
Scanning .ped file... done. 
Performing single-pass .bed write (6363 variants, 244 people). 
--file: GWAS_clean4-temporary.bed + GWAS_clean4-temporary.bim + 
GWAS_clean4-temporary.fam written. 
6363 variants loaded from .bim file. 
244 people (123 males, 121 females) loaded from .fam. 
--exclude: 6362 variants remaining. 
Using 1 thread (no multithreaded calculations invoked). 
Before main variant filters, 244 founders and 0 nonfounders present. 
Calculating allele frequencies... done. 
Warning: 6 het. haploid genotypes present (see GWAS_clean4.hh ); many commands 
treat these as missing. 
Total genotyping rate is 0.997229. 
6362 variants and 244 people pass filters and QC [Oval 4]. 
Note: No phenotypes present. 
--recode ped to GWAS_clean4.ped + GWAS_clean4.map ... done
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Genome-Wide Association Exercise 
Association Analysis Controlling for Population Substructure 

Copyrighted © 2024 Merry-Lynn N. McDonald, Isabelle Schrauwen & Suzanne M. Leal 

1. Population Stratification and Association Testing

The dataset from part I of this exercise which you performed data quality control (QC) on was obtained from 
HapMap Phase III data. It contains CEU founders (Caucasians from Utah), MEX founders (Mexicans from Los 
Angeles) and TSI (Tuscans from Italy). The CEU pedigree identifiers begin with only numbers e.g., 1347, the 
MEX pedigree identifies all start with M e.g., M017 and the TSI pedigree identifiers all start with NA e.g., 
NA0217. Before we start testing for association, we want to know if there are outliers. Even after removing the 
outliers when association analysis is performed population substructure and admixture may need to be 
controlled. If not, we risk observing an association, which is due to a difference in genotype frequencies in 
cases and controls, because of population substructure/admixture and not because of linkage disequilibrium 
(LD) between tagSNP(s) and the functional variant(s). We are going to use multidimensional scaling (MDS) 
and principal components analysis (PCA) within the PLINK software to generate 10 components. Disclaimer: 
You usually should not analyze data from European-Americans, Mexican-Americans and Italians 
together even if you control for population stratification. They can be analyzed separately and the data 
combined using meta-analysis. 

Note: For a GWAS study instead of this toy study, you will have a denser set of markers of which some will be 
in LD. You should first prune your SNPs to obtain a subset in linkage equilibrium/weak LD (R2<0.5) prior to 
performing MDS or PCA analysis on the data. Although for association analysis is performed on the entire data 
set will be analyzed only this a subset of SNPs which are not in LD will be used to construct PCA and MDS 
components. For more information on how to do this in PLINK see https://www.cog-genomics.org/plink/1.9/ld. 

plink --file GWAS_clean4 --genome --cluster --mds-plot 10 

This command outputs the file plink.mds that contains the subject IDs and values for the 10 components we 
just generated. There is another file in your folder called mds_components.txt. This file is identical to your 
plink.mds file with the exception that a group column which codes CEU individuals as 1, MEX individuals as 2 
and TSI individuals as 3. This is done so when we plot the MDS components in R you can see which group the 
points belong to and judge how well does the data cluster, e.g., are there outliers. The following commands will 
generate a jpeg image file containing the mds plot (filename=mds.jpeg) in your current working directory. Open 
R and use the following command: 

mydata = read.table("mds_components.txt", header=T) 

mydata$pch[mydata$Group==1 ] <--15 
mydata$pch[mydata$Group==2 ] <--16 
mydata$pch[mydata$Group==3 ] <--2 

jpeg("mds.jpeg", height=500, width=500) 
plot(mydata$C1, mydata$C2 ,pch=mydata$pch) 
dev.off() 
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Visualizing population structure using MDS is useful for identifying subpopulations, population stratification 
and systematic genotyping or sequencing errors, and can also be used to detect individual outliers that may need 
to be removed, e.g. European-Americans included in a study of African-Americans. MDS coordinates help with 

visualizing genetic distances and population substructure. PLINK 
also offers another dimension reduction, --pca, for PCA, the PC 
components which can also be used for visualizing data to detect 
outliers in the same manner which was performed using MDS. 
Additionally, covariates either from either MDS or PCA can be used 
in a regression model to aid in correcting for population substructure 
and admixture. 

We will now continue performing the analysis using PLINK but will 
use PCA instead of MDS. We will generate PCs and determine how 
many PC covariates should be included in the regression model. 
When SNPs are tested for an association with a trait analysis can be 
performed, first by including no PC components, then one PC 
component and then two PC components and so on. Please note that 
as each PC component is added all the SNPs are analyzed, e.g. a 

complete GWAS is performed. Examining λ can aid in determining how many PC components should be 
included in the analysis. If there is no population stratification or other biases, then λ should equal 1 or ~1. We 
will use λ to determine how many PC components from our analysis will be added to the logistic regression 
model. First, estimate λ without adjusting for any PC components: 

plink --file GWAS_clean4 --pheno pheno.txt --pheno-name Aff --logistic --adjust --out 
unadj 

Generated the first 10 PCA values: 

plink --file GWAS_clean4 --genome --cluster --pca 10 header 

Eigenvectors are written to plink.eigenvec, and top eigenvalues are written to plink.eigenval. The 'header' 
modifier adds a header line to the .eigenvec file(s). 

And then find out what λ is when we adjust for the first component: 

plink --file GWAS_clean4 --pheno pheno.txt --pheno-name Aff --covar plink.eigenvec -- 
covar-name PC1 --logistic --adjust --out PC1 

And the first and second components: 

plink --file GWAS_clean4 --pheno pheno.txt --pheno-name Aff --covar plink.eigenvec -- 
covar-name PC1-PC2 --logistic --adjust --out PC1-PC2 

and so forth for all 10 components in the .log file completing the table: 

Table 1 
Un-- 

adjusted 
PC 
1 

PC 
1--2

PC 
1--3

PC 
1--4

PC 
1--5

PC 
1--6

PC 
1--7

PC 
1--8

PC 
1--9

PC1-- 
10 

λ 
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The number closest to 1.0, with the least number of PC components, would be the best for adjusting without 
overfitting and introducing unnecessary noise. You can check your table against the one provided in the 
answers section. 

Go to the assoc.logistic file that corresponds to that number of components and make a note of how you 
named the .assoc.logistic file for it and when you did not adjust for any components. Then go back to the R 
program to load the results and create a jpeg image file containing QQ plots for the adjusted and unadjusted 
results (using a modified script from http://www.broad.mit.edu/node/555) as follows: 

broadqq <--function(pvals, title) 
{ 

observed <-- sort(pvals) 
lobs <-- --(log10(observed)) 

expected <-- c(1:length(observed)) 
lexp <-- --(log10(expected / (length(expected)+1))) 

plot(c(0,7), c(0,7), col="red", lwd=3, type="l", xlab="Expected (--logP)", ylab="Observed (--logP)", 
xlim=c(0,max(lobs)), ylim=c(0,max(lobs)), las=1, xaxs="i", yaxs="i", bty="l", main = title) 

points(lexp, lobs, pch=23, cex=.4, bg="black") } 

jpeg("qqplot_compare.jpeg", height=1000, width=500) 
par(mfrow=c(2,1)) 
aff_unadj<--read.table("unadj.assoc.logistic", header=TRUE) 
aff_unadj.add.p<--aff_unadj[aff_unadj$TEST==c("ADD"),]$P 
broadqq(aff_unadj.add.p,"Some Trait Unadjusted") 
aff_C1C2<--read.table("PC1--PC2.assoc.logistic", header=TRUE) 
aff_C1C2.add.p<--aff_C1C2[aff_C1C2$TEST==c("ADD"),]$P 
broadqq(aff_C1C2.add.p, "Some Trait Adjusted for PC1 and PC2") 
dev.off() 

Now look for SNPs with genome-wide significance using the following R connamds: 

gws_unadj = aff_unadj[which(aff_unadj$P < 0.0000001),] 
gws_unadj 
gws_adjusted = aff_C1C2[which(aff_C1C2$P < 0.0000001),] 
gws_adjusted 

Note: These are the uncorrected p-values for multiple testing. The p-values which have been corrected using 
various multiple testing methods can be found in the .adjusted file. 

A common question when you have a finding with genome-wide significance in a GWAS is “Is the SNP in a 
known gene?” One way to look this information up is annotate variants in batch (please look at the annotating 
exercise for more information). You can do this using the Ensembl Variant Predictor. Go to the website: 

http://grch37.ensembl.org/Homo_sapiens/Tools/VEP (GRCh37 version) 

Type the rs number(s) of the SNP(s) with genome-wide significance in “Either paste data”, leave all options 
default and press run. In a few minutes you can view the results of your query. 
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Question 1: Did this study have a finding with genome-wide significance after adjusting for population 
substructure? Did you notice any difference in the p-values before and after adjustment for substructure? How 
many PC components should you include in the regression model. Please also, complete the tables below. 

Table 2. SNPS with genome-wide significance unadjusted for substructure: 
CHR SNP BP A1 TEST NMISS OR STAT P 

Table 3. SNPs with genome-wide significance adjusted for components 1 and 2: 
CHR SNP BP A1 TEST NMISS OR STAT P 

Question 2: Why would you not want to include in your analysis individuals from different ethnic backgrounds 
even if you control for population substructure?  

Question 3. Are any SNPs with genome-wide significance in known genes? 

Answers and Output 

Table 1 
Un-- 

adjusted PC1 
PC1-- 

2 
PC1 

--3
PC1 

--4
PC1 

--5
PC1 

--6
PC1 

--7
PC1 

--8
PC1 

--9
PC1-- 

10 
lambda 1.121 1.085 1.026 1.033 1.040 1.050 1.043 1.021 1.036 1.043 1.051 

Answer to Question 1: 

Question 1: 

Did this study have a finding with genome-wide significance after adjusting for population substructure? How 
many PC components should you include in the regression model. Did you notice any difference in the p-values 
before and after adjustment for substructure? 
Yes, see tables below. It is best to include to two PC components in the analysis, however the lambda is still 
inflated. Since we are analyzing three unique populations inclusion of PCs did not adequately control for 
substructure. If you compare the QQ plots below you can see that for this dataset the most significant SNPs 
were changed minimally when we adjusted for substructure but some of the moderately significant SNPs 
became less significant after adjustment. However, in some situations the p-values can become smaller. 12



Table 2. SNPS with genome-wide significance unadjusted for substructure: 
CHR SNP BP A1 TEST NMISS OR STAT P 

8 rs4571722 60326734 T ADD 242 0.04126 --7.436 1.04E--13 
4 rs10008252 179853616 G ADD 244 0.1665 --6.639 3.16E--11 

Table 3. SNPs with genome-wide significance adjusted for components 1 and 2: 
CHR SNP BP A1 TEST NMISS OR STAT P 

8 rs4571722 60326734 T ADD 242 0.04382 --7.237 4.59E--13 
4 rs10008252 179853616 G ADD 244 0.13070 --6.707 1.99E--11 

Question 2: Why would you not want to include in your analysis individuals from different ethnic backgrounds 
even if you control for population substructure?  

Firstly, you may not be able to adequately control for population substructure. Secondly, even if within the 
different populations the same genes are involved, for common variants LD structure can vary between 
populations, e.g., the tagSNPs in the different populations can have different allele frequencies, therefore the 
functional variant will not be tagged equally well in all populations and power can be reduced. It is also 
possible that different variants are associated, but for common variants, which are very old, usually this is not 
the cause. If a study involves individuals of different ancestry analysis can be performed separately and the 
results can be combined via meta-analysis. Studying individuals of different ancestry can be highly beneficial to 
fine map loci. 

Question 3. Are any SNPs with genome-wide significance in known genes? 
No, both rs457122 and rs10008252 are intergenic/intronic.

13



Oval 2 
N = 247  DNA samples 

Nsnp =  6424  SNPs 

Box 2b 
_59 _ SNPs (MAF <5%) missing 

>1% genotypes (GENO 0.01)

Box 4 

_ 5__ Individuals with inconsistent 
_ 2__ Duplicate pairs 
__1_ Individuals excluded due to 

relatedness 

Box 2a 
_ 2_ SNPs (MAF >5%) missing > 

5% of genotypes (GENO 

Box 3 
_0_ DNA samples failed missing 

> 3% of calls (MIND 0.03)

Oval 3 
N = 244 DNA samples 
Nsnp = _ 6_363  SNPs 

Box 5 
 0  SNPs in controls 

out of HWE with 
p<5x10--8 

Oval 4 
N = 244  DNA samples 
Nsnp = _6363  SNPs 

Oval 1 
N = 248  DNA 

samples 
Nsnp = 6424 SNPs 

Box 1 
_ 1 DNA samples 

missing >10% of 
calls (MIND 0.10) 
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Computer Practical Exercise on Family-based
Association using FaST-LMM, PLINK and R

Overview

Purpose

In this exercise you will be carrying out association analysis of data from a mini
genome-wide association study. The data comes from families (related
individuals) measured for a quantitative trait of interest. The purpose is detect
which (if any) of the loci are associated with the quantitative trait.

Methodology

We will use the linear mixed model approach implemented in FaST-LMM and (for
comparison) standard linear regression in PLINK.

Program documentation

PLINK documentation:

PLINK has an extensive set of docmentation including a pdf manual, a web-based
tutorial and web-based documentation: 

Original PLINK (1.07) (which has arguably clearer documentation):
http://zzz.bwh.harvard.edu/plink/ 

New PLINK (1.90) (which includes documentation on new additional features):
https://www.cog-genomics.org/plink2 

R documentation:

The R website is at http://www.r-project.org/ 

From within R, one can obtain help on any command xxxx by typing `help(xxxx)' 

FaST-LMM documentation:

Documentation can be downloaded together with the FaST-LMM program from 

http://research.microsoft.com/en-us/downloads/aa90ccfb-b2a8-4872-ba00-
32419913ca14/ 
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Data overview

We will be using family data consisting of 498 individuals typed at 134,946 SNPs.
All individuals have measurements of a quantitative trait of interest. You can
assume that appropriate quality control (QC) checks on SNPs and individuals
have been carried out prior to the current analysis i.e. the data set is already QC-
ed.

Appropriate data

Appropriate data for this exercise is genome-wide genotype data for related
and/or apparently unrelated individuals. Genome-wide data is required in order to
estimate relationships between people and allow for relatedness in the analysis.
The individuals should be phenotyped for either a dichotomous trait or a
quantitative trait of interest.

Instructions

Data files

The data is in PLINK binary-file format. Check you have the required files by
typing: 

ls -l 

You should find 3 PLINK binary-format files in your directory: quantfamdata.bed,
quantfamdata.bim and quantfamdata.fam. The file quantfamdata.bed is the binary
genotype file which will not be human readable. The file quantfamdata.bim is a map
file. You can take a look at this (e.g. by typing more quantfamdata.bim). The file
quantfamdata.fam gives the pedigree structure in a format that is compatible with
the binary genotype file. You can take a look at this (e.g. by typing more
quantfamdata.fam). Note this file is the same as the first six columns of a standard
pedigree file, with the last column giving each individual's quantitative trait value. 

Step-by-step instructions

1. Analysis in PLINK

To start with, we will use PLINK to perform a test equivalent to linear regression
analysis, without worrying about the relatedness between individuals:

plink --bfile quantfamdata --assoc --out plinkresults

A copy of the screen output is saved in the file plinkresults.log. The association
results are output to a file plinkresults.qassoc. Take a look at this file. Each line
corresponds to the results for a particular SNP. Each line contains the following
columns:
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     CHR      Chromosome number 
     SNP      SNP identifier 
     BP Physical position (base-pair) 
     NMISS    Number of non-missing genotypes 
     BETA     Regression coefficient 
     SE Standard error 
     R2 Regression r-squared 
     T Wald test (based on t-distribtion) 
     P Wald test asymptotic p-value 

The most useful columns are T (the test statistic) and its p value (P). 

To visualise these results properly we will use R. Open up a new terminal window,
move to the directory where you performed this analysis, and start R (by typing R).

Now (within R) read in the data by typing: 

res1<-read.table("plinkresults.qassoc", header=T) 

This reads the results into a dataframe named "res1". To see the top few lines of
this dataframe, type: 

head(res1) 

The data frame has 134,946 lines, one for each SNP. It would be very laborious to
go through and look at each line by eye. Instead we will plot the results for all
chromosomes, colouring each chromosome differently. To do this we need to first
read in from an external file some special functions for creating such ``Manhattan''
plots: 

source("qqmanHJCupdated.R") 

Then we use the following command to actually make the plot, and save it in the
file "mh1.png": 

png("mh1.png") 
manhattan(res1, pch=20, suggestiveline=F, genomewideline=F, ymin=2,
cex.x.axis=0.65, colors=c("black","dodgerblue"), cex=0.5) 
dev.off() 

Be warned, this may take some time to plot. 
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Visually it looks like there may be significant results on chromosomes 6 and 12,
and possibly on chromosome 5 as well. One way to assess the significance of the
results, in light of the large number of tests performed, is to use a Q-Q plot. To
plot a Q-Q plot for these P values, and save it in the file "qq1.png", type: 

png("qq1.png") 
qq(res1$P) 
dev.off() 
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What one would hope to see is most of the values lying along the straight line with
gradient 1, indicating that most results are consistent with the null hypothesis of
no association. However, one would also hope to see a few high values at the top
that depart from the straight line, which are hopefully true associations. 

Our results seem fairly consistent with this expectation, but there may be a little
bit of inflation (i.e. a slope slightly bigger than 1) due to relatedness between
individuals. To calculate the genomic control inflation factor, we first convert the P
values to chi-squared test statistics on 1df, and then use the formula from Devlin
and Roeder (1999): 

chi<-(qchisq(1-res1$P,1)) 
lambda=median(chi)/0.456 
lambda 

You should find a slightly inflated value (lambda=1.10) 

2. Analysis in FaST-LMM

Now we will try re-running the analysis using FaST-LMM, which estimates and
accounts for the relatedness between individuals. Go back to the window where
you ran PLINK and run FaST-LMM as follows: 

fastlmmc -bfile quantfamdata -pheno quantfamdata.fam -mpheno 4 -bfileSim
quantfamdata -ML -out FLMMresults 

Here we use the -bfile quantfamdata command to tell the program the name
(stem) of the files with the input genotype data containing the SNPs to be tested
for association, and the -bfileSim quantfamdata command to tell the program the
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name of the files containing the SNPs to be used for estimating relatedness. Here
we just use the same files both times, but FaST-LMM would allow us to use
different files for these two operations if we prefer. 

The command -pheno quantfamdata.fam -mpheno 4 tells FaST-LMM to read the
phenotype data in from the file quantfamdata.fam , using the 4th phenotype column
(not including the two first columns which give the family and person IDs). The -ML
command tells FaST-LMM to use maximium likelihood estimation (in case you
prefer this as opposed to the default restricted maximium likelihood (REML)). The
command -out FLMMresults tells FaST-LMM the name to use for the output file. 

Take a look at the results file. FaST-LMM automatically orders the results by
significance. 

Now go back to your R window and read the results into R: 

res2<-read.table("FLMMresults", header=T) 

Check the column names by typing: 

head(res2) 

The P value is in a column called ``Pvalue''. Remember FaST-LMM has
automatically ordered the results by significance, so these top few rows will show
the most significant results. 

First let us check the genomic control inflation factor. We convert the P values to
chi-squared test statistics on 1df, and then use the formula from Devlin and
Roeder (1999): 

chi<-(qchisq(1-res2$Pvalue,1)) 
lambda=median(chi)/0.456 
lambda 

You should find a less inflated value (lambda=0.99) than we found previously with
PLINK. 

To plot Manhattan and Q-Q plots you can use similar commands to before, but the
columns need to be named appropriately. The easiest thing is to make a new
smaller dataframe containing the required data: 

new<-data.frame(res2$SNP, res2$Chromosome, res2$Position, res2$Pvalue) 
names(new)<-c("SNP", "CHR", "BP", "P") 
head(new) 

Now you can plot the Q-Q plot: 

png("qq2.png") 
qq(new$P) 
dev.off() 
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And the Manhattan plot: 

png("mh2.png") 
manhattan(new, pch=20, suggestiveline=F, genomewideline=F, ymin=2,
cex.x.axis=0.65, colors=c("black","dodgerblue"), cex=0.5) 
dev.off() 
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The significant effects on chromosomes 6 and 12 are still easily visible. In fact,
this is simulated data, and these signals do correspond correctly to the positions
of the underlying causal variants. 

Answers

How to interpret the output

Interpretation of the output is described in the step-by-step instructions. In
general, the output will consist of a likelihood-ratio or chi-squared test for
whatever you are test you are performing, and regression coefficients or odds
ratio estimates for the predictor variables in the current model. Please ask if you
need help in understanding the output for any specific test.

Comments
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Advantages/disadvantages

PLINK is useful for data management and analysis of genome-wide association
data. FaST-LMM is more appropriate for analysis of related individuals, or for
correcting for population stratification in apparently unrelated individuals.

Other packages

Other packages that can implement a similar analysis to FaST-LMM include
EMMAX, GEMMA, MMM, GenABEL, Mendel.

References

Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RI, Heckerman D (2011) FaST
linear mixed models for genome-wide association studies Nat Methods 8(10):833-
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Human Genetics, 81:559-575. 
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Computer Practical Exercise using GCTA (with R)

Overview

Purpose

This exercise repeats the linear mixed model analysis from the previous
exercise using the program GCTA instead of FaST-LMM. In addition, we use
GCTA to estimate the heritability accounted for by all genotyped SNPs, and by
various subsets of SNPs.

Methodology

We will use the linear mixed model approach implemented in GCTA.

Program documentation

GCTA documentation:

Documentation can obtained together with the GCTA program from: 

http://cnsgenomics.com/software/gcta/ 

Data overview

As a reminder, we are using family data consisting of 498 individuals typed at
134,946 SNPs. All individuals have measurements of a quantitative trait of
interest.

Appropriate data

Appropriate data for this exercise is genome-wide genotype data for individuals
who are phenotyped for either a dichotomous trait or a quantitative trait of
interest. GCTA is really designed for the analysis of apparently unrelated
individuals, but in this case we will apply it to a set of related individuals, in
order to compare the results with those we obtained previously for these
individuals.
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Instructions

Data files

We will use the same PLINK binary-file format files quantfamdata.bed,
quantfamdata.bim and quantfamdata.fam used previously. We will also use R to
create an additional phenotype file required by GCTA.

Step-by-step instructions

1. Create phenotype file in R

To start with, we will use R to create the phenotype file required by GCTA. Start
R (by typing R) and create a new phenotype file from the .fam file by typing the
following commands: 

fam<-read.table("quantfamdata.fam", header=F) 
pheno=data.frame(fam[,1:2],fam[,6]) 
write.table(pheno,file="phenos.txt",col.names=F,row.names=F,quote=F) 

Take a look at the file phenos.txt that you just created, to check you
understand it. 

2. GCTA Analysis

To use GCTA to perform association analysis while allowing for relatedness
between individuals, type: 

gcta64 --mlma --bfile quantfamdata --pheno phenos.txt --out GCTAresults 

Here we use the --mlma option to tell GCTA to perform association analysis, we
use the --bfile and --pheno options to tell GCTA which files to read in the
genotype and phenotype data from, and we use GCTAresults as the stem name
for the output files. 

To calculate the genomic control inflation factor, and to produce QQ and
Manhattan plots from the above analysis, you can use the following sequence
of commands within R. (Make sure that you understand the commands - if not
please ask an instructor). 

source("qqmanHJCupdated.R") 

res3<-read.table("GCTAresults.mlma", header=T) 
head(res3) 

chi<-(qchisq(1-res3$p,1)) 
lambda=median(chi)/0.456 
lambda 25



new3<-data.frame(res3$SNP, res3$Chr, res3$bp, res3$p) 
names(new3)<-c("SNP", "CHR", "BP", "P") 
head(new3) 

png("qq3.png") 
qq(new3$P) 
dev.off() 

 

png("mh3.png") 
manhattan(new3, pch=20, suggestiveline=F, genomewideline=F, ymin=2,
cex.x.axis=0.65, colors=c("black","dodgerblue"), cex=0.5) 
dev.off() 
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You should find that the genomic control factor is close to 1.0, and the QQ and
Manhattan plots are similar to those you obtained from FaST-LMM. 

To compare the results (res3) with our previous FaST-LMM results (res2), use
the following sequence of commands within R: 

res2<-read.table("FLMMresults", header=T) 
new2<-data.frame(res2$SNP, res2$Chromosome, res2$Position, res2$Pvalue) 
names(new2)<-c("SNP", "CHR", "BP", "P") 
merged=merge(new3,new2, by="SNP", sort=F) 

head(res2) 
head(new2) 
head(new3) 
head(merged) 

png("compareGCTAFLMM.png") 
plot(-log10(merged$P.x),-log10(merged$P.y)) 
abline(0,1) 
dev.off() 
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You should find that the GCTA results (on the x axis) are very similar to the
FaST-LMM results (on the y axis), although the -log10 P-values from FaST-
LMM are consistently just a little bit higher than those from GCTA. 

To use GCTA to estimate the heritability accounted for by all autosomal
genome-wide SNPs, you need to first estimate the GRM, and then use the
GRM to estimate the (SNP) heritability. This can be achieved using the
following commands: 

gcta64 --bfile quantfamdata --autosome --make-grm-bin --out GCTAgrm 
gcta64 --reml --grm-bin GCTAgrm --pheno phenos.txt --out GCTAherit 

The screen output estimates the SNP heritability V(G)/Vp to be 0.480590 or
around 48%. 

To estimate the heritabilty accounted for by SNPs on chromosomes 1, 2, 6 and
12 (for example), use the following commands: 

gcta64 --bfile quantfamdata --chr 1 --make-grm-bin --out GCTAgrmchr1 
gcta64 --reml --grm-bin GCTAgrmchr1 --pheno phenos.txt \ 
--out GCTAheritchr1 

gcta64 --bfile quantfamdata --chr 2 --make-grm-bin --out GCTAgrmchr2 
gcta64 --reml --grm-bin GCTAgrmchr2 --pheno phenos.txt \ 
--out GCTAheritchr2 

gcta64 --bfile quantfamdata --chr 6 --make-grm-bin --out GCTAgrmchr6 
gcta64 --reml --grm-bin GCTAgrmchr6 --pheno phenos.txt \ 
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--out GCTAheritchr6 

gcta64 --bfile quantfamdata --chr 12 --make-grm-bin --out GCTAgrmchr12 
gcta64 --reml --grm-bin GCTAgrmchr12 --pheno phenos.txt \ 
--out GCTAheritchr12 

You should find that the SNP heritabilities on chromosomes 1 and 2 do not look
particularly significant (given the estimated standard errors), but the SNP
heritabilities on chromosomes 6 and 12 are significant (as might be expected
from the strong effects seen on these chromosomes). 

The sum of the SNP heritabilities on these 4 chromosomes
(0.206479+0.111512+0.368184+0.286570) adds up to more then the overall
SNP heritability of 0.480589. This is due to the phenomenon that, in the
presence of population substructure or close relatedness, chromosome-
specific heritability estimates can be confounded by shared non-genetic effects
(for examples shared environment) or corrrelations between SNPs on different
chromosomes, leading to an over-estimate of the chromosome-specific
heritability. 

To correctly partition the overall heritability between the 22 autosomes, we
need to first estimate chromosome-specific GRMs and then include them all
simultaneously in the model. 

We first calculate the GRMs for all additional chromosomes: 

gcta64 --bfile quantfamdata --chr 3 --make-grm-bin --out GCTAgrmchr3 
gcta64 --bfile quantfamdata --chr 4 --make-grm-bin --out GCTAgrmchr4 
gcta64 --bfile quantfamdata --chr 5 --make-grm-bin --out GCTAgrmchr5 
gcta64 --bfile quantfamdata --chr 7 --make-grm-bin --out GCTAgrmchr7 
gcta64 --bfile quantfamdata --chr 8 --make-grm-bin --out GCTAgrmchr8 
gcta64 --bfile quantfamdata --chr 9 --make-grm-bin --out GCTAgrmchr9 
gcta64 --bfile quantfamdata --chr 10 --make-grm-bin --out GCTAgrmchr10 
gcta64 --bfile quantfamdata --chr 11 --make-grm-bin --out GCTAgrmchr11 
gcta64 --bfile quantfamdata --chr 13 --make-grm-bin --out GCTAgrmchr13 
gcta64 --bfile quantfamdata --chr 14 --make-grm-bin --out GCTAgrmchr14 
gcta64 --bfile quantfamdata --chr 15 --make-grm-bin --out GCTAgrmchr15 
gcta64 --bfile quantfamdata --chr 16 --make-grm-bin --out GCTAgrmchr16 
gcta64 --bfile quantfamdata --chr 17 --make-grm-bin --out GCTAgrmchr17 
gcta64 --bfile quantfamdata --chr 18 --make-grm-bin --out GCTAgrmchr18 
gcta64 --bfile quantfamdata --chr 19 --make-grm-bin --out GCTAgrmchr19 
gcta64 --bfile quantfamdata --chr 20 --make-grm-bin --out GCTAgrmchr20 
gcta64 --bfile quantfamdata --chr 21 --make-grm-bin --out GCTAgrmchr21 
gcta64 --bfile quantfamdata --chr 22 --make-grm-bin --out GCTAgrmchr22 

We then run the analysis: 

gcta64 --reml --mgrm-bin multipleGRMs.txt --pheno phenos.txt \ 
--out GCTAherit22GRMs 

Note this command makes use of a file multipleGRMs.txt which we created for
you in advance, listing the stem names of the individual GRM files.
Unfortunately, in this example the analysis fails to converge, probably because
this type of analysis ideally requires a larger number of less closely related
individuals. 

To instead partition the heritability among two sets of SNPs, chromosome 6
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and all other autosomes, we first join together the GRMs for all non-
chromosome 6 chromosomes: 

gcta64 --mgrm-bin multipleGRMsnot6.txt --make-grm --out GCTAgrmnot6 

Note this command makes use of another file multipleGRMsnot6.txt which we
created for you in advance, listing the stem names of the individual GRM files
(excluding the one for chromosome 6). 

We will run the analysis making use of another file multipleGRMs6andnot6.txt
which we created for you in advance. Take a look at this file and check you
understand it. 

To run the analysis type: 

gcta64 --reml --mgrm-bin multipleGRMs6andnot6.txt --pheno phenos.txt \ 
--out GCTAherit6andnot6 

The results suggest that a total SNP heritability of 0.469171 can be partitioned
as 0.294445 accounted for by chromosome 6, and 0.174726 accounted for by
the other autosomes. 

3. GCTA fastGWA Analysis

GCTA has an alternative method for performing mixed linear model (MLM)-
based GWAS analysis that is partcularly designed for large biobank-scale
datasets such as the UK Biobank. Here we will apply it to the (much smaller
scale) dataset that we have already analysed. 

First we have to make a sparse genetic relationship matrix (GRM) from the full-
dense GRM e.g. using a cutoff value of 0.05 (so entries less than 0.05 are set
to 0): 

gcta64 --grm GCTAgrm --make-bK-sparse 0.05 --out GCTAsparsegrm 

This creates a file GCTAsparsegrm.grm.sp containing the pairs of individuals
whose entries in the GRM are greater than 0.05. 

For real biobank-scale data, creating the full-dense GRM in the first place can
be computationally challenging, and it can be advantageous to partition the
GRM into m parts (by row), and compute the parts separately (before joining
them back together). To compute i-th part in the current run, we use the syntax
--make-grm-part m i . For example, use the following commands to re-
calculate the full-dense GRM by partitioning the calculation into 3 parts (while
also using 5 threads): 

gcta64 --bfile quantfamdata --make-grm-part 3 1 --thread-num 5 \ 
--out test 
gcta64 --bfile quantfamdata --make-grm-part 3 2 --thread-num 5 \ 
--out test 
gcta64 --bfile quantfamdata --make-grm-part 3 3 --thread-num 5 \ 
--out test 

Merge all the parts together: 
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cat test.part_3_*.grm.id > test.grm.id 
cat test.part_3_*.grm.bin > test.grm.bin 
cat test.part_3_*.grm.N.bin > test.grm.N.bin 

Now we can create a sparse GRM from this re-calculated version of the full-
dense GRM: 

gcta64 --grm test --make-bK-sparse 0.05 --out newsparsegrm 

Check that the top few lines of newsparsegrm.grm.sp seem to match
GCTAsparsegrm.grm.sp: 

head *.sp 

To perform the association analysis, we would normally use the sparse GRM to
model close relationships as random effects, while additionally including
principal components as fixed effects. So let us first use GCTA to calculate the
first 5 principal components: 

gcta64 --grm-bin GCTAgrm --pca 5 --out pcs 

To use original GCTAsparsegrm.grm.sp in a fastGWA analysis, type: 

gcta64 --bfile quantfamdata --grm-sparse GCTAsparsegrm \ 
--fastGWA-mlm --pheno phenos.txt --qcovar pcs.eigenvec \ 
--out sparse_assoc 

To use newsparsegrm.grm.sp in a fastGWA analysis, type: 

gcta64 --bfile quantfamdata --grm-sparse newsparsegrm \ 
--fastGWA-mlm --pheno phenos.txt --qcovar pcs.eigenvec \ 
--out newsparse_assoc 

Once we have included the principal components, it seems that the estimate of
Vg is not statistically significant, and so fastGWA has automatically moved to
using linear regression rather than a linear mixed model. This is not really what
we wanted! Let us not include principal components - we would then expect the
estimate of Vg to be significant, and so in this way we force fastGWA to use a
linear mixed model: 

gcta64 --bfile quantfamdata --grm-sparse GCTAsparsegrm \ 
--fastGWA-mlm --pheno phenos.txt --out LMMsparse_assoc 

gcta64 --bfile quantfamdata --grm-sparse newsparsegrm \ 
--fastGWA-mlm --pheno phenos.txt --out LMMnewsparse_assoc 

Let us now use R to check the QQ plots, Manhattan plots and Genomic control
factors for these 4 sets of results. Start up R and use the following commands: 

res4<-read.table("sparse_assoc.fastGWA", header=T) 
res5<-read.table("newsparse_assoc.fastGWA", header=T) 
res6<-read.table("LMMsparse_assoc.fastGWA", header=T) 
res7<-read.table("LMMnewsparse_assoc.fastGWA", header=T) 

head(res4) 
head(res5) 
head(res6) 
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head(res7) 

chi<-(qchisq(1-res4$P,1)) 
lambda=median(chi)/0.456 
lambda 

chi<-(qchisq(1-res5$P,1)) 
lambda=median(chi)/0.456 
lambda 

chi<-(qchisq(1-res6$P,1)) 
lambda=median(chi)/0.456 
lambda 

chi<-(qchisq(1-res7$P,1)) 
lambda=median(chi)/0.456 
lambda 

You should see that the linear mixed model (with a sparse GRM) does a better
job at controlling for relatedness (giving lambda closer to 1.0) than just
including 5 principal components. 

Now continue in R to make the plots for these 4 analyses (which will be very
similar to those you made previously): 

source("qqmanHJCupdated.R") 

new4<-data.frame(res4$SNP, res4$CHR, res4$POS, res4$P) 
names(new4)<-c("SNP", "CHR", "BP", "P") 

png("qq4.png") 
qq(new4$P) 
dev.off() 
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png("mh4.png") 
manhattan(new4, pch=20, suggestiveline=F, genomewideline=F, ymin=2,
cex.x.axis=0.65, colors=c("black","dodgerblue"), cex=0.5) 
dev.off() 
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new5<-data.frame(res5$SNP, res5$CHR, res5$POS, res5$P) 
names(new5)<-c("SNP", "CHR", "BP", "P") 

png("qq5.png") 
qq(new5$P) 
dev.off() 
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png("mh5.png") 
manhattan(new5, pch=20, suggestiveline=F, genomewideline=F, ymin=2,
cex.x.axis=0.65, colors=c("black","dodgerblue"), cex=0.5) 
dev.off() 
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new6<-data.frame(res6$SNP, res6$CHR, res6$POS, res6$P) 
names(new6)<-c("SNP", "CHR", "BP", "P") 

png("qq6.png") 
qq(new6$P) 
dev.off() 
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png("mh6.png") 
manhattan(new6, pch=20, suggestiveline=F, genomewideline=F, ymin=2,
cex.x.axis=0.65, colors=c("black","dodgerblue"), cex=0.5) 
dev.off() 
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new7<-data.frame(res7$SNP, res7$CHR, res7$POS, res7$P) 
names(new7)<-c("SNP", "CHR", "BP", "P") 

png("qq7.png") 
qq(new7$P) 
dev.off() 
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png("mh7.png") 
manhattan(new7, pch=20, suggestiveline=F, genomewideline=F, ymin=2,
cex.x.axis=0.65, colors=c("black","dodgerblue"), cex=0.5) 
dev.off() 
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Finally we will check how the results from the linear mixed model (with a sparse
GRM) from fastGWA compares to the original GCTA --mlma results: 

res3<-read.table("GCTAresults.mlma", header=T) 
res7<-read.table("LMMnewsparse_assoc.fastGWA", header=T) 
head(res3) 
head(res7) 

png("compareGCTAfastGWA.png") 
plot(-log10(res3$p),-log10(res7$P)) 
abline(0,1) 
dev.off() 
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As you can see, the results are extremely similar. 

Answers

How to interpret the output

Interpretation of the output is described in the step-by-step instructions. Please
ask if you need help in understanding the output.

Comments

Other packages

Another package that can implement a similar analysis to GCTA is DISSECT
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Interaction analysis using PLINK and CASSI

Overview

Purpose

In this exercise you will be performing association analysis and testing for
interaction effects using case/control data.

Methodology

The methodology used includes logistic regression in PLINK and CASSI, as well
as some related alternative approaches.

Program documentation

PLINK documentation:

PLINK has an extensive set of docmentation including a pdf manual, a web-based
tutorial and web-based documentation: 

Original PLINK (1.07) (which has arguably clearer documentation):
http://zzz.bwh.harvard.edu/plink/ 

New PLINK (1.90) (which includes documentation on new additional features):
https://www.cog-genomics.org/plink2 

CASSI documentation:

CASSI documentation is available from: 

http://www.staff.ncl.ac.uk/richard.howey/cassi/downloads.html 

Exercise

Data overview

The data consists of simulated genotype data at 100 SNP loci, typed in 2000
cases and 2000 controls. The data has been simulated in such a way that the first
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five SNPs have some relationship with disease, whereas the remaining 95 SNPs
have no effect on disease outcome. 

The complication with these data is that SNPs 1 and 2 have been simulated in
such a way that they show no marginal association with the disease: their
association will only be visible when you look at both SNPs in combination. SNPs
3-5 have been simulated to only have an effect on disease when an individual is
homozygous at all three of these loci. Although potentially this could lead to
marginal effects at the loci, formally this corresponds to a model of pure
interaction, with no main effects, at these 3 SNPs.

Appropriate data

Appropriate data for this exercise is genotype data for a set of linked or unlinked
loci typed in a group of unrelated affected individuals (cases) and in a group of
unaffected or randomly chosen individuals from the same population (controls). 

All the programs will deal with much larger numbers of loci than the 100 SNPs
considered here. PLINK, in particular, was specifically designed for the analysis of
large numbers of loci e.g. generated as part of a genome-wide association study.

Instructions

Data format

The data for the 100 SNPs simcasecon.ped is in standard linkage pedigree file
format, with columns corresponding to family id, subject id (within family), father's
id, mother's id, sex (1=m, 2=f), affection status (1=unaffected, 2=affected) and
one column for each allele for each locus genotype. Note that since this is
case/control rather than family data, there is only one individual per family and
everyone's parents are coded as unknown. 

PLINK requires an additional map file simcasecon.map describing the markers (in
order) in the pedigree file. The PLINK-format map file contains exactly 4 columns:

     chromosome (1-22, X, Y or 0 if unplaced)  
     rs number or snp identifier  
     Genetic distance (morgans) (not often used - so can be set to 0) 
     Base-pair position (bp units)  

Take a look at the data files, and check that you understand how the data is
coded. Then (if necessary) save the files as .txt files to the appropriate directory
(folder) on your computer.

Step-by-step instructions

1. Analysis in PLINK

Move to the directory where you have saved the data files. 
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To carry out a basic association analysis in PLINK, type 

plink --ped simcasecon.ped --map simcasecon.map --assoc 

Here the --ped xxxx command tells PLINK that the name of the pedigree file is
xxxx and the --map yyyy command tells PLINK that the name of the map file is
yyyy. The --assoc command tells PLINK to perform a basic allele-based
chisquared association test. 

PLINK outputs some useful messages (you should always read these to make
sure they match up with what you expect!) and outputs the results to a file
plink.assoc . 

Take a look at the file plink.assoc (e.g. by typing more plink.assoc ). For each
SNP the following columns of results are reported:

     CHR     Chromosome 
     SNP     SNP ID 
     BP      Physical position (base-pair) 
     A1      Minor allele name (based on whole sample) 
     F_A     Frequency of this allele in cases 
     F_U     Frequency of this allele in controls 
     A2      Major allele name 
     CHISQ   Basic allelic test chi-square (1df) 
     P       Asymptotic p-value for this test 
     OR      Estimated odds ratio (for A1, i.e. A2 is reference) 

Does there appear to be evidence of association at any of the five "true" loci?
What about the 95 null loci? 

Try performing a genotype-based (rather than an allele-based) analysis in PLINK
and take a look at the results by typing the following 3 commands: 

plink --ped simcasecon.ped --map simcasecon.map --model 
head -1 plink.model 
grep GENO plink.model 

Again, does there appear to be evidence of association at any of the five "true"
loci? What about the 95 null loci? 

To test for pairwise epistasis in PLINK, the fastest option is to use the --fast-
epistasis command: 

plink --ped simcasecon.ped --map simcasecon.map --fast-epistasis 

Formally, this tests whether the OR for association between two SNPs differs
between cases and controls, which can be shown to appriximate a logistic
regression based test of interaction between the SNPs. Results can be found in
the file plink.epi.cc. Only pairwise interaction tests with p <= 0.0001 are reported
(otherwise, for genome-wide studies, there would be too many results to report,
given the large number of pairwise tests performed). 

Take a look at the file plink.epi.cc. You should find a very significant interaction
between SNPs 1 and 2, and a less significant iteraction between SNPs 15 and 77.
Since this is simulated data, we know that this less significant result is a false
positive. 

A more powerful test for SNPs that are not in LD with one another (i.e. that are
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not too close to one another, in terms of their genomic location) is to additionally
use the --case-only option: 

plink --ped simcasecon.ped --map simcasecon.map --fast-epistasis --case-only 

Results can be found in the file plink.epi.co . Again only pairwise interaction tests
with p <= 0.0001 are reported. You should again find a very significant interaction
between SNPs 1 and 2 (even more significant than previously, owing to the
increased power with a case-only test). 

A problem with the --fast-epistasis test is that it can be affected by LD between
the SNPs (although only the case-only test is seriously affected). A more accurate
test is to carry out logistic regresion by using the slower --epistasis command: 

plink --ped simcasecon.ped --map simcasecon.map --epistasis 

Results can again be found in the file plink.epi.cc (which will now have been
overwritten). You can see that again the interaction between SNPs 1 and 2
remains highly significant (p=1.22E-63), together with just one other (false
positive) interaction between SNPs 15 and 77. 

Since the --epistasis option is slower, but most accurate, for genome-wide
studies it might be sensible to first to screen for interactions using the --fast-
epistasis command, but then confirm any findings using the --epistasis
command on the smaller set of detected SNPs. 

2. Analysis in CASSI

We will also compare our PLINK results with those obtained using the CASSI
program, which implements a variety of tests including linear and logistic
regression, and an improved Joint Effects (JE) test of pairwise interaction as
described in Ueki and Cordell (2012). First we need to convert our data to PLINK
binary format: 

plink --ped simcasecon.ped --map simcasecon.map --make-bed --out simbinary 

This should create PLINK binary format files simbinary.bed, simbinary.bim and
simbinary.fam. Then we use the CASSI program with the input file simbinary.bed to
perform pairwise interaction tests at all pairs of loci. (By default, only those pairs
of SNPs showing interaction with a p-value < 0.0001 are output, though this can
be changed if desired). 

We start by using logistic regression. The logistic regression test in CASSI is
essentially the same as the --epistasis test in PLINK, except that CASSI uses a
likelihood ratio test rather than the asymptotically equivalent Wald (?) test used by
PLINK. CASSI also has the advantage of allowing covariates into the analysis, if
desired. 

cassi -lr -i simbinary.bed 

Take a look at the output file cassi.out The most important columns are the first 4
columns (listing the SNP numbers/names) and the last 4 columns listing the log
odds ratio, its standard error, the likelihood ratio chi-squared test statistic and its
p-value. It can be quite hard to work out which column is which, so we suggest
you start up R by typing 
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R 

and then read in and look at the results by typing 

results<-read.table("cassi.out", header=T) 
results 

You can see that SNPs 1 and 2 show a very strong pairwise interaction (p=5.94E-
72), which is actually a bit more significant than the result from PLINK (p=1.22E-
63). We also still detect the false positive interaction between SNPs 15 and 77. 

Now try using the Joint Effects (JE) test, telling CASSI to use the output filename
cassiJE.out 

cassi -je -o cassiJE.out -i simbinary.bed 

Take a look at the output file cassiJE.out. The most important columns are the first
4 columns (listing the SNP numbers/names) and the last 4 columns listing the
case/control and case-only interaction test chi-squareds and p-values. Again it
can be quite hard to work out which column is which, so we suggest you read in
and look at the results in R: 

resultsJE<-read.table("cassiJE.out", header=T) 
resultsJE 

You can see that SNPs 1 and 2 show a very strong pairwise interaction (Case-
Con test p-value JE_CC_P=1.67e-129; Case-Only test p-value JE_CO_P=1.71e-
274). Interestingly we also detect, albeit at lower significance levels, the (true)
pairwise interactions between SNPs 3 and 4 and between SNPs 4 and 5. We also
detect two false positive interactions, between SNPs 15 and 77, and between
SNPs 31 and 100. 

Answers

Interpretation of output

Answers and interpretation of the output are described in the step-by-step
instructions. Please ask if you need help in understanding the output for any
specific test.

Comments

Advantages/disadvantages

PLINK and CASSI are designed for genome-wide studies, allowing the inclusion
of many thousands of markers. Analysis in a standard statistical package does not
generally allow so many markers, but may have some advantage of allowing a lot
of extra flexibility with regards to the models and analyses performed e.g. it easy47



to include additional predictor variables such as environmental factors, gene-
environment interactions etc. However, you are required to know or learn how to
use the package in order to gain that extra flexibility, and to produce reliable
results.

Study design issues

With case/control data it is relatively easy to obtain large enough sample sizes to
detect small genetic effects. However, detection of interactions generally requires
much larger sample sizes.

Other packages

Logistic regression analysis for detection of interactions can be performed in most
statistical packages such as R, Stata, SAS, SPSS. Alternative Bayesian Epistasis
mapping approaches are available in the BEAM (Zhang et al. 2007; Zhang 2011)
or BIA software packages. 

Several packages are available for implementing different data-mining and
machine-learning approaches for detecting interactions or detecting association
allowing for interaction. See Cordell (2009) and other references below for more
details.
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Sample Size Calculations - Cochran-Armitage Test for Trend 
Copyrighted Ó 2024 Suzanne M. Leal 

Webpage for the exercises: 
http://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/index.html 
http://zzz.bwh.harvard.edu/gpc/cc2.html 

Question 1 
For a complex disease study, you plan to collect 35,000 cases and 70,000 controls and wish to know if this is a 
sufficient sample size to detect associations with disease susceptibility loci. The disease has a population 
prevalence of 5%. You wish to estimate the power for a genotypic relative risk of 1.2 and a disease allele 
frequency of 0.02. What is the power for α=5x10-8 under a under a multiplicative model ( ) 
a.)_________and dominant model ( ) b.) _____________? 

Question 2 
For your study, you hypothesize that you will try to replicate associations for 100 variants that are in linkage 
equilibrium and you want to reject the null hypothesis using a p-value of 0.05. What is the Bonferroni 
correction you should use a.)__________. Determine what your power would be if you used a Bonferroni 
correction to control for the Family Wise Error Rate (FWER) for testing 100 variants.  Using the parameters 
provided in question 1 but for a sample size of 20,000 cases and 20,000 controls what is the power under the 
multiplicative model b.)_______________ and under a dominant model c.)___________________? 

Question 3 
You determine that you can ascertain 50,000 cases and 50,000 controls what is the power using the same 
parameters as described in question 1 for the multiplicative model _______________ and dominant 
model______________________? 

Question 4 
The power of the Cochran-Armitage test for trend is dependent on the underlying genetic model. Using the 
parameters from question 1 which of the following underlying genetic models: multiplicative ( ), 
additive( ), dominant ( ) or  recessive ( ) would you predict to be the most powerful 
a.)______________ and least powerful  b.)____________________? 

Question 5 
For study design with equal numbers of cases and controls a genotype relative risk of 1.5 under a recessive 
model for a disease with a population prevalence of 0.05 and disease allele frequency of 0.1.  How many cases 
a.)______ and controls b.) ________should you ascertain for α=5.0 x 10-8 and 1-β=0.80? *Use power2 or 
Genetic Power Calculator, GAS power cannot calculate for more than 100,000 cases. 

Question 6  
You are performing a rare variant association study and you assume that that cumulative frequency of the causal 
variants in your gene region is 0.01 with every variant having an effect size of 1.4.  The disease you are 
studying has a prevalence of 5%.  For a study with 0.8 power and an α=2.5 x 10-6 under a dominant model for 
equal numbers of cases and controls what is the total sample size a.) __________ do you need to ascertain. 
What is the total sample size b.)_________you need to ascertain if the cumulative frequency of causal variants 
is only 0.005? 

2
12 gg =

12 gg =

2
12 gg =

12 12 -= gg 12 gg = 11 =g
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Question 7 
You are performing a study using the UK Biobank and for your phenotype of interest you have 50,000 cases 
and 100,000 controls.  For a disease with 10% prevalence, disease allele frequency of 0.01, where each variant 
has an effect size of 1.2 under a dominant model what would be the power for an aggregate test where the 
cumulative allele frequency is 0.01 _________and a single variant test ____________?  Clue use the 
appropriate alpha for each test.  

Question 8  
Using have a replication sample of 50,000 cases and 50,000 controls and you plan to try to replicate 15 genes 
and 100 variants. Using the same parameters as in question 7 what would be your power to replicate 
a.)________________?  Note for alpha use a Bonferroni correction. 

Question 9 
For the above power calculations, you have been using the relative risk which only approximates the odds ratio 
when a.) _______________________? You are performing a power calculation for a case control study for a 
disease/variant frequency of 0.01. You use a dominant model and a gamma of 1.2 for a disease with a 
prevalence for 0.2. What is the odds ratio for which the power calculations are being performed b.) 
_________________? *Use Genetic Power Calculator – information not provided by GAS or Power2. 

ANWSERS 
1. a.) 0.702 b.) 0.654
2. a.) 5.0x10-4  b.) 0.690 c.) 0.657
3. a.) 0.798 b.) 0.755
4. a.) multiplicative b.) recessive
5. a.) 170,910 b.) 170,910
6. a.) ~43,000 b.) ~84,300
7. a.) 0.73 b.) 0.45 Hint: use α=5x10-8 for single variant test and α=2.5x10-6 for the aggregate test
8. a.) 0.87 (Hint: use α=4.3x10-4)
9. a.) only for disease with low prevalence does the relative risk does not estimate the odds ratio b.) 1.26
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Advanced Gene Mapping Course: Pleiotropy Exercise 
Andrew DeWan, PhD, MPH 

This exercise was designed to give you practical experience identifying cross phenotype 
associations using both univariate and multivariate methods and then dissecting these cross-
phenotype associations to determine if they show evidence of biological and/or mediated 
pleiotropy.  

A population-based dataset with 3000 subjects and two quantitative traits (Trait 1 and Trait 2) 
along with 2000 SNPs on one chromosome were simulated. Let’s assume that Trait 1 was 
measured 20 years prior to Trait 2 (i.e. Trait 1 will act as the mediator in our mediation analysis). 
The two quantitative traits are correlated and there are markers associated with one or both 
phenotypes as well as unassociated.  

The dataset has been QC’d. The files for the initial analyses are: 

pleiotropy_exercise.bed, .bim, .fam and pleiotropy_exercise_phenotypes.txt 

I have included a summary table that you will want to fill out as you are working through this 
exercise. This will help keep track of the SNPs you select for the mediation analysis as well as 
the interpretation of the results at the end of the exercise 

Univariate analyses 

a. Conduct a univariate analysis (using --linear) in PLINK for both datasets and both
traits
Note: You will need to use the --pheno/--pheno-name commands to specify the
phenotype file and phenotype name.

plink\
--bfile pleiotropy_exercise\
--pheno pleiotropy_exercise_phenotypes.txt\
--pheno-name Trait1\
--sex\
--linear\
--out Trait1

For use in several downstream steps, let’s create files with only the header and
SNP results for each of the univariate analyses:

grep 'TEST' Trait1.assoc.linear > Trait1_snp.assoc.linear
grep 'ADD' Trait1.assoc.linear >> Trait1_snp.assoc.linear
grep 'TEST' Trait2.assoc.linear > Trait2_snp.assoc.linear
grep 'ADD' Trait2.assoc.linear >> Trait2_snp.assoc.linear
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b. Try visualizing the data by creating a Hudson plot in R. This will give you some sense of 
the overlapping signals between the two association analyses.

library(hudson)
dat1<-read.table("Trait1_snp.assoc.linear",header=T)
dat2<-read.table("Trait2_snp.assoc.linear",header=T)
names(dat1_snps)<-c("CHR","SNP", "POS", "A1", "TEST", "NMISS", "BETA", "STAT", "pvalue")
names(dat2_snps)<-(names(dat1_snps)
gmirror(top=dat1_snps, bottom=dat2_snps, tline=5e-08, bline=5e-08,
+ toptitle="Trait11", bottomtitle = "Trait2",
+ highlight_p = c(0.00000005,0.00000005), highlighter="green",
+ file = 'pleiotropy_hudson', res = 300, type = 'pdf')

c. Now Identify genome-wide significant SNPs (p<5x10-8) that overlap for both traits. This can 
be done using some simple R code:
Trait1 <- read.table(“Trait1_snp.assoc.linear”, header = T)
Trait2 <- read.table(“Trait2_snp.assoc.linear”, header = T)
SigTrait1 <- subset(Trait1, P<0.00000005)
SigTrait2 <- subset(Trait2, P<0.00000005)
intersect(SigTrait1$SNP, SigTrait2$SNP)

d. As you can see, there are some genome-wide significant SNPs that are adjacent or close to 
each other. To explore whether or not these are independent associations, let’s 
perform some simple LD clumping. You will want to carry through the index SNP 
identified for each clumped region. You will also want to carry through any SNPs from 1c 
above that were not part of a clumped region. plink\
--bfile pleiotropy_exercise\
--clump Trait1_snp.assoc.linear,Trait2_snp.assoc.linear\
--clump-kb 250\
--clump-p1 5e-8\
--clump-p2 5e-8\
--clump-r2 0.2\
--clump-replicate\
--clump-verbose\
--out Trait1_Trait2_clump
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Multivariate analysis 
 

a. Before moving on to dissecting the cross-phenotype associations, let’s see if we 
can include a few additional SNPs/regions to explore by using multivariate 
analysis. But let’s only consider additional regions that are genome-wide 
suggestive for both phenotypes.  

 
First run a multivariate analysis on Traits 1 and 2.  
 

 plink.multivariate\ 
  --noweb\ 
  --bfile pleiotropy_exercise\ 
  --mult-pheno pleiotropy_exercise_phenotypes.txt\ 
  --sex\ 
  --mqfam\ 
  --out Trait1_Trait2 

  
Please note: You should use the --noweb flag due to this program being built on 
an old version of PLINK.  

 
b. Now let’s identify the intersection of SNPs that are genome-wide significant in the 

multivariate analysis and at least suggestive for each trait in the univariate 
analysis, i.e. we want to make sure that both traits are contributing to the 
multivariate signal. 

 
 Trait1<-read.table("Trait1_snp.assoc.linear", header=T) 
  Trait2<-read.table("Trait2_snp.assoc.linear", header=T) 
  multi<-read.table("Trait1_Trait2.mqfam.total", header=T) 
  sigMulti<-subset(multi, P<0.00000005) 
  suggTrait1<-subset(Trait1, P<0.000005) 
  suggTrait2<-subset(Trait2, P<0.000005) 
  Reduce(intersect, list(suggTrait1$SNP, suggTrait2$SNP, sigMulti$SNP)) 
 

Select the additional SNPs that are identified from the intersection of the 
multivariate analysis and genome-wide suggestive lists for both traits that were 
not in your original list.  

 
c. You may want to re-run the LD clumping with a suggestive threshold to see if 

these additional SNPs clump with your existing clumps or are new potential 
regions to explore. 

 
 plink\ 
  --bfile pleiotropy_exercise\ 
  --clump Trait1_snp.assoc.linear,Trait2_snp.assoc.linear\ 
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  --clump-p1 0.000005\ 
  --clump-p2 0.000005\ 
  --clump-r2 0.2\ 
  --clump-replicate\ 
  --clump-verbose\ 
  --out Trait1_Trait2_clump_suggestive 

  
Mediation analyses 
 

a. For each SNPs that you have identified as a cross phenotype association (evidence of 
overlapping association signals as well as incorporating results from LD clumping and 
multivariate association) you will need to extract this data from the original plink files 
and create a genotype file that is coded as 0|1|2 for the genotypes. This can be done 
in PLINK using the --recodeA command and the --extract command by providing a file 
with the list of snps. This will give you a .raw genotype file with only the snps that you 
will be using in the mediation analysis. 

 
b. Conduct a mediation analysis in R using the mediation R library. Sample code for this 

is below (Note: replace <SNP> with the variable name for the SNP you are 
investigating. You will need to repeat this for each SNP that you have selected): 

 
library(mediation) 
genotypes <- read.table("snps_for_mediation.raw", header=T) 
phenotypes<-read.table("pleiotropy_exercise_phenotypes.txt", header=T) 
combined<-merge(genotypes,phenotypes) 
med.fit<-lm(Trait1~rs125_0, data=combined) 
out.fit<-lm(Trait2~Trait1+rs125_0, data=combined) 
med.out<-mediate(med.fit,out.fit,treat="rs125_0", mediator="Trait1", boot=TRUE, 
+boot.ci.type="bca", sims=1000) 
summary(med.out) 
 
This will print out a summary of the mediation analysis.  

 
Please note: The more simulations (sims) you specific in the med.out step the more   
the CI and p-value estimates will be, however, this can also be time-consuming. If this 
step is taking a substantial amount of time (>20 minutes) you may want to reduce the 
number of simulations for the purposes of completing the exercise. 
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Questions: 
 

1) Which of the SNPs have genome-wide significant (p<5x10-8) associations for both traits?  
 
 
 
 
 
 

 
2) Did the multivariate analyses result in additional SNPs that had genome-wide significant 

cross phenotype associations? Which SNP(s)?  
 
 
 
 
 
 
 

 
3) For each SNP analyzed in the mediation analysis, determine if there is a significant direct 

effect which is indicative of some level of biological pleiotropy. Do any of the SNPs 
exhibit complete mediation?  

 
 
 
 
 
 
 
 

 
4) Why do some of the SNPs have negative values for the proportion mediated? 
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Summary table of pleiotropy results 
 

SNP 
Beta 
(Trait 1) P (Trait 1) 

Beta 
(Trait 2) P (Trait 2) 

MV 
(P) 

MV 
Loading 
(Trait 1) 

MV 
Loading 
(Trait 2) ADE ADE (P) ACME  ACME (P) 

Total 
Effect 

Total 
Effect (P)  

Prop 
Mediated 

Prop 
Mediated 
(P) 
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Pleiotropy Exercise - Answers 
Andrew DeWan, PhD, MPH 
 
This exercise was designed to give you practical experience identifying cross phenotype 
associations using both univariate and multivariate methods and then dissecting these cross 
phenotype associations to determine if they show evidence of biological and/or mediated 
pleiotropy.  
 
A population-based dataset with 3000 subjects and two quantitative traits (Trait 1 and Trait 2) 
along with 2000 SNPs on one chromosome were simulated. Let’s assume that Trait 1 was 
measured 20 years prior to Trait 2 (i.e. Trait 1 will act as the mediator in our mediation analysis). 
The two quantitative traits are correlated and there are markers associated with one or both 
phenotypes as well as unassociated.  
 
The dataset has been QC’d. The files for the initial analyses are: 
 
pleiotropy_exercise.bed, .bim, .fam and pleiotropy_exercise_phenotypes.txt 
 
I have included a summary table that you will want to fill out as you are working through this 
exercise. This will help keep track of the SNPs you select for the mediation analysis as well as 
the interpretation of the results at the end of the exercise. 
 
Univariate analyses 

 
a. Conduct a univariate analysis (using --linear) in PLINK for both datasets and both 

traits 
Note: You will need to use the --pheno/--pheno-name commands to specify the 
phenotype file and phenotype name.  
 
plink\ 
 --bfile pleiotropy_exercise\ 
 --pheno pleiotropy_exercise_phenotypes.txt\ 
 --pheno-name Trait1\ 
 --sex\ 
 --linear\ 
 --out Trait1 
 
For use in several downstream steps, let’s create files with only the header and 
SNP results for each of the univariate analyses: 
 

 grep 'TEST' Trait1.assoc.linear > Trait1_snp.assoc.linear 
 grep 'ADD' Trait1.assoc.linear >> Trait1_snp.assoc.linear 
 grep 'TEST' Trait2.assoc.linear > Trait2_snp.assoc.linear 
 grep 'ADD' Trait2.assoc.linear >> Trait2_snp.assoc.linear 
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b. Try visualizing the data by creating a Hudson plot in R. This will give you some 

sense of the overlapping signals between the two association analyses.  
 

  devtools::install_github('anastasia-lucas/hudson') 
 library(hudson) 
 dat1<-read.table("Trait1_snp.assoc.linear",header=T) 
 dat2<-read.table("Trait2_snp.assoc.linear",header=T) 

names(dat1_snps)<-c("CHR", "SNP", "POS", "A1", "TEST", "NMISS", "BETA", 
+"STAT", "pvalue") 

 names(dat2_snps)<-(names(dat1_snps) 
 gmirror(top=dat1_snps, bottom=dat2_snps, tline=5e-08, bline=5e-08, 
 + toptitle="Trait11", bottomtitle = "Trait2", 
 + highlight_p = c(0.00000005,0.00000005), highlighter="green", 
 + file = 'pleiotropy_hudson', res = 300, type = 'pdf') 

 
 

c. Now Identify genome-wide significant SNPs (p<5x10-8) that overlap for both traits. 
This can be done using some simple R code: 

 
 Trait1 <- read.table(“Trait1_snp.assoc.linear”, header = T) 
 Trait2 <- read.table(“Trait2_snp.assoc.linear”, header = T) 
 SigTrait1 <- subset(Trait1, P<0.00000005) 
 SigTrait2 <- subset(Trait2, P<0.00000005) 
 intersect(SigTrait1$SNP, SigTrait2$SNP) 
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 The overlapping genome-wide significant variants are: rs138, rs139, rs140, rs141,  
 rs296, rs299, rs1138, rs1448 

 
d. As you can see, there are some genome-wide significant SNPs that are adjacent or 

close to each other. To explore whether or not these are independent 
associations, let’s perform some simple LD clumping. You will want to carry 
through the index SNP identified for each clumped region. You will also want to 
carry through any SNPs from 1c above that were not part of a clumped region. 

 
 
 plink\ 
  --bfile pleiotropy_exercise\ 
  --clump Trait1_snp.assoc.linear,Trait2_snp.assoc.linear\ 
  --clump-kb 250\ 
  --clump-p1 5e-8\ 
  --clump-p2 5e-8\ 
  --clump-r2 0.2\ 
  --clump-replicate\ 
  --clump-verbose\ 
  --out Trait1_Trait2_clump 
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OUTPUT:  
CHR    F     SNP         BP          P    TOTAL   NSIG    S05    S01   
S001  S0001 
   1    2   rs139     139000   2.86e-28        9      0      0      0      
0      9  
 
                          KB      RSQ  ALLELES    F            P  
  (INDEX)   rs139          0    1.000        0    2     2.86e-28  
 
            rs137         -2    0.247    00/00    2     2.17e-17  
            rs138         -1    0.399    00/00    1     1.34e-09  
            rs138         -1    0.399    00/00    2     1.91e-18  
            rs139          0        1    00/00    1     2.77e-15  
            rs140          1    0.229    00/00    1     6.05e-12  
            rs140          1    0.229    00/00    2     1.85e-26  
            rs141          2    0.235    00/00    1      9.9e-09  
            rs141          2    0.235    00/00    2     2.98e-13  
 
          RANGE: chr1:137000..141000 
           SPAN: 4kb 
 
------------------------------------------------------------------ 
 
 
 CHR    F     SNP         BP          P    TOTAL   NSIG    S05    S01   
S001  S0001 
   1    1   rs296     296000   1.15e-10        5      0      0      0      
0      5  
 
                          KB      RSQ  ALLELES    F            P  
  (INDEX)   rs296          0    1.000        0    1     1.15e-10  
 
            rs295         -1    0.429    00/00    1     2.01e-08  
            rs296          0        1    00/00    2      2.6e-09  
            rs299          3    0.267    00/00    1     2.77e-09  
            rs299          3    0.267    00/00    2     7.29e-10  
 
          RANGE: chr1:295000..299000 
           SPAN: 4kb 
From clump 1, let’s choose rs139 (and not rs138, rs140 and rs141) and from clump 2 let’s 
choose rs296 (and not rs295 and rs299) to carry forward to our mediation analysis. We will also 
carry forward rs1138 and rs1448 since these two SNPs are not part of any other clumps but are 
genome-wide significant for both traits. 
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Multivariate analysis 
 

a. Before moving on to dissecting the cross phenotype associations, let’s see if we 
can include a few additional SNPs/regions to explore by using multivariate 
analysis. But let’s only consider additional regions that are genome-wide 
suggestive for both phenotypes.  

 
First run a multivariate analysis on Traits 1 and 2.  
 

 plink.multivariate\ 
  --noweb\ 
  --bfile pleiotropy_exercise\ 
  --mult-pheno pleiotropy_exercise_phenotypes.txt\ 
  --sex\ 
  --mqfam\ 
  --out Trait1_Trait2 

  
Please note: You should use the --noweb flag due to this program being built on an 
old version of PLINK.  
 
b. Now let’s identify the intersection of SNPs that are genome-wide significant in the 

multivariate analysis and at least suggestive for each trait in the univariate 
analysis, i.e. we want to make sure that both traits are contributing to the 
multivariate signal. 

 
 Trait1<-read.table("Trait1_snp.assoc.linear", header=T) 
  Trait2<-read.table("Trait2_snp.assoc.linear", header=T) 
  multi<-read.table("Trait1_Trait2.mqfam.total", header=T) 
  sigMulti<-subset(multi, P<0.00000005) 
  suggTrait1<-subset(Trait1, P<0.000005) 
  suggTrait2<-subset(Trait2, P<0.000005) 
  Reduce(intersect, list(suggTrait1$SNP, suggTrait2$SNP, sigMulti$SNP)) 
 

Select the additional SNPs that are identified from the intersection of the 
multivariate analysis and genome-wide suggestive lists for both traits that were 
not in your original list.  

 
We identify the following overlapping SNPs: rs125, rs135, rs137, rs138, rs139, 
rs140, rs141, rs295, rs296, rs298, rs299, rs300, rs920, rs921, rs923, rs1138, rs1166, 
rs1361, rs1448. Of course, this list includes the original set of 8 variants that were 
genome-wide significant for both Traits 1 and 2.  
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c. You may want to re-run the LD clumping with a suggestive threshold to see if these 
additional SNPs clump with your existing clumps or are new potential regions to 
explore. 

 
 plink\ 
  --bfile pleiotropy_exercise\ 
  --clump Trait1_snp.assoc.linear,Trait2_snp.assoc.linear\ 
  --clump-p1 0.000005\ 
  --clump-p2 0.000005\ 
  --clump-r2 0.2\ 
  --clump-replicate\ 
  --clump-verbose\ 
  --out Trait1_Trait2_clump_suggestive 
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OUTPUT:  
 CHR    F     SNP         BP          P    TOTAL   NSIG    S05    S01   
S001  S0001 
   1    2   rs139     139000   2.86e-28        9      0      0      0      
0      9  
 
                          KB      RSQ  ALLELES    F            P  
  (INDEX)   rs139          0    1.000        0    2     2.86e-28  
 
            rs137         -2    0.247    00/00    1     6.05e-08  
            rs137         -2    0.247    00/00    2     2.17e-17  
            rs138         -1    0.399    00/00    1     1.34e-09  
            rs138         -1    0.399    00/00    2     1.91e-18  
            rs139          0        1    00/00    1     2.77e-15  
            rs140          1    0.229    00/00    1     6.05e-12  
            rs140          1    0.229    00/00    2     1.85e-26  
            rs141          2    0.235    00/00    1      9.9e-09  
            rs141          2    0.235    00/00    2     2.98e-13  
 
          RANGE: chr1:137000..141000 
           SPAN: 4kb 
 
------------------------------------------------------------------ 
 
 
 CHR    F     SNP         BP          P    TOTAL   NSIG    S05    S01   
S001  S0001 
   1    1   rs921     921000   6.29e-23        5      0      0      0      
1      4  
 
                          KB      RSQ  ALLELES    F            P  
  (INDEX)   rs921          0    1.000        0    1     6.29e-23  
 
            rs920         -1    0.224    00/00    1     3.11e-08  
            rs920         -1    0.224    00/00    2     6.25e-08  
            rs921          0        1    00/00    2     1.94e-07  
            rs922          1    0.202    00/00    1     4.52e-07  
 
          RANGE: chr1:920000..922000 
           SPAN: 2kb 
 
------------------------------------------------------------------ 
 
 
 CHR    F     SNP         BP          P    TOTAL   NSIG    S05    S01   
S001  S0001 
   1    2   rs136     136000    1.3e-17        5      0      1      0      
0      4  
 
                          KB      RSQ  ALLELES    F            P  
  (INDEX)   rs136          0    1.000        0    2      1.3e-17  
 
            rs134         -2    0.229    00/00    2     3.97e-09  
            rs135         -1    0.379    00/00    1     1.41e-06  
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            rs135         -1    0.379    00/00    2     1.47e-09  
 
          RANGE: chr1:134000..136000 
           SPAN: 2kb 
 
------------------------------------------------------------------ 
 
 
 CHR    F     SNP         BP          P    TOTAL   NSIG    S05    S01   
S001  S0001 
   1    2  rs1361    1361000   1.68e-12        9      0      1      2      
1      5  
 
                          KB      RSQ  ALLELES    F            P  
  (INDEX)  rs1361          0    1.000        0    2     1.68e-12  
 
           rs1359         -2    0.238    00/00    2     5.98e-10  
           rs1360         -1    0.281    00/00    2      2.8e-11  
           rs1361          0        1    00/00    1     2.65e-07  
           rs1362          1    0.271    00/00    2     6.54e-10  
           rs1363          2    0.204    00/00    2     1.64e-07  
 
          RANGE: chr1:1359000..1363000 
           SPAN: 4kb 
 
------------------------------------------------------------------ 
 
 
 CHR    F     SNP         BP          P    TOTAL   NSIG    S05    S01   
S001  S0001 
   1    1   rs296     296000   1.15e-10        5      0      0      0      
0      5  
 
                          KB      RSQ  ALLELES    F            P  
  (INDEX)   rs296          0    1.000        0    1     1.15e-10  
 
            rs295         -1    0.429    00/00    1     2.01e-08  
            rs295         -1    0.429    00/00    2     8.62e-08  
            rs296          0        1    00/00    2      2.6e-09  
            rs299          3    0.267    00/00    1     2.77e-09  
            rs299          3    0.267    00/00    2     7.29e-10  
 
          RANGE: chr1:295000..299000 
           SPAN: 4kb 
 
------------------------------------------------------------------ 
 
 
 CHR    F     SNP         BP          P    TOTAL   NSIG    S05    S01   
S001  S0001 
   1    1  rs1138    1138000   9.58e-10        3      0      1      0      
0      2  
 
                          KB      RSQ  ALLELES    F            P  
  (INDEX)  rs1138          0    1.000        0    1     9.58e-10  
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           rs1137         -1    0.315    00/00    1     4.09e-07  
           rs1138          0        1    00/00    2      2.9e-09  
 
          RANGE: chr1:1137000..1138000 
           SPAN: 1kb 
 
------------------------------------------------------------------ 
 
 
 

 
Based on the multivariate analysis and additional clumping, you should add the 
following SNPs to your list of SNPs for mediation: rs125, rs135, rs300, rs921, rs923, 
rs1166, rs1361. 

 
The final list of SNPs that were selected to carry through to the mediation analysis are: 

 
rs125, rs135, rs139, rs296, rs300, rs921, rs923, rs1138, rs1166, rs1361, rs1448  
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 Mediation analyses 
 

a. For each SNPs that you have identified as a cross phenotype association (evidence of 
overlapping association signals as well as incorporating results from LD clumping and 
multivariate association) you will need to extract this data from the original plink files 
and create a genotype file that is coded as 0|1|2 for the genotypes. This can be done 
in PLINK using the --recodeA command and the --extract command by providing a file 
with the list of snps. This will give you a .raw genotype file with only the snps that you 
will be using in the mediation analysis. 

 
 

b. Conduct a mediation analysis in R using the mediation R library. Sample code for this 
is below (Note: replace <SNP> with the variable name for the SNP you are 
investigating. You will need to repeat this for each SNP that you have selected): 
 

 
library(mediation) 
genotypes <- read.table("snps_for_mediation.raw", header=T) 
phenotypes<-read.table("pleiotropy_exercise_phenotypes.txt", header=T) 
combined<-merge(genotypes,phenotypes) 
med.fit<-lm(Trait1~rs125_0, data=combined) 
out.fit<-lm(Trait2~Trait1+rs125_0, data=combined) 
med.out<-mediate(med.fit,out.fit,treat="rs125_0", mediator="Trait1", boot=TRUE, 
+boot.ci.type="bca", sims=1000) 
summary(med.out) 
 
This will print out a summary of the mediation analysis.  

 
Please note: The more simulations (sims) you specific in the med.out step the more   
the CI and p-value estimates will be, however, this can also be time-consuming. If this 
step is taking a substantial amount of time (>20 minutes) you may want to reduce the 
number of simulations for the purposes of completing the exercise. 
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Questions: 
 

1) Which of the SNPs have genome-wide significant (p<5x10-8) associations for both traits?  
 
rs138, rs139, rs140, rs141, rs296, rs299, rs1138, rs1448 
 

2) Did the multivariate analyses result in additional SNPs that had genome-wide significant 
cross phenotype associations but that also had genome-wide suggestive (p<5x10-6) 
univariate association for each trait? Which SNP(s)? 
 
rs125, rs135, rs137, rs295, rs298, rs300, rs920, rs921, rs923, rs1166, rs1361 
 
Instead of running mediation analysis on all 19 SNPs, I suggested that you perform LD 
clumping to reduce this number of SNPs and only focus on the index SNP for each clump 
(or if the index SNP was not associated with both traits to choose another SNP from 
among the clumped SNPs). This reduced the set of SNPs to 11.  
 

3) For each SNP analyzed in the mediation analysis, determine if there is a significant direct 
effect which is indicative of some level of biological pleiotropy. Do any of the SNPs 
exhibit complete mediation?  

 
All SNPs show a significant direct effect on Trait 2 indicating some level of biological 
pleiotropy. rs923 has an ADE p-value of 0.002 but this is still less than the Bonferroni 
corrected p-value of 0.0045, adjusting for the 11 SNPs. No SNP shows an association 
with Trait 2 that is completely mediated through its association with Trait 1, i.e. an 
ACME estimate that is equal to (or close to) the total effect. The strongest mediated 
effect is for rs921 in which the mediated effect accounts for ~40% of the total effect of 
the SNP on Trait 2.  
 

4) Why do some of the SNPs have negative values for the proportion mediated? 
 

The estimate of the proportion mediated is not the best way to interpret the mediation 
results, despite its seemingly obvious interpretability. In reality this proportion does not 
range from 0-1 but can rather be less than 0 and greater than 1. The negative 
proportion mediated values that we see for many of the SNPs we have analyzed is due 
to the fact that these SNPs have an effect estimate for the total effect and mediated 
effect that are in opposite directions, i.e. the effect of the SNPs on Trait 1 and Trait 2 is 
in opposite directions. Depending on your study question, you may want to limit your 
selection of SNPs to only those with effects on the two traits in the same direction. We 
did not see this among our SNPs, but a proportion mediated > 1 can happen when the 
strength of the association with the mediator (Trait 1) is much higher than the strength 
of the association with the outcome (Trait 2). This is often why it is recommended that 
the direct, indirect and total effects be used in the interpretation rather than the 
proportion mediated.   
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Summary table of pleiotropy results 

 
 
1Multivariate 

 

SNP 
Beta 
(Trait 1) P (Trait 1) 

Beta 
(Trait 2) P (Trait 2) MV1 P 

MV1 
Loading 
(Trait 1) 

MV1 
Loading 
(Trait 2) ADE ADE (P) ACME  ACME (P) 

Total 
Effect 

Total 
Effect (P)  

Prop 
Mediated 

Prop 
Mediated 
(P) 

rs125 0.072 1.08E-08 0.062 6.45E-07 1.80E-10 0.8397 0.7096 0.045 <2e-16 0.015 <2e-16 0.0596 <2e-16 0.2516 <2e-16 

rs135 -0.040 1.41E-06 0.050 1.47E-09 2.82E-17 -0.5457 0.7024 0.059 <2e-16 -0.008 <2e-16 0.0509 <2e-16 -0.3317 <2e-16 

rs139 -0.065 2.77E-15 0.090 2.86E-28 2.26E-50 -0.5249 0.7196 0.103 <2e-16 -0.014 <2e-16 0.0891 <2e-16 -0.1580 <2e-16 

rs296 -0.056 1.15E-10 -0.051 2.60E-09 1.78E-14 0.8100 0.7456 -0.039 <2e-16 -0.012 <2e-16 -0.0512 <2e-16 0.2306 <2e-16 

rs300 -0.046 1.85E-08 -0.039 2.09E-06 1.34E-10 -0.8386 -0.7110 -0.029 <2e-16 -0.010 <2e-16 -0.0392 <2e-16 0.2507 <2e-16 

rs921 0.109 6.29E-23 0.057 1.95E-07 1.16E-24 -0.9475 -0.5144 0.036 <2e-16 0.023 <2e-16 0.0595 <2e-16 0.3908 <2e-16 

rs923 0.041 1.48E-06 0.042 4.04E-07 2.35E-09 0.7615 0.7957 0.034 0.002 0.009 <2e-16 0.0421 <2e-16 0.2035 <2e-16 

rs1138 -0.050 9.58E-10 0.048 2.90E-09 2.44E-20 0.6511 -0.6027 0.058 <2e-16 -0.011 <2e-16 0.0468 <2e-16 -0.2319 <2e-16 

rs1166 -0.051 4.77E-10 0.041 6.30E-07 1.02E-17 -0.7175 0.5275 0.049 <2e-16 -0.011 <2e-16 0.0382 <2e-16 -0.2918 <2e-16 

rs1361 -0.056 2.65E-07 0.076 1.68E-12 3.52E-21 -0.5349 0.7114 0.087 <2e-16 -0.012 <2e-16 0.0751 <2e-16 -0.1614 <2e-16 

rs1448 -0.079 3.46E-08 0.092 1.51E-11 2.21E-20 -0.5847 0.6679 0.108 <2e-16 -0.017 <2e-16 0.0908 <2e-16 -0.1879 <2e-16 
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Advanced Gene Mapping Course: Mendelian Randomization 

Exercise Andrew DeWan, PhD, MPH  

This exercise is designed to give you practical experience conducting a two-sample Mendelian  
randomization study. You can either use the online version of MR-base (https://www.mrbase.org/)  
or the accompanying R code to use TwoSampleMR.   

You can search for the summary statistic data in MR-base directly, but another helpful resource  
for finding available statistic data is here: https://gwas.mrcieu.ac.uk  

Part I:   

You will be conducting an analysis to investigate the causal relationship between low density  
lipoprotein (LDL) and coronary heart disease (CHD) based on summary statistics from previously  
published GWAS data.   

Exposure: Fasting LDL measurements from in 173,082 subjects and 2,437,752 genetic variants.  
Subjects are of European, East and South Asian and African ancestry.  

Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, Ganna A, et al.  
Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013 Nov;45(11):1274- 
1283. doi: 10.1038/ng.2797. Epub 2013 Oct 6. PMID: 24097068; PMCID: PMC3838666. GWAS  
ID: ieu-a-300  

Outcome: CHD (e.g. myocardial infarction (MI), acute coronary syndrome, chronic stable angina,  
or coronary stenosis >50%) in 184,305 subjects (60,801 cases and 123,504 controls) and 9,455,779  
genetic variants. Subjects are of European, East and South Asian, Hispanic and African ancestry.   

Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, Saleheen D et al. A  
comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery  
disease. Nat Genet. 2015 Oct;47(10):1121-1130. doi: 10.1038/ng.3396. Epub 2015 Sep 7. PMID:  
26343387; PMCID: PMC4589895. GWAS ID: ieu-a-7  

1) Conduct an MR analysis of LDL and CHD. Studies can be searched by PubmedID (make  
sure PubmedID is checked) or specifying the GWAS ID. However, please note the  
following:  

A. For the exposure for this publication, use the larger set of subjects for this first analysis  
(N=173,082)  

B. For the exposure, use a p-value threshold of 5e10-8, LD Rsq = 0.001 and clumping  
distance of 10000kb. Also make sure “Perform Clumping” is checked if you’re using  
MR-base  

C. For the outcome for this publication, use the trait denoted “Coronary heart disease” 
D. When running the MR analysis in MR-base you will want to allow LD proxies to be  
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selected for the outcome using a minimum Rsq of 0.8 and also allow for palindromic 
SNPs with a MAF threshold of 0.3. Make sure you set “Allele harmonization” to 
“Attempt to align strands for palindromic SNPs.” In TwoSampleMR LD proxy 
parameters are set in the extract_outcome_data function and the allele harmonization 
option is set in the harmonise_data function with “action = 2”.   

E. Select the following methods:
a. Inverse variance weighted (NOTE: this is a random effects model)

b. MR Egger
c. Weighted Median

Questions:  

1. How many variants are included in your genetic instrument for the exposure  and
how many are included in the outcome analysis? Of these, how many are
proxies?

2. Based on the descriptions above, is the study used to define the IV appropriate
for the outcome population?

3. Is there evidence of an association between LDL and CHD?

4. Is there evidence of heterogeneity in the genetic effects?
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5. Is there evidence of pleiotropy?  

 

 

6. How would you interpret the results of the three analyses together (i.e. IVW,  
MR Egger and Weighted Median)?  

 

 

2) Re-run the analysis but for myocardial infarction (MI) using outcome data from the same  
publication (ieu-a-798).  

Questions:  

1. Is there evidence of an association between LDL and MI?   

 

 

      2. Can the association between LDL and CHD be explained by MI?   

 

      3) Feel free to explore associations with additional exposures such as HDL, BMI (you can  
use the Yengo et al. SNPs) or other exposures/outcomes of interest to you.  

 
Part II:  

Let’s now see if we can validate the finding of an association between LDL and CHD by using  
different exposure data source and potentially dissect this signal to see if we pinpoint the features  
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of LDL that might be driving this signal. We will use metabolomics data that was generated in a  
sample of 24,925 individuals.   

Kettunen, J., Demirkan, A., Würtz, P. et al. Genome-wide study for circulating metabolites  
identifies 62 loci and reveals novel systemic effects of LPA. Nat Commun 7, 11122 (2016).  
https://doi.org/10.1038/ncomms11122.  

Exposures: LDL.C, LDL.D, S.LDL.C, S.LDL.L, S.LDL.P, M.LDL.C, M.LDL.CE, M.LDL.L,  
M.LDL.P, M.LDL.PL, L.LDL.C, L.LDL.CE, L.LDL.FC, L.LDL.L, L.LDL.P, L.LDL.PL (16  
metabolites)  

Where S. = small, M. = medium and L. = large; .C = total cholesterol, .D = diameter, .L = total  
lipids, .P = concentration, .CE = cholesterol esters, .PL = phospholipids, .FC = free cholesterol  

In MR-base, these can all be selected when you are on the “Choose Exposure” screen and selecting  
the “Metabolite level QTLs”. You can then type in “LDL” in the analyte window and select each  
of these in the window that pops up. The most efficient way is to select all of the metabolites  you’re 
interested in and then run the MR analyses together. Before clicking off of this screen you  will 
want to click on the “Select All” under Row Selection. This will allow you to run the analysis  on 
all the SNPs for each metabolite. In TwoSampleMR these are brought in using data(metab_qtls)  
and then specifying the specific LDL variables above.  

Use the same CHD outcome as you did for Part I (Nikpay PMID: 26343387, GWAS ID: ieu-a-7) 
using the full set of cases and controls (N=184,305).   

1) Conduct an MR analysis as you did previously (NOTE: the TwoSampleMR code only  
specifies the IVW test for ease of summarizing the results but feel free to add the MR Egger  
and Weighted Median tests).  

Questions:  

1. For LDL.C, does the association between LDL and CHD validate the previous  
findings?  

 

2. Considering all the associations, do these results differentiate between the  
different characteristics of LDL (Please note: you will want to take into account  
the 16 association tests)? 
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3. What might be one explanation for the similarity between results for the  

different LDL characteristics?  
 

4. Are there any concerns about heterogeneity or pleiotropy?  

 

Part III:  

Let’s now look at the associations with VLDL metabolites using the same exposure and outcome  
data sources.   

Exposures: 33 VLDL metabolites (Please note additional abbreviations: XS. = very small, XL. =  
very large, XXL. = extremely large; .TG = triglycerides)  

1) Conduct an MR analysis as you did previously (NOTE: the TwoSampleMR code only  
specifies the IVW test for ease of summarizing the results but feel free to add the MR Egger  
and Weighted Median tests).  

Question:  

1. Considering all of the associations, are there any obvious trends in the results 
(Please note: you will want to take into account the 33 association tests)? 
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Answers   

Questions:  

1. How many variants are included in your genetic instrument for the exposure and how  
many are included in the outcome analysis? Of these, how many are proxies?  

There are 79 variants that surpass the p<5e-8 threshold for LDL in the   
exposure GWAS. Of these 77 are identified in the CHD outcome GWAS, 1 of  
which is a proxy.  

2. Based on the descriptions above, is the study used to define the IV appropriate for the  
outcome population?  

They are generally well matched in terms of the population ancestries in the  
two studies, however, the outcome GWAS has subjects of Hispanic ancestry  
which could be a minor issue. This would be something to mention in the  
Discussion section of a manuscript. There is a subset of only European   
subjects for LDL but not for CHD, however, if you had access to the original  
data you could subset the subjects by ancestry to better match the exposure  
and outcome groups.  

3. Is there evidence of an association between LDL and CHD?  

Yes, the IVW yields a beta = 0.4114 (p=1.626e-15) which corresponds to an  
OR of 1.51 (95% CI: 1.36 – 1.67) per SD increase in LDL.   

4. Is there evidence of heterogeneity in the genetic effects?  

Yes, there is significant heterogeneity across effects of each SNP on CHD  
(p=2.822e-40) indicating that the random effects model is appropriate.  

5. Is there evidence of pleiotropy?  

From the MR Egger regression there is no significant evidence of pleiotropy  
as the regression intercept is not significantly different from zero (p=0.118).   

6. How would you interpret the results of the three analyses together (i.e. IVW, MR Egger  
and Weighted Median)?  

The IVW method (OR = 1.51, 95% CI: 1.36 – 1.67, p=1.626e-16), MR Egger  
(OR = 1.66, 95% CI: 1.42 – 1.93, p=1.086e-8) and Weighed Median (OR =  
1.49, 95% CI: 1.36 – 1.63, p=1.962e-19) are relatively consistent meaning the  
causal effect estimate is likely to be between 1.49 and 1.66. There is no   
evidence that this estimate is influence by horizontal pleiotropy as the 
MR Egger intercept is not significant.  
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Questions:  

1. Is there evidence of an association between LDL and MI?   

Yes, IVW method provides significant evidence of an association between  
LDL and MI (OR = 1.48, 95% CI: 1.33 – 1.66, p=1.42e-12). The other MR  
measures of association are consistent with this estimate and there is again no  
evidence of horizontal pleiotropy.  

2. Can the association between LDL and CHD be explained by MI?   

We would need to test the other traits included in the CHD definition to see if  
they were associated with LDL or not and test for heterogeneity of the effects.  
However it is reassuring that the effect estimates are consistent between the  
larger CHD group and the smaller subgroup of subjects with MI.  

3 Feel free to explore associations with additional exposures such as HDL, BM (you can use  
the Yengo et al. SNPs) or other exposures/outcomes of interest to you.   

I’m more than happy to discuss additional results one-on-one or when we discuss  
the answers to this exercise.  

Part II:  

Questions:  

1. For LDL.C, does the association between LDL and CHD validate the previous findings?  

Yes, although the magnitude of the effect is slightly attenuated. The IVW yields a beta =  
0.3665 (p=1.19e-07) which corresponds to an OR of 1.44. The previous OR estimate was  
1.51 and the 95% CIs overlap.  

2. Considering all the associations, do these results differentiate between the different  
characteristics of LDL (Please note: you will want to take into account the 16 association tests)?  

All the associations yield statistically significant results, except for LDL diameter which  
doesn’t meet the corrected significance threshold (p<0.003125). The remaining metabolites  
have statistically significant betas ranging from 0.3665 (LDL diameter) to 0.4709  
(concentration of small LDL). 
3. What might be one explanation for the similarity between results for the different LDL  

characteristics?  

There is a high degree of overlap between the variants contained in the instrument variable 
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for  each of the metabolites.  

4. Are there any concerns about heterogeneity or pleiotropy?  

There is significant heterogeneity across all the metabolites, except for the diameter of LDL.  
There is some evidence of pleiotropy among the large LDL metabolites, but not among any of  
the others.  

Part III:  

Question:  

1. Considering all the associations, are there any obvious trends in the results (Please note: you  
will want to consider the 33 association tests)?  

The results tend to be significant (p<0.00015) for the small and very small VLDL  
metabolites (except for the small VLDL triglycerides, p=0.00019), whereas the large, very  
large and extremely large LDL metabolites are non-significant (except for the cholesterol  
esters in large VLDL).  
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