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Getting Started 
 
 
Please view the following videos to install Docker to your computer 
 
For MAC  
https://www.youtube.com/watch?v=DRCDNBlxZ-w 
 
For Windows PC 
https://www.youtube.com/watch?v=sxv45NCSFMk 
 
How to install and run course exercises 
https://www.youtube.com/watch?v=OgHvRVtIIog 
 
For more detail, please read our course wiki  
https://github.com/statgenetics/statgen-courses/wiki/How-to-launch-course-tutorials#alternative-
to-cloud-server-use-your-own-computer 
 
Please go to https://statgen.us/Tutorials  and install the following tutorials for the course: 
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Launching Exercises 

Please use the following command to launch the exercises.  Please note that all exercises (except 
those that are web based) can be performed either in command line console or JupyterLab 
environment  Exercises developed in Jupyter Notebook (within a JupyterLab environment) have 
graphical displays specific to Notebooks and although they can be performed in the command line 
console if you do so you will not be able to view the graphical output. We recommend you used 
the JupyterLab environment. Please to not attempt to run Command line and JupyterLab at the 
same time on your computer, since it will create a file conflict.  

• PLINK and R exercises (pages 1-18, 35-53, 91-96, and 97-104)
o Command line: statgen-setup login --tutorial plink-r-nothnagel

§ The command get-data may have to be used*
o JupyterLab: statgen-setup launch --tutorial plink-r-nothnagel

• PLINK (pages 19-29 and 54-59)
o Command line: statgen-setup login --tutorial plink

§ The command get-data may have to be used*
o Jupyter Notebook in JupyterLab: statgen-setup launch --tutorial plink

• VAT – (pages 60-77)
o Command line: statgen-setup login --tutorial vat

§ The command get-data may have to be used*
o Jupyter Notebook in JupyterLabb: statgen-setup launch --tutorial vat

• PSEQ (pages 78-88)
o Command line: statgen-setup login --tutorial pseq

§ The command get-data may have to be used*
o Jupyter Notebook in JupyterLab: statgen-setup launch --tutorial pseq

• REGENIE – Jupyter Notebook
o Jupyter Notebook in JupyterLab: statgen-setup launch --tutorial regenie

• Power and Sample Size Estimation (pages 89-90)
o Web-based

*Only necessary to run the get-data command if you don’t see the data for the exercise already 
loaded (hint use ls command).  Before you start the exercise, you will need to cd into the work 
directory (cd ~/work).
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Exercise 

Introduction to PLINK 
Running PLINK 
PLINK is run at the command line. Additional arguments (‘options’, ‘flags’) specify what exactly PLINK should 
do. All arguments are documented at the PLINK web site (http://pngu. mgh.harvard.edu/~purcell/plink/). Under 
Linux, running PLINK requires to open a shell (or terminal) window. Under Windows, PLINK requires a 
command prompt (‘DOS shell’). Use the shell commands ls/dir and cd to change the working directory as 
requested.  
When working with PLINK, it is highly recommendable to save all commands in a text file. This way, your work 
is documented and you will easily (and with certainty) recapitulate what you have done, say, six or twelve month 
ago. Therefore, also start the text editor and type all commands in some text file, say PLINK_exercise.q, 
and then copy & paste the command lines from the text editor into the shell.  

I. The data set 
You are provided with a data set on diastolic blood pressure and the genotypes of 20 SNP markers. The data set 
is already in PLINK format. There are three files: 

• dbp.qt.ped: Pedigree file with information on family, sex, the quantitative  
 trait (diastolic blood pressure), and genotypes 

• dbp.cc.ped: Pedigree file with information on family, sex, the dichotomized 
 trait (affected yes/no based on blood pressure), and genotypes 

• dbp.map: Map file for the SNP markers (three columns format) 
• dbp.age.pheno: Covariate file containing the age of each individual 

Use a text editor (notepad/Wordpad under Windows, pico/vi/nano/emacs under Linux) to a have a look 
at the contents of these files. Make sure you understand the meaning of each column in the files.  

dbp.qt.ped 
4928   1      0      0      1      85.51  2      2      1      1      1    ... 
1838   1      0      0      1      84.51  1      1      1      1      2    ... 
2450   1      0      0      1      84.3   1      1      1      1      2    ... 
647    1      0      0      2      89.14  2      2      2      2      1    ... 
2772   1      0      0      1      90.39  1      2      1      1      1    ... 
... 

dbp.cc.ped 

4928 1    0    0    1    2    2    2    1    1    1    1    0    0    1   ... 
1838 1    0    0    1    2    1    1    1    1    2    2    2    2    2   ... 
2450 1    0    0    1    2    1    1    1    1    2    2    2    2    2   ... 
647  1    0    0    2    2    2    2    2    2    1    2    1    2    2   ... 
2772 1    0    0    1    2    1    2    1    1    1    2    0    0    1   ... 
... 

dbp.map 

11  rs1101   1021 
11  rs1102   3886 
11  rs1103   15023 
11  rs1104   15788 
11  rs1105   21702 
... 
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dbp.age.pheno 
4928 1    66   
1838 1    67   
2450 1    89   
647  1    36   
2772 1    54   
... 

II. Missing data and filtering 
Variables with too many missing values may bias a statistical analysis and lead to spurious results. We will use 
PLINK to assess the extent of missing values in the data set and to filter variables and samples with too many 
missing observations. 
PLINK requires as the first argument the data set to be processed. This is specified by using the options --ped 
and --map. Since the map file contains only three columns instead of the default of four, we additionally have 
to specify the --map3 flag. In a first step, we are going to assess the proportion of missing values for each marker 
and for each sample: 
plink  --ped dbp.cc.ped  --map dbp.map  --missing 

Note I: All arguments of a PLINK call have to go on a single line!! Arguments after a line-feed (after pressing 
the ‘Enter’ key) will be ignored.  

Note II: Using a backslash (‘\’) at the end of a line suppressed the line-feed and emulates a continuing line. Using 
backslashes, a single PLINK call can therefore be distributed over numerous lines. The following PLINK call is 
identical to the one above:  
plink --ped dbp.cc.ped \ 
      --map dbp.map\ 
      --missing 

PLINK has created three files. The file plink.log contains all output from the screen. The files 
plink.imiss and plink.lmiss contain the proportion of missing values for each sample and marker, 
respectively. Use a text editor to have a look at all three files. 

plink.log 

... 
PLINK v1.90b6.9 64-bit (4 Mar 2019) 
Options in effect: 
  --map dbp.map 
  --missing 
  --ped dbp.cc.ped 
... 
Start time: ... 
... 
Scanning .ped file... done. 
Performing single-pass .bed write (20 variants, 600 people). 
--file: plink-temporary.bed + plink-temporary.bim + plink-temporary.fam 
written. 
20 variants loaded from .bim file. 
600 people (329 males, 271 females) loaded from .fam. 
600 phenotype values loaded from .fam. 
Using 1 thread (no multithreaded calculations invoked). 
Before main variant filters, 600 founders and 0 nonfounders present. 
Calculating allele frequencies... done. 
Total genotyping rate is 0.988333. 
--missing: Sample missing data report written to plink.imiss, and variant-based 
missing data report written to plink.lmiss. 
End time: ... 
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plink.imiss 
FID  IID MISS_PHENO   N_MISS   N_GENO   F_MISS 
4928    1          N        1       20     0.05 
1838    1          N        0       20        0 
2450    1          N        1       20     0.05 
 647    1          N        0       20        0 
... 
1284    1          N        2       20      0.1 
 172    1          N        1       20     0.05 
... 

plink.lmiss 
 CHR      SNP   N_MISS   N_GENO   F_MISS 
  11   rs1101        0      600        0 
  11   rs1102        0      600        0 
  11   rs1103        0      600        0 
  11   rs1104       92      600   0.1533 
  11   rs1105        0      600        0 
  11   rs1106       48      600     0.08 
  11   rs1107        0      600        0  
... 

Next we are going to exclude samples with more than 10% missing genotypes (--mind 0.10) and markers 
with more than 5% (--geno 0.05). We will write this filtered data set to a set of new files, called 
cleaned.ped and cleaned.map, using --recode and --out. Further and quality measures and analyses 
can then be based on this cleaned data set: 
plink  --ped dbp.cc.ped  --map dbp.map  --mind 0.10  --geno 0.05 \ 
       --recode  --out cleaned 

PLINK has created three different files. A log file called cleaned.log (because we used the --out flag) and 
the two data files cleaned.ped and cleaned.map. Two markers with too many missing values (rs1104 and 
rs1106) have been excluded. Use the text editor to have a look at these files. Note that the map file has now the 
default four columns:  

cleaned.map 

11 rs1101 0 1021 
11 rs1102 0 3886 
11 rs1103 0 15023 
11 rs1105 0 21702 
11 rs1107 0 23508 
11 rs1108 0 28769 
11 rs1109 0 31385 
11 rs1110 0 33198 
11 rs1111 0 1245388 
11 rs1112 0 1245604 
11 rs1113 0 1246723 
11 rs1114 0 1246765 
11 rs1115 0 1247100 
11 rs1116 0 1257557 
11 rs1117 0 1258119 
11 rs1118 0 1258732 
11 rs1119 0 1259178 
11 rs1120 0 1259848 

We now use this filtered data set to estimate the minor allele frequencies (MAF) of the markers using the --
freq flag: 
plink --ped cleaned.ped  --map cleaned.map  --freq  --out cleaned 

This steps estimates the MAFs, but does not filter for a minimum frequency (use the --maf flag to this end). The 
resulting file cleaned.frq contains the frequency estimates (check with the text editor). Note that the MAF is 
always £0.50, with the reference allele being automatically changed by PLINK! A2 represents the major (more 
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frequent, ‘baseline’) allele, while A1 represents the minor (less frequent, ‘risk’) allele. This automatic allele 
flipping is applied throughout many analyses by PLINK, including association testing!! You have to carefully 
check which allele is actually the baseline and which is the minor, or risk, allele in your analysis results! For 
example, the allele ‘2’ is major (more frequent) allele A2 and allele ‘1’ is the minor (less frequent allele A1 of 
marker rs1101. In order to avoid automatic allele flipping, use the --keep-allele-order flag throughout! 

cleaned.frq 

 CHR      SNP   A1   A2          MAF  NCHROBS 
  11   rs1101    1    2       0.4508     1200 
  11   rs1102    2    1       0.2642     1200 
  11   rs1103    2    1       0.4675     1200 
  11   rs1105    1    2       0.4558     1200 
  11   rs1107    2    1       0.1525     1200 
  11   rs1108    2    1         0.48     1200 
... 

Now let’s check for deviations from Hardy-Weinberg equilibrium (HWE): 
plink  --ped cleaned.ped  --map cleaned.map  --hardy  --out cleaned 

This steps tests for deviations, but does not filter for P-values below some threshold (use the --hwe flag to this 
end). The resulting file cleaned.hwe looks as follows: 

cleaned.hwe 

CHR    SNP  TEST   A1   A2            GENO   O(HET)   E(HET)            P 
 11 rs1101   ALL    1    2     115/311/174   0.5183   0.4952       0.2838 
 11 rs1101   AFF    1    2       54/159/87     0.53   0.4939       0.2426 
 11 rs1101 UNAFF    1    2       61/152/87   0.5067   0.4962       0.8159 
 11 rs1102   ALL    2    1      34/249/317    0.415   0.3888        0.115 
 11 rs1102   AFF    2    1      15/127/158   0.4233   0.3864       0.1339 
 11 rs1102 UNAFF    2    1      19/122/159   0.4067   0.3911       0.5565 
... 

There are three result lines for each marker: one for cases and controls each and one for complete sample. Each 
line contains the baseline allele (‘A2’), the observed genotype counts (‘GENO’), the observed and expected 
frequencies of heterozygotes (‘O(HET)’ and ‘E(HET)’), and the corresponding P-values (‘P’).  

Note: Importing data in PLINK format into R 

Importing data in PLINK (LINKAGE) format into R can be sometimes troublesome. A helpful format is the 
creation of tab-separated text files, where columns are separated by a single, ‘well-defined’ tabular sign (“\t”). 
However, genotypes are distributed over two columns in PLINK format, one for each allele. Since these alleles 
belong to a single genotype, or variable, a different column separation, e.g. by a space, would be desirable. This 
can be achieved by additionally using the --tab flag: 
plink  --ped cleaned.ped  --map cleaned.map  --out cleaned.R  --recode  \ 
       --tab 

The resulting text file can be easily read into R using the read.table function, used with the argument 
sep=”\t”. 

A note on larger projects 
PLINK can create a large number of files, overwriting existing files without warning. This can be at times 
confusing. It is also a potent source of errors when it is not clear, say, which filtering criterions actually applied 
to some particular data set before an analysis. “Strategic” planning of filtering and exporting steps as well as 
well-planned naming of files and distributing of output files in different subdirectories is highly recom-
mended with PLINK.  
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III. Binary PLINK format 
Genome-wide marker genotype data can be massive, resulting in very large file sizes. To reduce file size and 
speed up calculations, genotype information is usually compressed. Let’s convert the text files into binary PLINK 
format: 
plink  --ped dbp.cc.ped  --map dbp.map  --make-bed  --out dbp 

PLINK has created four files. The file dbp.log contains all output from the screen. File dbp.fam contains the 
family information, dbp.bim the marker information and dbp.bed the marker genotypes in binary 
(compressed form). Use a text editor to have a look at the fam and the bim files.  

How do these files differ from the previous dbp.ped and dbp.map files? 
 

Introduction to R 
Starting R 

For starting R under Windows, simply double-click on the R icon: . This will start the R console where all 
the commands for R can be entered. Under Linux, R is started by simply typing R at the terminal shell prompt.  

When working with R, it is highly recommendable to save all commands in a text file, usually with a .q, .r or 
.R suffix. This way, your work is documented and you can easily (and with certainty) recapitulate what you have 
done, say, six or twelve month ago. Therefore, also start a text editor (notepad/Wordpad under Windows, 
pico/vi/nano/emacs under Linux) and type all commands in some text file, say R_exercise.q, and then 
copy & paste command lines from the text editor into the R console.  
In many cases, you may also want to change the working directory, i.e. the file folder on your computer where R 
saves files with exported data and from where it expects to read data files into working memory. Under Windows, 
this can be done via the menu of the R console. Under Linux, the working directory should be changed at the 
shell prompt before starting R.  
If you are unsure how to use a function in R or if you want to specify more arguments of the function, use the 
help function in R. Simply type ? and the name of the function at the console, e.g. ?summary.   

I: Data Types 
Data can be of different types, for example numeric, strings, or logical values. Suppose we want to compile a 
(very short) list of European cities with a few features for every city. Enter the following commands (please 
remember to first type these commands into the text editor and only then copy & paste them into the R window): 
city       = c("Oslo", "Bergen", "Munich", "Berlin", "Rome", "Milan") 
population = c(0.58, 0.25, 1.3, 3.4, 2.7, 1.3) 
country    = factor( c("Norway" , "Norway", "Germany", 
                       "Germany", "Italy", "Italy"   )) 
capital    = c(TRUE, FALSE, FALSE, TRUE, TRUE, FALSE) 
updated    = 2009 

You have now created various data objects (city names, population sizes, countries of location, capital status of 
each cities, year of last update) in the working memory of R by using the assignment operator ‘=’. To print the 
contents of an object, simply type its name: 
city 
population 
country 
capital 
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Each of these objects is a vector, i.e. all elements are of the same data type. For example, city contains only 
strings (characters), while capital contains only logical values of the cities being the capital of their country 
or not. Vectors can be concatenated using the c function: 
c(city, city) 
c(population, updated) 

It is often useful to get a short summary of an object. The summary function is helpful here: 
summary (city) 
summary (population) 
summary (country) 
summary (capital) 

Depending on the data type of an object (or class in R), the summary function does different things. For 
example, the mean value can be calculated for numerical variables, but not for nominal ones (represented as 
factor type in R). The type of an object can be assessed by various functions: 
is.numeric(city) 
is.character(city) 
is.factor(city) 
 
class (city) 
class (population) 
class (country) 
class (capital) 

The data type is an attribute of an object. But objects can have more than one attribute. One example is the length, 
which is the number of elements of an object (i.e. number of entries in the vector): 
length(city) 

Note: R can also handle objects with elements of different type and length. The data type list is used to represent 
such data.  

II: Names & Indexes 
For better data organization, access and presentation, elements in a vector can have names: 
names(population) = city 
population 

In many data analyses, one would like to access only parts of the complete data set or even only single elements. 
For example, markers should be tested for deviations from Hardy-Weinberg equilibrium (HWE) separately in 
affected and unaffected samples. Access to elements of data objects is achieved by means of indexes. There are 
three different kinds of indexes. The simplest one is addressing by position:  
city [3] 
city [2:4] 
city[c(1,5:6)] 
population[3] 

If the elements of an object have names, these names can also be used to access the elements:  
population["Oslo"] 
population[c("Berlin","Rome")] 

A third option with vectors is a logical index, where only those elements that are marked TRUE are accessed. For 
example, one could select only capitals from the set of all cities:  
population 
capital 
population[capital] 
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Logical indexes are quite powerful. One can formulate conditions and store the results in logical vectors. These 
vectors can then repeatedly be used to access only those elements of the vector that meet the condition. For 
example, the following commands will select only those cities from our list which have a population of at least 
one million: 
population>=1.0 
population[population>=1.0] 

III: Data frames  
Data sets are often presented in a tabular form. Columns usually represent features or measurements and are of 
the same data type. Rows represent observations or samples and may contains possibly different data types. For 
example, work sheets from SPSS or Microsoft Excel as well as tables extracted from SQL databases usually 
adhere to this format. The corresponding R representation is a data frame: 
cities = data.frame (city=city, pop=population,  
                     country=country, capital=capital, stringsAsFactors=F) 
cities 
length(cities) 
dim(cities) 
is.data.frame(cities) 
is.list(cities) 

Data frames are special lists where all vectors (features) have identical length. They also have some added 
functionality for printing, summarizing etc. Data frames have two dimensions: rows and columns. Rows (samples) 
and columns (features) of data frames can also have names: 
colnames(cities) 
rownames(cities) 

Indexing is similar to that of vectors. Since there are two dimensions (rows & columns), we need two indexes. 
We can access single elements as well as complete rows or columns. Logical indexes can also be used:  
cities$city 
cities[,1] 
cities[2,] 
cities[2,3] 
cities$pop[3] 
cities[capital,] 
cities[cities$pop>=1.0,] 

IV: Export & Import 
All objects in R are held in the working memory. After quitting R, all objects are lost unless they have been saved 
in external files on the computer disk!! There are several possibilities to save objects to the disk. 
First, let’s have an overview on which objects are currently held in the working memory: 
ls() 

Now save the objects cities, city, and country in an external archive file called myobjects.R. Note 
that this file is in a format that is only readable with R! 
save(cities, city, country, file="myobjects.R") 

It is often useful to export your data set into text format, so that the data can be read with a text editor, such as 
Word, or be imported into other software programs. For data frames, this can be done with the write.table 
function: 
write.table(cities, file="cities.txt") 

Output can also be re-directed from the R console to some text file: 
sink (“cities.output.txt”) 
print (cities) 
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sink () 

Now check if these files have properly been created in the working directory of your computer:  
dir() 

This command lists the contents of the current working directory on your computer hard disk. If the files 
cities.txt and cities.output.txt have been not been created by R, check for possible errors in your 
script or ask for help. If these files have been created, delete all objects from the R working memory: 
rm(list=ls()) 
ls() 

No objects are currently held in the working memory. Import the data frame from the external text file 
cities.txt using the read.table function and assign it to some object called new.table: 
new.table = read.table ("cities.txt") 
ls() 
new.table 

Next, import the objects from the R archive file myobjects.R using the load function:  
load ("myobjects.R") 
ls() 
cities 
new.table 

Quitting R 
Quit the R session by entering the following command and answer no to the upcoming question: 
q() 

 

Answers 
Introduction to PLINK 

I: The data set 
dbp.qt.ped 
4928   1      0      0      1      85.51  2      2      1      1      1    ... 
1838   1      0      0      1      84.51  1      1      1      1      2    ... 
2450   1      0      0      1      84.3   1      1      1      1      2    ... 
647    1      0      0      2      89.14  2      2      2      2      1    ... 
2772   1      0      0      1      90.39  1      2      1      1      1    ... 
... 

dbp.cc.ped 
4928 1    0    0    1    2    2    2    1    1    1    1    0    0    1   ... 
1838 1    0    0    1    2    1    1    1    1    2    2    2    2    2   ... 
2450 1    0    0    1    2    1    1    1    1    2    2    2    2    2   ... 
647  1    0    0    2    2    2    2    2    2    1    2    1    2    2   ... 
2772 1    0    0    1    2    1    2    1    1    1    2    0    0    1   ... 
... 

dbp.map 

11  rs1101   1021 
11  rs1102   3886 
11  rs1103   15023 
11  rs1104   15788 
11  rs1105   21702 
... 
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dbp.age.pheno 
4928 1    66   
1838 1    67   
2450 1    89   
647  1    36   
2772 1    54   
... 

II. Missing data and filtering 
plink  --ped dbp.cc.ped  --map dbp.map  --missing 
 
PLINK v1.90b6.9 64-bit (4 Mar 2019)            www.cog-genomics.org/plink/1.9/ 
(C) 2005-2019 Shaun Purcell, Christopher Chang   GNU General Public License v3 
Logging to plink.log. 
Options in effect: 
  --map dbp.map 
  --missing 
  --ped dbp.cc.ped 
 
16384 MB RAM detected; reserving 8192 MB for main workspace. 
.ped scan complete (for binary autoconversion). 
Performing single-pass .bed write (20 variants, 600 people). 
--file: plink-temporary.bed + plink-temporary.bim + plink-temporary.fam 
written. 
20 variants loaded from .bim file. 
600 people (329 males, 271 females) loaded from .fam. 
600 phenotype values loaded from .fam. 
Using 1 thread (no multithreaded calculations invoked). 
Before main variant filters, 600 founders and 0 nonfounders present. 
Calculating allele frequencies... done. 
Total genotyping rate is 0.988333. 
--missing: Sample missing data report written to plink.imiss, and variant-based missing 
data report written to plink.lmiss. 
 

The screen printout documented above is also contained in the file plink.log. PLINK has also generated two 
other files. The files plink.imiss and plink.lmiss contain the proportion of missing values for each 
sample and marker, respectively.  

plink.imiss 
FID  IID MISS_PHENO   N_MISS   N_GENO   F_MISS 
4928    1          N        1       20     0.05 
1838    1          N        0       20        0 
2450    1          N        1       20     0.05 
 647    1          N        0       20        0 
... 
1284    1          N        2       20      0.1 
 172    1          N        1       20     0.05 
... 

plink.lmiss 
 CHR      SNP   N_MISS   N_GENO   F_MISS 
  11   rs1101        0      600        0 
  11   rs1102        0      600        0 
  11   rs1103        0      600        0 
  11   rs1104       92      600   0.1533 
  11   rs1105        0      600        0 
  11   rs1106       48      600     0.08 
  11   rs1107        0      600        0 
  11   rs1108        0      600        0 
  11   rs1109        0      600        0 
  11   rs1110        0      600        0 
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  11   rs1111        0      600        0 
  11   rs1112        0      600        0 
  11   rs1113        0      600        0 
  11   rs1114        0      600        0 
  11   rs1115        0      600        0 
  11   rs1116        0      600        0 
  11   rs1117        0      600        0 
  11   rs1118        0      600        0 
  11   rs1119        0      600        0 
  11   rs1120        0      600        0 

 
 
plink  --ped dbp.cc.ped  --map dbp.map  --mind 0.10  --geno 0.05 \ 
       --recode  --out cleaned 
 
PLINK v1.90b6.9 64-bit (4 Mar 2019)            www.cog-genomics.org/plink/1.9/ 
(C) 2005-2019 Shaun Purcell, Christopher Chang   GNU General Public License v3 
Logging to cleaned.log. 
Options in effect: 
  --geno 0.05 
  --map dbp.map 
  --mind 0.10 
  --out cleaned 
  --ped dbp.cc.ped 
  --recode 
 
16384 MB RAM detected; reserving 8192 MB for main workspace. 
.ped scan complete (for binary autoconversion). 
Performing single-pass .bed write (20 variants, 600 people). 
--file: cleaned-temporary.bed + cleaned-temporary.bim + cleaned-temporary.fam 
written. 
20 variants loaded from .bim file. 
600 people (329 males, 271 females) loaded from .fam. 
600 phenotype values loaded from .fam. 
0 people removed due to missing genotype data (--mind). 
Using 1 thread (no multithreaded calculations invoked). 
Before main variant filters, 600 founders and 0 nonfounders present. 
Calculating allele frequencies... done. 
Total genotyping rate is 0.988333. 
2 variants removed due to missing genotype data (--geno). 
18 variants and 600 people pass filters and QC. 
Among remaining phenotypes, 300 are cases and 300 are controls. 
--recode ped to cleaned.ped + cleaned.map ... done. 

PLINK has created three different files. A log file called cleaned.log (because we used the --out flag) and 
the two data files cleaned.map and cleaned.ped. Two markers with too many missing values (rs1104 and 
rs1106) have been excluded. Use the text editor to have a look at these files. Note that the map file has now the 
default four columns:  

cleaned.map 

11 rs1101 0 1021 
11 rs1102 0 3886 
11 rs1103 0 15023 
11 rs1105 0 21702 
11 rs1107 0 23508 
11 rs1108 0 28769 
11 rs1109 0 31385 
11 rs1110 0 33198 
11 rs1111 0 1245388 
11 rs1112 0 1245604 
11 rs1113 0 1246723 
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11 rs1114 0 1246765 
11 rs1115 0 1247100 
11 rs1116 0 1257557 
11 rs1117 0 1258119 
11 rs1118 0 1258732 
11 rs1119 0 1259178 
11 rs1120 0 1259848 

 

cleaned.ped 

4928 1 0 0 1 2 2 2 1 1 1 1 1 1 1 1 2 2 1 1 1 1 2 1 2 1 2 1 2 1 1 2 2 2 1 1 ... 
1838 1 0 0 1 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 1 1 ... 
2450 1 0 0 1 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 1 2 1 2 2 1 2 2 2 1 1 ... 
 647 1 0 0 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 2 1 2 1 1 2 1 2 1 1 1 1 2 2 2 2 1 ... 
2772 1 0 0 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 1 1 1 1 1 1 2 2 2 2 1 1 ... 
 148 1 0 0 2 2 2 2 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 1 2 1 1 1 1 2 2 2 2 1 ... 
   1 1 0 0 1 2 1 2 2 1 2 2 2 2 2 1 1 1 2 2 1 2 1 1 1 1 2 1 2 1 2 2 1 2 1 1 ... 
... 

 
 
plink  --ped cleaned.ped  --map cleaned.map  --freq  --out cleaned 
 
PLINK v1.90b6.9 64-bit (4 Mar 2019)            www.cog-genomics.org/plink/1.9/ 
(C) 2005-2019 Shaun Purcell, Christopher Chang   GNU General Public License v3 
Logging to cleaned.log. 
Options in effect: 
  --freq 
  --map cleaned.map 
  --out cleaned 
  --ped cleaned.ped 
 
16384 MB RAM detected; reserving 8192 MB for main workspace. 
.ped scan complete (for binary autoconversion). 
Performing single-pass .bed write (18 variants, 600 people). 
--file: cleaned-temporary.bed + cleaned-temporary.bim + cleaned-temporary.fam 
written. 
18 variants loaded from .bim file. 
600 people (329 males, 271 females) loaded from .fam. 
600 phenotype values loaded from .fam. 
Using 1 thread (no multithreaded calculations invoked). 
Before main variant filters, 600 founders and 0 nonfounders present. 
Calculating allele frequencies... done. 
--freq: Allele frequencies (founders only) written to cleaned.frq 
 

PLINK has created the file cleaned.frq, containing the frequency estimates. The log file cleaned.log 
has been overwritten: 

cleaned.frq 

 CHR      SNP   A1   A2          MAF  NCHROBS 
  11   rs1101    1    2       0.4508     1200 
  11   rs1102    2    1       0.2642     1200 
  11   rs1103    2    1       0.4675     1200 
  11   rs1105    1    2       0.4558     1200 
  11   rs1107    2    1       0.1525     1200 
  11   rs1108    2    1         0.48     1200 
  11   rs1109    1    2       0.4425     1200 
  11   rs1110    1    2       0.4558     1200 
  11   rs1111    2    1        0.435     1200 
  11   rs1112    2    1       0.2958     1200 
  11   rs1113    2    1       0.2683     1200 
  11   rs1114    2    1       0.4175     1200 
  11   rs1115    1    2       0.2642     1200 
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  11   rs1116    1    2         0.08     1200 
  11   rs1117    2    1       0.1817     1200 
  11   rs1118    2    1       0.2842     1200 
  11   rs1119    1    2        0.185     1200 
  11   rs1120    1    2       0.3025     1200 

 
 
plink  --ped cleaned.ped  --map cleaned.map  --hardy  --out cleaned 
 
PLINK v1.90b6.9 64-bit (4 Mar 2019)            www.cog-genomics.org/plink/1.9/ 
(C) 2005-2019 Shaun Purcell, Christopher Chang   GNU General Public License v3 
Logging to cleaned.log. 
Options in effect: 
  --hardy 
  --map cleaned.map 
  --out cleaned 
  --ped cleaned.ped 
 
16384 MB RAM detected; reserving 8192 MB for main workspace. 
.ped scan complete (for binary autoconversion). 
Performing single-pass .bed write (18 variants, 600 people). 
--file: cleaned-temporary.bed + cleaned-temporary.bim + cleaned-temporary.fam 
written. 
18 variants loaded from .bim file. 
600 people (329 males, 271 females) loaded from .fam. 
600 phenotype values loaded from .fam. 
Using 1 thread (no multithreaded calculations invoked). 
Before main variant filters, 600 founders and 0 nonfounders present. 
Calculating allele frequencies... done. 
--hardy: Writing Hardy-Weinberg report (founders only) to cleaned.hwe ... done. 
 

PLINK has created the file cleaned.hwe, containing the P values for the test of deviation from Hardy-
Weinberg equilibrium (HWE). The log file cleaned.log has again been overwritten: 

cleaned.hwe 

 CHR      SNP     TEST   A1   A2          GENO   O(HET)   E(HET)            P  
  11   rs1101      ALL    1    2   115/311/174   0.5183   0.4952       0.2838 
  11   rs1101      AFF    1    2     54/159/87     0.53    0.494       0.2426 
  11   rs1101    UNAFF    1    2     61/152/87   0.5067   0.4962       0.8159 
  11   rs1102      ALL    2    1    34/249/317    0.415   0.3888        0.115 
  11   rs1102      AFF    2    1    15/127/158   0.4233   0.3864       0.1339 
  11   rs1102    UNAFF    2    1    19/122/159   0.4067   0.3911       0.5565 
  11   rs1103      ALL    2    1   126/309/165    0.515   0.4979       0.4136 
  11   rs1103      AFF    2    1     57/159/84     0.53    0.496       0.2943 
  11   rs1103    UNAFF    2    1     69/150/81      0.5   0.4992            1 
  11   rs1105      ALL    1    2   118/311/171   0.5183   0.4961       0.2859 
  11   rs1105      AFF    1    2     56/165/79     0.55   0.4971      0.08129 
  11   rs1105    UNAFF    1    2     62/146/92   0.4867    0.495       0.8155 
  11   rs1107      ALL    2    1    13/157/430   0.2617   0.2585       0.8749 
  11   rs1107      AFF    2    1      6/85/209   0.2833   0.2711       0.5274 
  11   rs1107    UNAFF    2    1      7/72/221     0.24   0.2456       0.6406 
  11   rs1108      ALL    2    1   139/298/163   0.4967   0.4992       0.9348 
  11   rs1108      AFF    2    1     74/152/74   0.5067      0.5       0.9081 
  11   rs1108    UNAFF    2    1     65/146/89   0.4867   0.4968       0.7281 
  11   rs1109      ALL    1    2   113/305/182   0.5083   0.4934        0.508 
  11   rs1109      AFF    1    2     56/154/90   0.5133   0.4936       0.5587 
  11   rs1109    UNAFF    1    2     57/151/92   0.5033   0.4932       0.8148 
  11   rs1110      ALL    1    2   112/323/165   0.5383   0.4961      0.04003 
  11   rs1110      AFF    1    2     50/169/81   0.5633   0.4947      0.01965 
  11   rs1110    UNAFF    1    2     62/154/84   0.5133   0.4973       0.6426 
  11   rs1111      ALL    2    1   116/290/194   0.4833   0.4915       0.6785 
  11   rs1111      AFF    2    1     62/140/98   0.4667   0.4928       0.3509 
  11   rs1111    UNAFF    2    1     54/150/96      0.5   0.4902       0.8138 
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  11   rs1112      ALL    2    1    52/251/297   0.4183   0.4166            1 
  11   rs1112      AFF    2    1    39/145/116   0.4833   0.4671       0.6212 
  11   rs1112    UNAFF    2    1    13/106/181   0.3533   0.3432       0.7367 
  11   rs1113      ALL    2    1    43/236/321   0.3933   0.3927            1 
  11   rs1113      AFF    2    1    27/136/137   0.4533   0.4328       0.5044 
  11   rs1113    UNAFF    2    1    16/100/184   0.3333   0.3432       0.6146 
  11   rs1114      ALL    2    1   111/279/210    0.465   0.4864       0.2764 
  11   rs1114      AFF    2    1    52/137/111   0.4567   0.4807        0.401 
  11   rs1114    UNAFF    2    1     59/142/99   0.4733   0.4911       0.5568 
  11   rs1115      ALL    1    2    45/227/328   0.3783   0.3888       0.5286 
  11   rs1115      AFF    1    2    35/127/138   0.4233   0.4411       0.5128 
  11   rs1115    UNAFF    1    2    10/100/190   0.3333     0.32       0.5887 
  11   rs1116      ALL    1    2      4/88/508   0.1467   0.1472        0.785 
  11   rs1116      AFF    1    2      3/43/254   0.1433     0.15       0.4294 
  11   rs1116    UNAFF    1    2      1/45/254     0.15   0.1444            1 
  11   rs1117      ALL    2    1    14/190/396   0.3167   0.2973       0.1309 
  11   rs1117      AFF    2    1    12/117/171     0.39   0.3595       0.1974 
  11   rs1117    UNAFF    2    1      2/73/225   0.2433   0.2237       0.1935 
... 

 

PLINK has performed HWE tests for each marker in each of three sample sets: controls (‘UNAFF’), cases (‘AFF’) 
and controls and cases combined (‘ALL’). The ‘GENO’ column gives the counts of A1/A1, A1/A2 and A2/A2 
genotypes in the sample set, respectively. The columns ‘O(HET)’ and ‘E(HET)’ give the observed and the 
expected frequency of heterozygous genotypes A1/A2 according to the Hardy-Weinberg proportions (i.e. 2pq if 
p denotes the frequency of the A1 allele and q that of the A2 allele). The ‘P’ column contains the P-value from 
the test. 
 
plink  --ped cleaned.ped  --map cleaned.map  --out cleaned.R  --recode  \ 
       --tab 
 
PLINK v1.90b6.9 64-bit (4 Mar 2019)            www.cog-genomics.org/plink/1.9/ 
(C) 2005-2019 Shaun Purcell, Christopher Chang   GNU General Public License v3 
Logging to cleaned.R.log. 
Options in effect: 
  --map cleaned.map 
  --out cleaned.R 
  --ped cleaned.ped 
  --recode 
  --tab 
 
Note: --tab flag deprecated.  Use '--recode tab ...'. 
16384 MB RAM detected; reserving 8192 MB for main workspace. 
.ped scan complete (for binary autoconversion). 
Performing single-pass .bed write (18 variants, 600 people). 
--file: cleaned.R-temporary.bed + cleaned.R-temporary.bim + 
cleaned.R-temporary.fam written. 
18 variants loaded from .bim file. 
600 people (329 males, 271 females) loaded from .fam. 
600 phenotype values loaded from .fam. 
Using 1 thread (no multithreaded calculations invoked). 
Before main variant filters, 600 founders and 0 nonfounders present. 
Calculating allele frequencies... done. 
18 variants and 600 people pass filters and QC. 
Among remaining phenotypes, 300 are cases and 300 are controls. 
--recode ped to cleaned.R.ped + cleaned.R.map ... done. 
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cleaned.R.ped 

4928 1 0 0 1 2 2 2 1 1 1 1 1 1 .. 
1838 1 0 0 1 2 1 1 1 1 2 2 2 2 .. 
2450 1 0 0 1 2 1 1 1 1 2 2 2 2 .. 
647 1 0 0 2 2 2 2 2 2 2 1 2 2 .. 
2772 1 0 0 1 2 1 2 1 1 2 1 1 2 .. 
148 1 0 0 2 2 2 2 1 1 1 1 1 1 .. 
1 1 0 0 1 2 1 2 2 1 2 2 2 2 .. 
1696 1 0 0 2 2 1 2 2 1 2 1 1 2 .. 
890 1 0 0 1 2 1 2 1 1 2 1 1 2 .. 
1832 1 0 0 1 2 1 2 1 1 2 1 1 2 .. 
... 

cleaned.R.map 
11 rs1101 0 1021 
11 rs1102 0 3886 
11 rs1103 0 15023 
11 rs1105 0 21702 
11 rs1107 0 23508 
11 rs1108 0 28769 
11 rs1109 0 31385 
11 rs1110 0 33198 
... 

II. Missing data and filtering 
plink  --ped dbp.cc.ped  --map dbp.map  --missing 
 
PLINK v1.90b4.4 64-bit (21 May 2017)           www.cog-genomics.org/plink/1.9/ 
(C) 2005-2017 Shaun Purcell, Christopher Chang   GNU General Public License v3 
Logging to dbp.log. 
Options in effect: 
  --make-bed 
  --map dbp.map 
  --out dbp 
  --ped dbp.cc.ped 
 
16384 MB RAM detected; reserving 8192 MB for main workspace. 
.ped scan complete (for binary autoconversion). 
Performing single-pass .bed write (20 variants, 600 people). 
--file: dbp-temporary.bed + dbp-temporary.bim + dbp-temporary.fam written. 
20 variants loaded from .bim file. 
600 people (329 males, 271 females) loaded from .fam. 
600 phenotype values loaded from .fam. 
Using 1 thread (no multithreaded calculations invoked). 
Before main variant filters, 600 founders and 0 nonfounders present. 
Calculating allele frequencies... done. 
Total genotyping rate is 0.988333. 
20 variants and 600 people pass filters and QC. 
Among remaining phenotypes, 300 are cases and 300 are controls. 
--make-bed to dbp.bed + dbp.bim + dbp.fam ... done. 

014



 

 

 

 

 

 

dbp.fam 

4928 1 0 0 1 2 
1838 1 0 0 1 2 
2450 1 0 0 1 2 
647  1 0 0 2 2 
2772 1 0 0 1 2 
148  1 0 0 2 2 
1    1 0 0 1 2 
1696 1 0 0 2 2 
890  1 0 0 1 2 
1832 1 0 0 1 2 
... 

dbp.bim 

11 rs1101 0 1021 1 2 
11 rs1102 0 3886 2 1 
11 rs1103 0 15023 2 1 
11 rs1104 0 15788 1 2 
11 rs1105 0 21702 1 2 
11 rs1106 0 23505 2 1 
11 rs1107 0 23508 2 1 
11 rs1108 0 28769 2 1 
11 rs1109 0 31385 1 2 
11 rs1110 0 33198 1 2 
... 

File dbp.fam contains the first six columns of dbp.ped, whereas dbp.bim contains all four columns from 
dbp.map and two additional columns from the dbp.ped file listing the A2 and A1 alleles. 
 

Introduction to R 

I: Data Types 
 
city       = c("Oslo", "Bergen", "Munich", "Berlin", "Rome", "Milan") 
population = c(0.58, 0.25, 1.3, 3.4, 2.7, 1.3) 
country    = factor ( c("Norway", "Norway", "Germany",  
                        "Germany", "Italy", "Italy") ) 
capital    = c(TRUE, FALSE, FALSE, TRUE, TRUE, FALSE) 
updated    = 2009 
city 
[1] "Oslo"   "Bergen" "Munich" "Berlin" "Rome"   "Milan"  
population 
[1] 0.58 0.25 1.30 3.40 2.70 1.30 
country 
[1] Norway  Norway  Germany Germany Italy   Italy   
Levels: Germany Italy Norway 
capital 
[1]  TRUE FALSE FALSE  TRUE  TRUE FALSE 
 
c(city, city) 
[1] "Oslo"   "Bergen" "Munich" "Berlin" "Rome"   "Milan"  "Oslo"   "Bergen" "Munich" 
"Berlin" "Rome"   "Milan"  
c(population, updated) 
[1]    0.58    0.25    1.30    3.40    2.70    1.30 2009.00 
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summary (city) 
Length     Class      Mode  
        6 character character  
summary (population) 
Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  0.250   0.760   1.300   1.588   2.350   3.400  
summary (country) 
Germany   Italy  Norway  
      2       2       2  
summary (capital) 
   Mode   FALSE    TRUE    NA's  
logical       3       3       0  
 
is.numeric(city) 
[1] FALSE 
is.character(city) 
[1] TRUE 
is.factor(city) 
[1] FALSE 
class (city) 
[1] "character" 
class (population) 
[1] "numeric" 
class (country) 
[1] "factor" 
class (capital) 
[1] "logical" 
length(city) 
[1] 6 

 
II: Names & Indexes 
names(population) = city 
  Oslo Bergen Munich Berlin   Rome  Milan  
  0.58   0.25   1.30   3.40   2.70   1.30  
population 
city [3] 
[1] "Munich" 
city [2:4] 
[1] "Bergen" "Munich" "Berlin" 
city[c(1,5:6)] 
[1] "Oslo"  "Rome"  "Milan" 
population[3] 
Munich  
   1.3  
population["Oslo"] 
Oslo  
0.58  
population[c("Berlin","Rome")] 
Berlin   Rome  
   3.4    2.7  
population[capital] 
  Oslo Berlin   Rome  
  0.58   3.40   2.70  
population>=1.0 
  Oslo Bergen Munich Berlin   Rome  Milan  
 FALSE  FALSE   TRUE   TRUE   TRUE   TRUE  
population[population>=1.0] 
Munich Berlin   Rome  Milan  
   1.3    3.4    2.7    1.3  
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III: Data frames  
cities = data.frame (city=city, pop=population,  
                     country=country, capital=capital, 
                     stringsAsFactors = F) 
 
cities 
         city  pop country capital 
Oslo     Oslo 0.58  Norway    TRUE 
Bergen Bergen 0.25  Norway   FALSE 
Munich Munich 1.30 Germany   FALSE 
Berlin Berlin 3.40 Germany    TRUE 
Rome     Rome 2.70   Italy    TRUE 
Milan   Milan 1.30   Italy   FALSE 
length(cities) 
[1] 4 
dim(cities) 
[1] 6 4 
 
is.data.frame(cities) 
[1] TRUE 
is.list(cities) 
[1] TRUE 
 
colnames(cities) 
[1] "city"    "pop"     "country" "capital" 
rownames(cities) 
[1] "Oslo"   "Bergen" "Munich" "Berlin" "Rome"   "Milan"  
 
cities$city 
[1] "Oslo"   "Bergen" "Munich" "Berlin" "Rome"   "Milan"  
cities[,1] 
[1] "Oslo"   "Bergen" "Munich" "Berlin" "Rome"   "Milan"  
cities[2,] 
         city  pop country capital 
Bergen Bergen 0.25  Norway   FALSE 
cities[2,3] 
[1] Norway 
Levels: Germany Italy Norway 
cities$pop[3] 
[1] 1.3 
 
cities[capital,] 
         city  pop country capital 
Oslo     Oslo 0.58  Norway    TRUE 
Berlin Berlin 3.40 Germany    TRUE 
Rome     Rome 2.70   Italy    TRUE 
 
cities[cities$pop>=1.0,] 
         city pop country capital 
Munich Munich 1.3 Germany   FALSE 
Berlin Berlin 3.4 Germany    TRUE 
Rome     Rome 2.7   Italy    TRUE 
Milan   Milan 1.3   Italy   FALSE 

IV: Export & Import 
ls() 
[1] "capital"       "cities"        "city"          "country"     
[5] "population"    "updated"  
 
save(cities, city, country, file="myobjects.R") 
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write.table(cities, file="cities.txt") 
 
sink (“cities.output.txt”) 
print (cities) 
sink () 
 
dir() 
[1] "R_exercise.txt"  "cities.output.txt"  "myobjects.R" 
 
rm(list=ls()) 
ls() 
character(0) 
 
new.table = read.table ("cities.txt") 
ls() 
[1] "new.table" 
new.table 
         city  pop country capital 
Oslo     Oslo 0.58  Norway    TRUE 
Bergen Bergen 0.25  Norway   FALSE 
Munich Munich 1.30 Germany   FALSE 
Berlin Berlin 3.40 Germany    TRUE 
Rome     Rome 2.70   Italy    TRUE 
Milan   Milan 1.30   Italy   FALSE 
 
load ("myobjects.R") 
ls() 
[1] "cities"    "city"      "country"   "new.table" 
 
cities 
         city  pop country capital 
Oslo     Oslo 0.58  Norway    TRUE 
Bergen Bergen 0.25  Norway   FALSE 
Munich Munich 1.30 Germany   FALSE 
Berlin Berlin 3.40 Germany    TRUE 
Rome     Rome 2.70   Italy    TRUE 
Milan   Milan 1.30   Italy   FALSE 
 
new.table 
         city  pop country capital 
Oslo     Oslo 0.58  Norway    TRUE 
Bergen Bergen 0.25  Norway   FALSE 
Munich Munich 1.30 Germany   FALSE 
Berlin Berlin 3.40 Germany    TRUE 
Rome     Rome 2.70   Italy    TRUE 
Milan   Milan 1.30   Italy   FALSE 
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Genome-wide Association Analysis - Data Quality Control 

Copyright © 2022 Merry-Lynn McDonald, Isabelle Schrauwen & Suzanne M. Leal 

Introduction 

In this exercise, you will learn how to perform data quality control (QC) by removing markers and 

samples that fail QC quality control criteria. You will also examine your samples for individuals that 

are related to each other and/or are duplicate samples. Each sample will also be tested for excess 

homozygosity and heterozygosity of genotype data. Each SNP will be tested for deviations from 

Hardy-Weinberg Equilibrium. These exercises will be carried out using PLINK1.9 and R. 

1. Using PLINK

PLINK can upload data in different formats please see the PLINK documentation (https://www.cog- 

genomics.org/plink/1.9/input) for additional details. The data for this exercise is in PLINK/LINKAGE 

file format. There are two files: a pedfile (GWAS.ped) and a map file (GWAS.map). Please examine 

these files and the PLINK documentation. Please note the commands must be given in the directory 

where the data residues. 

Navigate via the command prompt to the directory which contains the files for the exercise. Type plink 

in the command prompt and make note of the output. Next type: 

plink --file GWAS 

Note, that PLINK outputs a file called plink.log that contains the same output which you see on the 

screen. To see all options, type plink --help for more information. Determine how many samples there 

are in your data set and fill in Oval 1 of the flowchart below. 

2. Data Quality Control

a. Removing Samples and SNPs with Missing Genotypes.

You will exclude samples that are missing more than 10% of their genotype calls. These samples are 

likely to have been generated using low quality DNA and can also have higher than average genotyping 

error rates. 

plink --file GWAS --mind 0.10 --recode --out GWAS_clean_mind 

Examine GWAS_clean_mind.log to see how many samples are excluded based on this criterion and 

fill in Box 1. 

Create two versions of your dataset, one with SNPs with a minor allele frequencies (MAFs) >5% and 
the other with SNPs with a MAFs <5%. 

You will now remove SNPs with MAFs>5% that are missing >5% of their genotypes and then remove 

SNPs with MAFs<5% that are missing >1% of their genotypes. SNPs which are missing genotypes 

can have higher error rates than those SNP markers without missing data. 

plink --file GWAS_clean_mind --maf 0.05 --recode --out MAF_greater_5 

plink --file GWAS_clean_mind --exclude MAF_greater_5.map --recode --out MAF_less_5 

plink --file MAF_greater_5 --geno 0.05 --recode --out MAF_greater_5_clean 
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Fill in Box 2a. 

plink --file MAF_less_5 --geno 0.01 --recode --out MAF_less_5_clean 

Fill in Box 2b. 

Merge the two files. 

plink --file MAF_greater_5_clean --merge MAF_less_5_clean.ped MAF_less_5_clean.map 

--recode --out GWAS_MAF_clean 

A more stringent criterion for missing data is used, samples missing >3% of their genotypes are 

removed. 

plink --file GWAS_MAF_clean --mind 0.03 --recode --out GWAS_clean2 

Fill in Box 3. 

b. Checking Sex

Error of the reported sex of an individual can occur. Information from the SNP genotypes can be used 

to verify the sex of individuals, by examining homozygosity (F) on the X chromosome for every 

individual. F is expected to be <0.2 in females and >0.8 in males. To check sex run 

plink --file GWAS_clean2 --check-sex --out GWAS_sex_checkingUse R to examine the 

GWAS_sex_checking.sexcheck file and determine if there are individuals whose recorded sex is 

inconsistent with genetic sex. 

R 

sexcheck = read.table("GWAS_sex_checking.sexcheck", header=T) 

names(sexcheck) 

sex_problem = sexcheck[which(sexcheck$STATUS=="PROBLEM"),] 

sex_problem 

q() 

NA20530 and NA20506 were coded as a female (2) and from the genotypes appear to be males (1). In 

addition, 3 individuals (NA20766, NA20771 and NA20757) do not have enough information to 

determine if they are males or females and PLINK reports sex = 0 for the genotyped sex. Fill in the 

table below: 

Table 1: Sex check 
FID IID PEDSEX SNPSEX STATUS F 

NA20506 NA20506 

NA20530 NA20530 

NA20766 NA20766 

NA20771 NA20771 

NA20757 NA20757 

Reasons for these kinds of discrepancies, include the records are incorrect, incorrect data entry, sample 

swap, unreported Turner or Klinefelter syndromes. Additionally, if a sufficient number of SNPs have 

not been genotyped on the X chromosome it can be difficult to accurately predict the sex of an 

individual. In this dataset, there are only 194 X chromosomal SNPs. If you cannot validate the sex of 

the individual they should be removed. For this exercise, we are going to assume that when the sex 
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was checked, we found it was incorrectly recorded (i.e. these samples were male). Therefore, this error 

could simply be corrected. 

Question 1: Why do you expect the homozygosity rate to be higher on the X chromosome in males 
than females? 

c. Duplicate Samples

The following PLINK command can be used to check for duplicate samples: 

plink --file GWAS_clean2 --genome --out duplicates 

Open the duplicates.genome file in R with the following command: 

dups = read.table("duplicates.genome", header = T) 

We are interested in the Pi-Hat (the estimated proportion IBD sharing) value. You may notice that 

there is more than one duplicate (Pi-Hat=~1). Also, examine the output for pairs of individuals with 

high Pi-Hat values which can indicate they are related. The amount of allele sharing [Z(0), Z(1) and 

Z(2)] across all SNPs provides information on the type of relative pair. 

problem_pairs = dups[which(dups$PI_HAT > 0.4),] 

problem_pairs 

Table 2: Duplicate and Related Individuals 
FID1 IID1 FID2 IID2 Z(0) Z(1) Z(2) PI_HAT 

F1D1- Family ID for 1st individual; ID1 - Individual ID for 1st individual; F1D2- Family 

ID for 2nd individual; ID2 - Individual ID for 2nd individual; Z(0)- P(IBD=0); Z(1)- 

P(IBD=1); Z(2)- P(IBD=2); PI_HAT-P(IBD=2)+0.5*P(IBD=1) ( proportion IBD ) 

Question 2: How many duplicate pairs do your find (hint: Pi-Hat = ~1)? Do pairs with a Pi-Hat = ~1 

have to be duplicate samples? What is another explanation? What proportion would you expect a 

parent/ child to share IBD? Can you find any such relationship?  

Note: Pi-hat can be inflated and individuals appear to be related to each other if you have samples 

from different populations. This explains why we observe pairs of individuals with Pi-hat >0.05 since 

three distinct populations were analyzed. Additionally, this phenomenon can be observed if a subset(s) 

of samples have higher genotyping/sequencing error rates, which creates two or more “populations” 

and the individuals within these “populations” incorrectly appear to be related. 
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Using this R script please observe how many sample pairs have pi-hat >0.05: 

problem_pairs = dups[which(dups$PI_HAT > 0.05),] 

myvars = c("FID1", "IID1", "FID2", "IID2", "PI_HAT") 

problem_pairs[myvars] 

Create the following txt file: 

1344 NA12057 
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1444 NA12739 

M033 NA19774 

name it ‘IBS_excluded.txt’ and save it to the folder with your 

PLINK data. Give the command: 

plink --file GWAS_clean2 --remove IBS_excluded.txt 

--recode --out GWAS_clean3 

Fill in Box 4 and Oval 3. 

As part of QC usually the data is examined for outliers by 

plotting the first and second principal or multidimensional 

scaling (MDS) components. Using a subset of markers that 

have been trimmed to remove LD (r2<0.5). Principal 

components analysis (PCA) and MDS will be performed in the 

second part of the exercise to detect outliers and control for populations substructure. Outlier can be 

due to study subjects coming from different populations e.g. European- and African-Americans or 

batch effects. If it is suspected that outliers are due to study subjects having been sampled from 

different populations than data from HapMap can be included to elucidate population membership, 

e.g. for a study of European-Americans if African-American study subjects are included they would

cluster between the European and African HapMap samples. If you perform this type of analysis you

should remove the HapMap samples and re-estimate the MDS or PC components before adjusting for

population substructure or stratification. For this exercise data is used from HapMap Phase III which

consists of CEU (Europeans from Utah), MEX (Mexicans from Los Angeles) and TSI (Tuscans from

Italy). Three clusters can be observed that consist of the three data sets but no extreme outliers are

observed. This data set is being used for demonstration purposes. Different populations should be

analyzed separately and the results can be combined using meta-analysis. In part two of this exercise

MDS and PC components will be constructed and analyzed.

d. Hardy-Weinberg Equilibrium (HWE):

To test for HWE we will test separately in each ancestry group and by case-control status. Therefore, 

we will need to use information on ancestry and cases-control status. Please note that this should be 

tested in the 3 different populations separately (CEU, MEX, TSI), but due to the small sample sizes, 

we tested it in the 3 populations together for example purposes. It should also be noted if the sample 

sizes are small it is difficult to detect a deviation from HWE. 

plink --file GWAS_clean3 --pheno pheno.txt --pheno-name Aff --hardy 

Using R examine the file plink.hwe and look for SNPs with p-values of 10-7 or smaller. 

hardy = read.table("plink.hwe", header = T) 

names(hardy) 

hwe_prob = hardy[which(hardy$P < 0.0000009),] 

hwe_prob 

Using a criterion of p <10-7 to reject the null hypothesis of HWE, how many SNPs fail HWE in the 

controls? Fill out Oval 5 and Box 4. Using the same criteria, how many SNPs fail HWE in the controls? 

Complete Table 3 with this information. 

Table 3: Hardy-Weinberg Equilibrium 
Cases Controls 

SNP Pvalue Population(s) SNP Population(s) Pvalue 
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Oval 4 
N =  DNA samples 
Nsnp = _ _  SNPs 

Create a text file called HWE_out.txt with the following SNP in it: 

rs2968487 

and type the following command: 

plink --file GWAS_clean3 --exclude HWE_out.txt --recode --out GWAS_clean4 

There are a number of SNPs with HWE p-values in the range of 10-5 to 10-6 in the controls. Based on 

above criterion they will not be excluded however, if they reach genome-wide significance during 

association testing they SNPs should be further investigated to ensure there is no genotyping error. 

You can now fill in Box 5 and Oval 4. 

Oval 1 
N =  DNA 

samples 
Nsnp = _ _ SNPs 

Box 1 
_ _ DNA samples 

missing >10% of 

calls (MIND 0.10) 

Oval 2 

N =  DNA samples 

Nsnp = _ _  SNPs 

Box 2a 

_ _ SNPs (MAF >5%) missing > 
5% of genotypes (GENO 

Box 3 
_ _ DNA samples failed missing 

> 3% of calls (MIND 0.03)

Box 2b 
_ _ SNPs (MAF <5%) missing 

>1% genotypes (GENO 0.01)

Box 4 

_ 

_ 
Individuals with inconsistent 
Duplicate pairs 
Individuals excluded due to 
relatedness 

Oval 3 
N =  DNA samples 

Nsnp = _ _  SNPs 

Box 5 
SNPs in controls out 
of HWE with p<10-7 
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Answers to Questions: 

Oval 1 and 2 also and Box 1 information: 

PLINK v1.90b4.9 64-bit (13 Oct 2017) 

Options in effect: 

--file GWAS 

--mind 0.10 

--out GWAS_clean_mind 

--recode 

Random number seed: 1515434515 

16384 MB RAM detected; reserving 8192 MB for main workspace. 

Scanning .ped file... done. 

Performing single-pass .bed write (6424 variants, 248 people) [Oval 1]. 

--file: GWAS_clean_mind-temporary.bed + GWAS_clean_mind-temporary.bim + 

GWAS_clean_mind-temporary.fam written. 

6424 variants loaded from .bim file. 

248 people (125 males, 123 females) loaded from .fam. 

1 person removed due to missing genotype data (--mind) [Box 1]. 

ID written to GWAS_clean_mind.irem . 

Using 1 thread (no multithreaded calculations invoked). 

Before main variant filters, 247 founders and 0 nonfounders present. 

Calculating allele frequencies... done. 

Warning: 6 het. haploid genotypes present (see GWAS_clean_mind.hh ); many 

commands treat these as missing. 

Total genotyping rate in remaining samples is 0.996863. 

6424 variants and 247 people pass filters and QC [Oval 2]. 

Note: No phenotypes present. 

--recode ped to GWAS_clean_mind.ped + GWAS_clean_mind.map ... done. 

Box 2a information: 

PLINK v1.90b4.9 64-bit (13 Oct 2017) 

Options in effect: 

--file MAF_greater_5 

--geno 0.05 

--out MAF_greater_5_clean 

--recode 

Random number seed: 1515435189 

16384 MB RAM detected; reserving 8192 MB for main workspace. 

Scanning .ped file... done. 

Performing single-pass .bed write (5868 variants, 247 people). 

--file: MAF_greater_5_clean-temporary.bed + MAF_greater_5_clean-temporary.bim + 

MAF_greater_5_clean-temporary.fam written. 

5868 variants loaded from .bim file. 

247 people (125 males, 122 females) loaded from .fam. 

Using 1 thread (no multithreaded calculations invoked). 

Before main variant filters, 247 founders and 0 nonfounders present. 

Calculating allele frequencies... done. 

Warning: 6 het. haploid genotypes present (see MAF_greater_5_clean.hh ); many 

commands treat these as missing. 

Total genotyping rate is 0.996858. 

2 variants removed due to missing genotype data (--geno) [Box2a]. 

5866 variants and 247 people pass filters and QC. 

Note: No phenotypes present. 

--recode ped to MAF_greater_5_clean.ped + MAF_greater_5_clean.map ... done. 

Box 2b information: 

PLINK v1.90b4.9 64-bit (13 Oct 2017) 

Options in effect: 

--file MAF_less_5 

--geno 0.01 

--out MAF_less_5_clean 

--recode 

Random number seed: 1515435255 

16384 MB RAM detected; reserving 8192 MB for main workspace. 
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Scanning .ped file... done. 

Performing single-pass .bed write (556 variants, 247 people). 

--file: MAF_less_5_clean-temporary.bed + MAF_less_5_clean-temporary.bim + 

MAF_less_5_clean-temporary.fam written. 

556 variants loaded from .bim file. 

247 people (125 males, 122 females) loaded from .fam. 

Using 1 thread (no multithreaded calculations invoked). 

Before main variant filters, 247 founders and 0 nonfounders present. 

Calculating allele frequencies... done. 

Total genotyping rate is 0.996913. 

59 variants removed due to missing genotype data (--geno) [Box2b]. 

497 variants and 247 people pass filters and QC. 

Note: No phenotypes present. 

--recode ped to MAF_less_5_clean.ped + MAF_less_5_clean.map ... done. 

Box 3 information: 

PLINK v1.90b4.9 64-bit (13 Oct 2017) 

Options in effect: 

--file GWAS_MAF_clean 

--mind 0.03 

--out GWAS_clean2 

--recode 

Random number seed: 1515435827 

16384 MB RAM detected; reserving 8192 MB for main workspace. 

Scanning .ped file... done. 

Performing single-pass .bed write (6363 variants, 247 people). 

--file: GWAS_clean2-temporary.bed + GWAS_clean2-temporary.bim + 

GWAS_clean2-temporary.fam written. 

6363 variants loaded from .bim file. 

247 people (125 males, 122 females) loaded from .fam. 

0 people removed due to missing genotype data (--mind) [Box 3]. 

Using 1 thread (no multithreaded calculations invoked). 

Before main variant filters, 247 founders and 0 nonfounders present. 

Calculating allele frequencies... done. 

Warning: 6 het. haploid genotypes present (see GWAS_clean2.hh ); many commands 

treat these as missing. 

Total genotyping rate is 0.99716. 

6363 variants and 247 people pass filters and QC. 

Note: No phenotypes present. 

--recode ped to GWAS_clean2.ped + GWAS_clean2.map ... done. 

Answer to Question 1: Why do you expect the homozygosity rate to be higher on the X chromosome 

in males than females? 

Because males only have one allele for each SNP on the X chromosome they will appear 

homozygous. 

Table 1: Sex check 
FID IID PEDSEX SNPSEX STATUS F 

NA20506 NA20506 2 1 PROBLEM 1 

NA20530 NA20530 2 1 PROBLEM 1 

NA20766 NA20766 2 0 PROBLEM 0.2292 

NA20771 NA20771 2 0 PROBLEM 0.2234 

NA20757 NA20757 2 0 PROBLEM 0.2141 
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Table 2: Duplicate and Related Individuals 

FID1 IID1 FID2 IID2 Z(0) Z(1) Z(2) PI_HAT 

M033 NA19774 M041 NA25000 0.0000 0.0000 1.0000 1.00 

1344 NA12057 13291 NA25001 0.0000 0.0025 0.9975 1.00 

1444 NA12739 1444 NA12749 0.0026 0.9807 0.0168 0.51 

1444 NA12739 1444 NA12748 0.0026 0.9949 0.0025 0.50 

F1D1- Family ID for 1st individual; ID1 - Individual ID for 1st individual; F1D2- Family 

ID for 2nd individual; ID2 - Individual ID for 2nd individual; Z(0)- P(IBD=0); Z(1)- 

P(IBD=1); Z(2)- P(IBD=2); PI_HAT-P(IBD=2)+0.5*P(IBD=1) ( proportion IBD ) 

Question 2: How many duplicate pairs do your find (hint: Pi-Hat = ~1)? Do pairs with a Pi-Hat = ~1 

have to be duplicate samples? What is another explanation? What proportion would you expect a 

parent/ child to share IBD? Can you find any such relationship?.  

There are two duplicate pairs and also a trio (two parents and a child). Parent/child relationships will 

have a Pi_Hat value of ~0.5, but so will sibpairs. We can tell that this is a parent child relationship by 

examine Z(0), Z(1) and Z(2). We will retain only one sample from each duplicate pair and the 

parents NA12749 and NA12748. If you perform mixed-model analysis related individuals can be 

retained in the sample. 

Oval 3 information 

PLINK v1.90b4.9 64-bit (13 Oct 2017) 

Options in effect: 

--file GWAS_clean2 

--out GWAS_clean3 

--recode 

--remove IBS_excluded.txt 

Random number seed: 1515440989 

16384 MB RAM detected; reserving 8192 MB for main workspace. 

Scanning .ped file... done. 

Performing single-pass .bed write (6363 variants, 247 people). 

--file: GWAS_clean3-temporary.bed + GWAS_clean3-temporary.bim + 

GWAS_clean3-temporary.fam written. 

6363 variants loaded from .bim file. 

247 people (125 males, 122 females) loaded from .fam. 

--remove: 244 people remaining. 

Using 1 thread (no multithreaded calculations invoked). 

Before main variant filters, 244 founders and 0 nonfounders present. 

Calculating allele frequencies... done. 

Warning: 6 het. haploid genotypes present (see GWAS_clean3.hh ); many commands 

treat these as missing. 

Total genotyping rate in remaining samples is 0.997225. 

6363 variants and 244 people pass filters and QC [Oval 3]. 

Note: No phenotypes present. 

--recode ped to GWAS_clean3.ped + GWAS_clean3.map ... done. 

Table 3: Hardy Weinberg Equilibrium 

Fail Cases Fail Controls 

SNP pvalue SNP pvalue 

None rs2968487 2.262e-007 

PLINK v1.90b4.9 64-bit (13 Oct 2017) 

Options in effect: 

--exclude HWE_out.txt 

--file GWAS_clean3 

--out GWAS_clean4 

--recode 

Random number seed: 1515442367 

16384 MB RAM detected; reserving 8192 MB for main workspace. 

Scanning .ped file... done. 

Performing single-pass .bed write (6363 variants, 244 people). 

--file: GWAS_clean4-temporary.bed + GWAS_clean4-temporary.bim + 

GWAS_clean4-temporary.fam written. 
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6363 variants loaded from .bim file. 

244 people (123 males, 121 females) loaded from .fam. 

--exclude: 6362 variants remaining. 

Using 1 thread (no multithreaded calculations invoked). 

Before main variant filters, 244 founders and 0 nonfounders present. 

Calculating allele frequencies... done. 

Warning: 6 het. haploid genotypes present (see GWAS_clean4.hh ); many commands 

treat these as missing. 

Total genotyping rate is 0.997229. 

6362 variants and 244 people pass filters and QC [Oval 4]. 

Note: No phenotypes present. 

--recode ped to GW 

AS_clean4.ped + GWAS_clean4.map ... done. 
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Oval 4 
N = 244  DNA samples 
Nsnp = _63_62  SNPs 

Oval 1 
N = 248  DNA 

samples 
Nsnp = 6424 SNPs 

Box 1 
_ 1 DNA samples 

missing >10% of 

calls (MIND 0.10) 

Oval 2 
N = 247  DNA samples 

Nsnp =  6424 SNPs 

Box 2a 
_ 2_ SNPs (MAF >5%) missing > 

5% of genotypes (GENO 

Box 2b 
_59 _ SNPs (MAF <5%) missing 

>1% genotypes (GENO 0.01)

Box 3 

_0_ DNA samples failed missing 
> 3% of calls (MIND 0.03)

Box 4 

_ 5 Individuals with inconsistent 
_ 2 Duplicate pairs 

1_ Individuals excluded due to 
relatedness 

Oval 3 

N = 244 DNA samples 
Nsnp = _6_363  SNPs 

Box 5 
 1  SNPs in controls out 

of HWE with p<10-7 

029



© Michael Nothnagel 2022 

Exercise 

Population Genetics (PP) 
HWE & F statistic 
From a case-control study, the following genotype counts have been observed for a SNP with 
alleles A and B:  

Cases: nobs(AA) = 159 nobs(AB) = 122 nobs(BB) = 19 
Controls: nobs(AA) = 120 nobs(AB) = 139 nob (BB) = 41 

Test this SNP for deviation from Hardy-Weinberg equilibrium, calculate the FST statistic in 
controls, test for association under a genotypic and under an allelic risk model and calculate 
the odds ratios for the SNP genotypes and alleles, respectively.  

I. Testing for deviation from Hardy-Weinberg equilibrium (HWE) in controls

1. Calculate the genotype and allele frequencies in controls:
n =  nobs(AA) + nobs(AB) + nobs(BB) = 
fobs(AA) =  nobs(AA) / n = 

fobs(AB) =  nobs(AB) / n = 
fobs(BB) =  nobs(BB) / n = 

f(A) =  [2×nobs(AA)+nobs(AB)] / 2n = 

f(B) =  [2×nobs(BB)+nobs(AB)] / 2n = 

2. Calculate the expected genotypic counts under the null hypothesis of HWE:
nexp(AA) =  n × [     f(A)×f(A) ] = 
nexp(AB) =  n × [ 2×f(A)×f(B) ] = 

nexp(BB) =  n × [     f(B)×f(B) ] = 

3. Arrange observed and expected genotype counts in a 2×3 table and calculate the chi-square
statistic: 

AA AB BB 

Observed (nobs) 120 139 41 

Expected (nexp) 

X2  =  [nobs(AA)- nexp(AA)]2 / nexp(AA) + [nobs(AB)- nexp(AB)]2 / nexp(AB) 
+ [nobs(BB)- nexp(BB) ]2 / nexp(BB)

=  + + 

=  
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4. Obtain the corresponding P-value from a one-df c2 distribution:

Quantiles of the 1-df c2 distribution using R: 
pchisq( <<QUANTILE>>, df=1, ncp=0, lower.tail=F) 

p  = 

II. Calculating the FST statistic in controls

The FST statistic can be calculated by the formula given below (introduced in the lecture on 
population genetics). Use the control frequencies calculated in Exercise 1 on HWE testing.  

FST =  [ fobs(AA) – f(A)×f(A)] / [ f(A) – f(A)×f(A) ] 

FST =    /  

FST =   

Questions 

1. Is there statistical evidence at the 0.05 level that the marker is not in HWE?

2. The reported genotype counts were observed in controls only. Would it be beneficial
to merge the control genotype counts with those from the cases to test HWE testing,
since it would increase the sample size and power for this test? Give a reason for your
answer.

3. How do you interpret this value of FST with regard to the sample (see the lecture for 
an interpretation of the value)?
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Answers 

Population Genetics (PP) 
HWE & F statistic 
From a case-control study, the following genotype counts have been observed for a SNP with 
alleles A and B:  

Cases: nobs(AA) = 159 nobs(AB) = 122 nobs(BB) = 19 
Controls: nobs(AA) = 120 nobs(AB) = 139 nob (BB) = 41 

Test this SNP for deviation from Hardy-Weinberg equilibrium, calculate the FST statistic in 
controls, test for association under a genotypic and under an allelic risk model and calculate 
the odds ratios for the SNP genotypes and alleles, respectively.  

I. Testing for deviation from Hardy-Weinberg equilibrium (HWE) in controls

1. Calculate the genotype and allele frequencies in controls:
n =  nobs(AA) + nobs(AB) + nobs(BB) = 300 
fobs(AA) =  nobs(AA) / n = 0.400 

fobs(AB) =  nobs(AB) / n = 0.463 
fobs(BB) =  nobs(BB) / n = 0.137 

f(A) =  [2×nobs(AA)+nobs(AB)] / 2n = 0.632 

f(B) =  [2×nobs(BB)+nobs(AB)] / 2n = 0.368 

2. Calculate the expected genotypic counts under the null hypothesis of HWE:
nexp(AA) =  n × [     f(A)×f(A) ] = 119.7 
nexp(AB) =  n × [ 2*f(A)×f(B) ] = 139.6 

nexp(BB) =  n × [     f(B)×f(B) ] =   40.7 

3. Arrange observed and expected genotype counts in a 2×3 table and calculate the chi-square
statistic: 

AA AB BB 

Observed (nobs) 120 139 41 

Expected (nexp) 119.7 139.6 40.7 

X2  =  [nobs(AA)- nexp(AA)]2 / nexp(AA) + [nobs(AB)- nexp(AB)]2 / nexp(AB) 
+ [nobs(BB)- nexp(BB) ]2 / nexp(BB)

=       0.00075 + 0.00258 +0.00221 

=       0.00554 
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4. Obtain the corresponding P-value from a one-df c2 distribution

Quantiles of the 1-df c2 distribution using R: 
pchisq(0.00554, df=1, ncp=0, lower.tail=F) 
[1] 0.9406673

p  = 0.94

II. Calculating the FST statistic in controls

The FST statistic can be calculated by the formula given below (introduced in the lecture on 
population genetics). Use the control frequencies calculated in Exercise 1 on HWE testing.  

FST =  [ fobs(AA) – f(A)×f(A)] / [ f(A) – f(A)×f(A) ] 
FST =      0.00010 /         0.23266  

FST =      0.00429 

Questions 

1. Is there statistical evidence that the marker is not in HWE?

No, the deviation from HWE is not statistically significant. 

2. The reported genotype counts were observed in controls only. Would it be beneficial
also to use the case genotypes for HWE testing, since it would increase the sample size
for these tests? Give the reason for your answer.

No! Cases and controls have been sampled retrospectively and separately. Mixing cases and 
controls may cause a bias in the frequency estimates since cases are very likely oversampled, 
compared to their frequency in the population (unless the disease has a very high prevalence). 
Additionally, HWE is to be expected in the case cohort only under a multiplicative risk 
model.  

HWE should always be tested separately in cases and controls. Inferences of potential 
genotyping errors by deviations from HWE should be made cautiously. For example, a 
deviation from HWE in cases might reflect not a genotyping error, but a genuine genetic 
effect. Removing that SNP because of its low HWE P-value in cases would likely reduce the 
power of the study!  

3. How do you interpret this value of FST with regard to the sample (see lecture)?

There is a slight deficit of heterozygous genotypes for the investigated marker in the control 
cohort.  
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Linkage Disequilibrium 

1.) For a 1,000 chromosomes the following haplotypes were observed. 
A1B1 _____200_________ 
A1B2 _____  50_________ 
A2B1_____350________ 
A2B2_____400________ 

a) What is the allele frequency for the A1 allele and A2 allele ___________________________.
b.) What is the allele frequency for the B1 and B2 allele_______________________________.
c.) What are the expected haplotype frequencies under linkage equilibrium

P11 = A1B1 _______________ 
P12 = A1B2 _______________ 
P21 = A2B1________________ 
P22 = A2B2________________ 

2.) Please answer the following for the above problem. 

D = ______________________ 
D’=  _____________________ 
r2 = ______________________ 

Is there statistical evidence that Marker A and B are in linkage disequilibrium__________________? 
X2= ________________    p-value=______________________________ 

Answers 

1.) For a 1,000 chromosome the following haplotypes were observed. 

A1B1 _____200____(0.2)____ 
A1B2 _____  50____(0.05)___ 
A2B1_____350____(0.35)____ 
A2B2_____400____(0.4)____ 

a) What is the allele frequency for the A1 allele and A2 allele __ A1=0.25______   __ A2 =0.75___.
b.) What is the allele frequency for the B1 and B2 allele    ___ B1=0.55____       __ B2=0.45____.
c.) What are the expected haplotype frequencies under linkage equilibrium?

P11 = A1B1 ___0.1375____________ 
P12 = A1B2 ___0.1125____________ 
P21 = A2B1____0.4125____________ 
P22 = A2B2____0.3375____________ 

2.) Please answer the following for the above problem. 
D = ____(0.4*0.2)-(0.05*0.35)=0.08-0.0175=0.0625______ 
D’=  __0.0625/0.1125=0.556___________ 
r2 = ____0.084______________ 

Is there statistical evidence that Marker A and B are in linkage disequilibrium ____yes_______? 
X2= _____84.2_________    p-value<0.00001_____________________________ 
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Exercise 

Multifactorial Analysis 1 
Analyses using PLINK 
In this exercise, a number of logistic regression analyses will be carried out to test for the SNP association with 
an affection status. This includes the adjustment for the effects of covariates and of other SNPs. Since the 
syntax for many of the commands is repetitive, please use the copy & paste functionality of your text editor and 
subsequently make the necessary changes to the copied text. 
Attention: PLINK expects each command to be in a single line! PLINK ignores arguments on subsequent lines 
after a line break. Please type each command without a line break or use a backslash (‘\’) before a line break. A 
backslash causes PLINK to ignore the line break. 

Please also answer the questions at the end of the exercise. 

The data set 

Please change the working directory as requested. You are provided with a data set on diastolic blood pressure 
and the genotypes of 20 SNP markers. The data are already in PLINK format. There are a number of files: 

• dbp.qt.*: Set of binary PLINK files with a quantitative trait 
(diastolic blood pressure) 

• dbp.*: Set of binary PLINK files with a dichotomized trait 
(affection status: elevated blood pressure yes/no) 

• dbp.age.pheno:  Covariate file containing the age of each individual

Use a text editor (notepad/Wordpad under Windows, pico/vi/nano/emacs under Linux) to inspect the
contents of these files (except for *.bed files which are binary). Make sure you understand the meaning of each 
column in the files. 
For this exercise, data cleaning will be skipped. First, please have a look to the questions sheet in the back. 
Enter the P-values in the table while proceeding with the exercise. 

I. Logistic regression on a single SNP under an allelic model
First run a simple logistic regression analysis of all SNPs in data set:
plink --bfile dbp --logistic --out logreg.add

Inspect the result output file with a text editor:
logreg.add.assoc.logistic 

CHR SNP BP A1 TEST NMISS OR STAT P 
11 rs1101 

... 
1021 1 ADD 600 0.9518 -0.4159 0.6775 

For each SNP, a single lines reports the relevant test (TEST), the number of non-missing observations (NMISS),
the odds ratio estimate (OR), the value of the test statistic (STAT) and the corresponding P-value (P). Note that
PLINK by default considers the allelic (multiplicative) model when testing for association, not the general 
genotypic one! The phrase ADD in the TEST column stands for an additive effect of the number of copies of the
less-frequent allele on the logit scale, which is equivalent to an allelic [multiplicative] risk model. Note that 
other risk models could be considered using the --genotypic, --dominant, and --recessive flags.
Also note that the risk model regards the A2 allele. This is not necessarily the 2 allele in the pedigree file, but
simply the less frequent allele! 

! 

035



CHR SNP BP A1 TEST NMISS OR SE L95 U95 STAT 
11 rs1101 

...
1021 1 ADD 600 0.9518 0.1189 0.7539 1.201 -0.4159

P 
0.6775 

The --ci flag, used with argument 0.95, causes PLINK to additionally calculate the 95% confidence interval
for the odds ratio (OR): 
plink --bfile dbp --logistic --ci 0.95 --out logreg.add.ci 

Inspect the resulting file with a text editor: 
logreg.add.ci.assoc.logistic 

The file contains additional columns, containing the standard error (SE) as well as the lower (LE95) and upper
(U95) limits of the 95% confidence interval for the OR estimate (OR).

II. Adjustment for the effects of covariates and of other SNPs
Adjustment for the effects of covariates

Statistical analyses can be confounded by external factors. If such factors are known and measured, regression 
analysis allows for adjusting for their effect by simply incorporating them into the statistical model. 
PLINK requires an extra file with the covariate values, for example the age of individuals. Use the text editor to 
inspect the covariate file dbp.age.pheno. Then run a logistic regression, assuming an allelic [multiplicative]
model for each SNP and adjusting for the potential effect of age on the affection status: 
plink --bfile dbp --logistic --covar dbp.age.pheno --out logreg.age.add 

Inspect the results file with a text editor: 
logreg.age.add.assoc.logistic 

CHR SNP BP A1 TEST NMISS OR STAT P 
11 rs1101 1021 1 ADD 600 0.9506 -0.4262 0.67
11 rs1101 

... 
1021 1 COV1 600 1.001 0.3412 0.7329 

When covariates are used in the regression model, then the results file contains additional lines for each of these 
covariates. In this example, we have tested each marker together with a covariate named COV1, so we get two
result lines per marker. The first line contains the P-value for the marker under an allelic model (marked by 
ADD in the TEST column), while the second line contains the P-value for the covariate (marked by COV1 in the
TEST column). Note that the first four columns are identical in both lines, since they relate to the same (marker- 
centered) regression model. 
Adjusting for sex is somewhat simpler, since it is the only covariate that is contained in the pedigree file (in the 
5th column). PLINK therefore only requires the --sex flag. Re-run the regression with an adjustment for sex
and inspect the resulting file with a text editor: 
plink --bfile dbp --logistic --sex --out logreg.sex.add 

logreg.sex.add.assoc.logistic 

The covariate sex is included in the same way as a covariate above. Results are given in the line marked by SEX 
in the TEST column.

Finally adjust for both covariates, sex and age, simultaneously and inspect the resulting file: 
plink --bfile dbp --logistic --sex --covar dbp.age.pheno \ 

--out logreg.sexage.add 

CHR SNP BP A1 TEST NMISS OR STAT P 
... 
11 rs1101 1021 1 ADD 600 0.9855 -0.1201 0.9044 
11 rs1101 

... 
1021 1 SEX 600 2.234 4.791 1.663e-06 
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logreg.sexage.add.assoc.logistic 

CHR SNP BP A1 TEST NMISS OR STAT P
11 rs1101 1021 1 ADD 600 0.9838 -0.1345 0.893
11 rs1101 1021 1 COV1 600 1.002 0.5076 0.6118
11 rs1101 

... 
1021 1 SEX 600 2.241 4.804 1.554e-06 

We have now tested a marker for allele-based association while adjusting for both sex and a covariate named 
COV1. We thus now have three lines of results per marker. Potential inclusion of multiple covariates for
adjustment is a great strength of the regression approach! 
Adjustment for the effects of other SNPs 
For many phenotypes, there are already established genetic risk factors. In many genetic epidemiological 
studies, one would therefore like to assess if some newly found marker association is independent of those 
established ones. This is equivalent to adjusting for the effect of the already established SNP. With PLINK this 
is achieved with the --condition flag.

Test all SNPs for phenotypic association under an (logit-) additive model in a logistic regression analysis while 
adjusting for the effect of marker rs1112: 
plink --bfile dbp --logistic --condition rs1112 \ 

--out logreg.snp1112.add 

Inspect the results file with a text editor: 
logreg.snp1112.add.assoc.logistic 

CHR SNP BP A1 TEST NMISS OR STAT P 
11 rs1101 1021 1 ADD 600 0.9607 -0.3278 0.7431
11 rs1101 

... 
1021 1 rs1112 600 2.149 5.636 1.738e-08 

Marker rs1112 is considered a covariate in the association analysis and the TEST column is correspondingly
named. The ADD line contains the P-value for the tested SNP marker, while rs1112 contains the P-value for
that SNP for which the analysis is adjusted. Note that the marker for whom the regression model is adjusted 
(here: rs1112) is always considered to act under an additive (really: multiplicative) risk model! 
Now run the same analysis, but this time adjusting for marker rs1117. Inspect the results file with a text editor: 
plink --bfile dbp --logistic --condition rs1117 \ 

--out logreg.snp1117.add 

logreg.snp1117.add.assoc.logistic 

III. Analysis of quantitative instead of dichotomized trait

Trait values are often dichotomized. For example, blood pressure values above a certain threshold could be 
declared as ‘elevated’ while those below would be considered ‘normal’. Dichotomization can result in a power 
loss, because information is discarded. In our example data set, the original trait value (diastolic blood pressure) 
had been dichotomized to case-control status using some threshold. 

The file dbp.qt.ped contains the original quantitative trait values, which are approximately normally
distributed. Run a linear regression analysis with PLINK with adjustment for the effect of sex: 
plink --bfile dbp.qt --linear --sex --out linreg.sex.add 

CHR SNP BP A1 TEST NMISS OR STAT P 
11 rs1101 1021 1 ADD 600 0.9468 -0.4501 0.6527
11 rs1101 

... 
1021 1 rs1117 600 2.226 4.865 1.142e-06 

037



Inspect the results file: linreg.sex.add.assoc.linear 
 

CHR SNP BP A1 TEST NMISS BETA STAT P 
11 rs1101 1021 1 ADD 600 -0.05063 -0.1401 0.8887 
11 rs1101 

... 
1021 1 SEX 600 3.02 6.05 2.553e-09 

Since we perform a linear regression analysis, PLINK now reports the regression coefficient (slope) b, not an 
odds ratio. Also, since we adjust for the covariate sex in this example, we get two result lines per marker. The 
allelic model in a linear regression analysis is equivalent to an additive model. 

 
Questions 

1. Please enter the P-values for marker rs1112 from the analyses in the table below. 
 

 Type of analysis P-value 

I. Single marker, case-control, allelic model  

II. Single marker, case-control, adjustment for age  

 Single marker, case-control, adjustment for sex  

 Single marker, case-control, adjustment for sex & age  

 Single marker, case-control, adjustment for marker rs1117  

III. Single marker, quantitative trait, adjustment for sex  

 
2. Please give the odds ratio (OR) and its 95% confidence interval for marker rs1112 in the unadjusted 
case-control analysis. 

OR =   

95% CI =   –   
 

3. The P-value for the quantitative-trait analysis is much smaller than for the case-control analysis. Do 
you have an explanation? 

 
 
 

Analyses using R 
In this exercise, a number of logistic and linear regression analyses will be carried out to test for the association 
of a number of SNPs with an affection status and with a quantitative trait, respectively. This includes the use of 
different tests, the calculation of odds ratios (OR), and the consideration of different genetic models. Further 
objectives are the adjustment for the effects of covariates and the testing of a SNP for association given the 
effect of another SNP. 
The data set is the same as with the PLINK exercise. For convenience, it has already been converted to R format 
and stored in the file dbp.R. 

Since the syntax for many of the commands is highly repetitive and in order to save time, please use the copy & 
paste functionality of your text editor and subsequently make the necessary changes to the copied text. 

Please also answer the questions at the end of the exercise. 
Data set import 

Start R and change the working directory as requested. Load the data set for the exercise and get an overview 
which objects have been loaded into the R working memory: 038



load("dbp.R") 
ls() 
dbp[1:5,] 
summary(dbp) 

I. Logistic regression on a single SNP genotype
Logistic regression models in R are implemented through the glm function. This function requires a model
formulation. This includes a specification of what is regressed on what (e.g. affection ~ rs1112), the
error family, the link function, and the data set to be used. 
Run a logistic regression analysis of the affection status regressed on the genotype of marker rs1112, using the 
data in the data frame dbp. Assign the results from the regression analysis to the new object result.snp12:
result.snp12 = glm (affection ~ rs1112, family=binomial("logit"), data=dbp) 

Print the results of the regression analysis with the following command: 
print (result.snp12) 

The marker variable rs1112 is of data type factor (nominal). Thus, we have considered a general genotypic
model. R has therefore created two dummy variables, named rs11123 and rs11124, which separately
describe the effects of the genotypes coded as 3 (heterozygous 1/2) and 4 (homozygous 2/2), respectively. The
effects of these two genotypes are compared to the baseline genotype 2 (homozygous 1/1).

The results object is part of some special R classes, namely lm and glm (same names as the functions).
Membership in these classes causes R to use dedicated, specialized functions for printing, analyzing and other 
tasks with such objects: 
print ( class (result.snp12) ) 
print ( summary(result.snp12) ) 

The coefficients table lists the estimated values for the regression coefficients  as well as their standard errors. 
It further contains the P-values as obtained from a Wald test. 

To carry out a likelihood-ratio test (LRT), first calculate the ξ2 statistic and subsequently obtain the 
corresponding P-value. Note that we have a ξ2 distribution with two degrees of freedom, since we test two 
dummy variables simultaneously against the null model: 
dev.geno = anova (result.snp12, test="Chi") 
lrt.pvalue = pchisq(dev.geno[dim(dev.geno)[1],"Deviance"], 

df=2, ncp=0, FALSE) 
print ( lrt.pvalue ) 

We can also access parts of the results object with indexes. For example, we can extract the regression 
coefficients and calculate the odds ratios for the genotypes (reminder from the lecture: OR=e) as well as their 
confidence intervals: 
print ( summary(result.snp12)$coefficients ) 
snp.beta = summary(result.snp12)$coefficients[2:3,1] 
print ( snp.beta ) 
print ( exp(snp.beta) ) 

ci = confint (result.snp12) 
print (ci) 
print ( exp(ci) ) 

So far, the marker data are of type factor (nominal) and we have considered a general genotypic model. For
an allelic (multiplicative) model, the data type has to be changed to numeric. This way, the genotype is
recoded from nominal 2/3/4 (for 11/12/22) to numeric 0/1/2 (for the number of copies of the “2” allele with 
each sample): 
snp.data = dbp[,c("affection", "rs1112")] 
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summary(snp.data) 

snp.data[,"rs1112"] <- as.numeric(snp.data[,"rs1112"]) - 1 
summary(snp.data) 

Run the logistic regression analysis again, this time assuming an allelic model: 
result.all = glm (affection ~ rs1112, family=binomial("logit"), 

data=snp.data) 
dev.all = anova (result.all, test="Chi") 
summary(result.all) 
print(dev.all) 

II. Adjustment for the effects of covariates and of other SNPs
Analyses can be confounded by external factors. If such factors are known and measured, regression analysis 
allows for adjusting for their effect by simply incorporating them into the statistical model. 

First, create an excerpt from the full data set. For all subsequent analyses, we will consider an allelic 
(multiplicative) model for the markers: 
snp.data = dbp[,c("affection", "trait","sex", "age", "rs1112", "rs1117")] 
summary(snp.data) 

snp.data[,"rs1112"] <- as.numeric(snp.data[,"rs1112"]) - 1 
snp.data[,"rs1117"] <- as.numeric(snp.data[,"rs1117"]) - 1 

Adjustment for the effects of covariates 

Does sex have an effect on the affection status and is the effect of the SNP independent of such a potential 
influence? To answer this question, re-run the regression analysis for SNP rs1112, this time with an adjustment 
for sex: 
result.adj = glm (affection ~ sex + rs1112 , family=binomial("logit"), 

data=snp.data) 
summary(result.adj) 

Age is also often suspected to influence the trait of interest. Therefore, re-run the analysis with an adjusting for 
sample age: 
result.adj = glm (affection ~ age + rs1112 , family=binomial("logit"), 

data=snp.data) 
summary(result.adj) 

Finally, adjust for both covariates, sex and age, simultaneously in the regression analysis: 
result.adj = glm (affection ~ sex + age + rs1112, family=binomial("logit"), 

data=snp.data) 
summary(result.adj) 

Adjustment for the effects of other SNPs 

For many diseases and phenotypes, there are already established genetic factors. In many genetic 
epidemiological studies, one would therefore like to assess if some newly found association is independent of 
such established ones. This is equivalent to adjusting for the effect of the already established SNP. 

Run a logistic regression analysis for each of the two SNPs rs1112 and rs1117, while adjusting for the
effect of the other: 
result.adj = glm (affection ~ rs1117 + rs1112, family=binomial("logit"), 

data=snp.data) 
summary(result.adj) 
anova (result.adj, test="Chi") 
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result.adj = glm (affection ~ rs1112 + rs1117, family=binomial("logit"), 
data=snp.data) 

summary(result.adj) 
anova (result.adj, test="Chi") 

Note that the P-values from a Wald test do not differ for the different orders of markers, but that the P-values 
from a likelihood-ratio test (obtained from the anova function) do!

III. Analysis of quantitative instead of dichotomized trait

Dichotomization of quantitative trait values can result in a power loss, because information is discarded. In our 
example data set, the original trait value (diastolic blood pressure) had been dichotomized to case-control status: 
All individuals with a value greater than a certain threshold were defined as having high blood pressure 
(“cases”), whereas the others were considered to be controls with normal blood pressure. 

The column trait in the data frame dbp contains the original quantitative trait values. Run two linear
regression analyses, one without and one with adjust for the effect of sex: 
result.adj = lm (trait ~ rs1112 , data=snp.data) 
summary(result.adj) 

result.adj = lm (trait ~ sex + rs1112, data=snp.data) 
summary(result.adj) 

Quitting 
Quit the R session by calling the quit function: 
q() 

Questions 

1. Please enter the P-values for marker rs1112 from the analyses in the table below.

Type of Analysis P-value

I. Single marker, case-control, genotypic model Wald test: 
het 1/2: 
hom 2/2: 

LRT: 

Single marker, case-control, allelic model Wald: 

LRT: 

II. Single marker, case-control, adjustment for age 

Single marker, case-control, adjustment for sex 

Single marker, case-control, adjustment for sex & age 

Single marker, case-control, adjustment for marker rs1117 Wald: 

LRT: 

III. Single marker, quantitative trait, adjustment for sex 
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2. Please give the odds ratio (OR) and its 95% confidence interval for marker rs1112 in the unadjusted,
genotype-based case-control analysis.

ORhet(1/2) = 95% CI = – 
ORhom(2/2) = 95% CI = – 

3. The P-values obtained from R slightly differ from those obtained from PLINK. Do you have an
explanation?

4. In the combined analysis of rs1112 and rs1117 (section II., no interaction), the LRT-based P-values
strongly depended on the order of the markers in the regression model (affection ~ rs1117+rs1112:
prs1117=5.547e-07 / prs1112=1.193e-03; affection ~ rs1112+rs1117: prs1112=5.438e-09 / prs1117=0.21). Do you
have an explanation?

Answers 
Multifactorial Analysis 1 

Analyses using PLINK 

I. Logistic regression on a single SNP under an allelic model
plink --bfile dbp --logistic --out logreg.add

logreg.add.assoc.logistic 

Each line contains the result for the marker whose name is given in column ‘SNP’. The ‘TEST’ column 
contains an ‘ADD’ for an ‘additive’, or more precisely, ‘allelic’ model. Under a logistic scale, the allelic model 
is equivalent to a multiplicative model. Column ‘NMISS’ contains the number of observations used for the test, 
while ‘OR’ and ‘P’ contain the odds ratio and the nominal P-value. 
Note that the A1 column contains the minor, or risk, allele. The considered genetic risk model and the reported 
odds ratio are with regard to this allele! For example, marker rs1112 has been tested under an allele-based 
model (‘ADD’) for minor allele ‘2’ (p=1.7×10-8). In the context of the used logistic regression analysis, this 
corresponds to a multiplicative risk model for this allele. Heterozygous carriers of the ‘2’ risk allele have an 
increased risk of ψ1=2.15 (approximated by the odds ratio) compared to the baseline genotype (homozygous for 
the major allele), while homozygous carriers of ‘2’ have an increased risk of ψ2=4.62 (multiplicative risk 
model!). 

plink --bfile dbp --logistic --ci 0.95 --out logreg.add.ci 

CHR SNP 
... 

BP A1 TEST NMISS OR STAT P 

11 rs1111 1245388 2 ADD 600 1.041 0.3465 0.729
11 rs1112 1245604 2 ADD 600 2.149 5.642 1.683e-08
11 rs1113 

... 
1246723 2 ADD 600 1.654 3.744 0.0001809 

11 rs1117 
... 

1258119 2 ADD 600 2.224 4.864 1.151e-06 
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logreg.add.ci.assoc.logistic 
 

CHR SNP BP A1 TEST NMISS OR SE L95 U95 STAT P 
... 
11 

 
rs1111 

 
1245388 

 
2 
 
ADD 

 
600 

 
1.041 

 
0.1155 

 
0.8299 

 
1.305 

 
0.3465 

 
0.729 

11 rs1112 1245604 2 ADD 600 2.149 0.1356 1.648 2.804 5.642 1.683e-08 
11 rs1113 1246723 2 ADD 600 1.654 0.1344 1.271 2.153 3.744 0.0001809 

... 
11 

 
rs1117 

 
1258119 

 
2 
 
ADD 

 
600 

 
2.224 

 
0.1643 

 
1.612 

 
3.069 

 
4.864 

 
1.151e-06 

...            

The two additional columns ‘L95’ and ‘U95’ contain the lower and upper limit of the 95% confidence interval. 
 

II. Adjustment for the effects of covariates and of other SNPs 
Adjustment for the effects of covariates 
plink --bfile dbp --logistic --covar dbp.age.pheno --out logreg.age.add 

logreg.age.add.assoc.logistic 

 
 
 
 

When covariates are used in the regression model, then the results file contains additional lines for each of these 
covariates. In this example, we have tested each marker together with a covariate named COV1, so we get two 
result lines per marker. The first line contains the P-value for the marker under an allelic model (p=1.68−10-8), 
while the second line contains the P-value for the covariate (p=0.74). 

 
plink --bfile dbp --logistic --sex --out logreg.sex.add 

logreg.sex.add.assoc.logistic 

 
 
 
 

The covariate sex is included in the same way as a covariate above. Results are given in the line marked by SEX 
in the TEST column. 
plink --bfile dbp --logistic --sex --covar dbp.age.pheno \ 

--out logreg.sexage.add 

logreg.sexage.add.assoc.logistic 

 
 
 
 
 

We have now tested a marker for allele-based association while adjusting for both sex and a covariate named 
COV1. We thus now have three lines of results per marker. For example for marker rs1112, sex shows a 
significant association with the phenotype (p=2.21−10-6), but not the covariate (p=0.61). After adjustment for 
these covariates, this marker still shows a significant association (p=2.48−10-8). 

Adjustment for the effects of other SNPs 
plink --bfile dbp --logistic --condition rs1112 \ 

CHR SNP BP A1 TEST NMISS OR STAT P 
...      
11 rs1112 1245604 2 ADD 600 2.149 5.642 1.681e-08 
11 rs1112 1245604 2 

... 
COV1 600 1.001 0.3289 0.7423 

 

CHR SNP BP A1 TEST NMISS OR STAT P 
... 
11 rs1112 1245604 2 

 
ADD 

 
600 

 
2.163 

 
5.574 

 
2.495e-08 

11 rs1112 1245604 2 
... 

SEX 600 2.257 4.719 2.373e-06 

 

CHR 
... 

SNP BP A1 TEST NMISS OR STAT P 

11 rs1112 1245604 2 ADD 600 2.163 5.574 2.485e-08 
11 rs1112 1245604 2 COV1 600 1.002 0.5076 0.6117 
11 
... 

rs1112 1245604 2 SEX 600 2.265 4.733 2.21e-06 
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--out logreg.snp1112.add 

logreg.snp1112.add.assoc.logistic 

Here, we have tested for a phenotypic association of marker rs1117 and adjusted for the covariate marker 
rs1112. After this adjustment, the marker rs1117 does not show a signicant association (p=0.21). 

plink --bfile dbp --logistic --condition rs1117 \ 
--out logreg.snp1117.add 

logreg.snp1117.add.assoc.logistic 

Here, we have tested for a phenotypic association of marker rs1112 and adjusted for the covariate marker 
rs1117. Marker rs1112 is significantly associated (p=0.0014) after adjustment for effects of marker rs1117. 

III. Analysis of quantitative instead of dichotomized trait
plink --bfile dbp.qt --linear --sex --out linreg.sex.add

linreg.sex.add.assoc.linear 

Since we adjust for the covariate sex, we get two result lines per marker. Marker rs1112 shows a highly 
significant association with the phenotype. Since we perform a linear analysis, PLINK now reports the 
regression coefficient , not an odds ratio. The allelic model in a linear regression analysis is equivalent to an 
additive model. 

Questions 

1. Please enter the P-values for marker rs1112 from the analyses in the table below.

Type of analysis P-value

I. Single marker, case-control, allelic model 1.683e-08 

II. Single marker, case-control, adjustment for age 1.681e-08 

Single marker, case-control, adjustment for sex 2.495e-08 

Single marker, case-control, adjustment for sex & age 2.485e-08 

Single marker, case-control, adjustment for marker rs1117 0.00144 

III. Single marker, quantitative trait, adjustment for sex 2.406e-14 

CHR SNP BP A1 TEST NMISS OR STAT P 
... 
11 rs1117 1258119 2 ADD 600 1.33 1.242 0.2143 
11 rs1117 

... 
1258119 2 rs1112 600 1.822 3.186 0.00144 

CHR SNP 
... 

BP A1 TEST NMISS OR STAT P 

11 rs1112 1245604 2 ADD 600 1.822 3.186 0.00144
11 rs1112 

... 
1245604 2 rs1117 600 1.33 1.242 0.2143 

CHR SNP BP A1 TEST NMISS BETA STAT P 
... 
11 rs1112 1245604 2 ADD 600 2.868 7.82 2.406e-14 
11 rs1112 

... 
1245604 2 SEX 600 2.882 6.071 2.268e-09 
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2. Please give the odds ratio (OR) and its 95% confidence interval for marker rs1112 in the unadjusted
case-control analysis.

OR = 2.149 

95% CI = 1.648 – 2.804 

3. The P-value for the quantitative-trait analysis is much smaller than for the case-control analysis. Do
you have an explanation?
Dichotomizing quantitative values can lead to a considerable information loss. This has been the case here. The 
new binary trait contains the information that a value is below or above a certain threshold, but it does not 
quantify how much greater or smaller than this threshold this value is, i.e. the information on the distance of the 
value from this threshold is lost. If such information can used in the statistical analysis, methods can be more 
powerful and can lead to smaller P-values. 

Analyses using R 

I. Logistic regression on a single SNP genotype
# --- Regression + Wald --- # 
result.snp12 = glm (affection ~ rs1112, family=binomial("logit"), data=dbp) 
print (result.snp12) 
Call: glm(formula = affection ~ rs1112, family = binomial("logit"), data = dbp) 
Coefficients: 
(Intercept) rs11123 rs11124 

-0.4449 0.7582 1.5435 

Degrees of Freedom: 599 Total (i.e. Null); 597 Residual 
Null Deviance: 831.8 
Residual Deviance: 797.7 AIC: 803.7 

print ( class (result.snp12) ) 
[1] "glm" "lm"

print ( summary(result.snp12) ) 
Call: 
glm(formula = affection ~ rs1112, family = binomial("logit"), 

data = dbp) 

Deviance Residuals: 
Min 1Q Median 3Q Max 

-1.6651 -0.9952 -0.1183 1.0476 1.3712

Coefficients:
Estimate Std. Error z value Pr(>|z|) 

(Intercept) -0.4449 0.1189 -3.741 0.000183 *** 
rs11123 0.7582 0.1746 4.343 1.40e-05 *** 
rs11124 1.5435 0.3416 4.518 6.24e-06 *** 
--- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 831.78 on 599 degrees of freedom 
Residual deviance: 797.75 on 597 degrees of freedom 
AIC: 803.75 

Number of Fisher Scoring iterations: 4 
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The SNP genotype of marker rs1112 has been stored as factor type in R. Since there is no distance defined
between categories, R has automatically defined two dummy variables, namely rs11123 and rs11124, to code 
for the presence or absence of the ‘3’ and of the ‘4’ genotypes, respectively. The dummy variable assumes the 
value 1 if the respective genotype is present in the particular individual and 0 otherwise. If both ‘3’ and ‘4’ are 
absent, then the baseline genotype ‘2’ is assumed to be present. Using a Walt test, each of the dummy variables 
has been tested separately for significant association with the phenotype (affection status). Both variables are 
significantly associated with the phenotype. 
# --- Likelihood-ratio test --- # 
dev.geno = anova (result.snp12, test="Chi") 
lrt.pvalue = pchisq(dev.geno[dim(dev.geno)[1],"Deviance"], 

df=2, ncp=0, FALSE) 
print ( lrt.pvalue ) 
[1] 4.077856e-08

Often, we are not interested in the effect of a particular genotype, e.g. ‘3’ or ‘4’, but in the overall significance 
of a marker. To test this, we have to compare the null model (without both dummy variables) against the 
alternative model (with both dummy variables) using a likelihood-ratio test. Because the two models differ in 
two parameters, we have to compare the deviance against a ξ2 distribution with two parameters. 
# --- OR + CI --- # 
print ( summary(result.snp12)$coefficients ) 

Estimate Std. Error z value Pr(>|z|) 
(Intercept) -0.4449068 0.1189351 -3.740754 1.834691e-04 
rs11123 0.7582015 0.1745740 4.343154 1.404519e-05 
rs11124 1.5435191 0.3416277 4.518132 6.238747e-06 

# Coefficients (betas) for the both dummy variables # 
snp.beta = summary(result.snp12)$coefficients[2:3,1] 
print ( snp.beta ) 

rs11123 rs11124 
0.7582015 1.5435191 
# Odds ratios (OR) for both dummy variables [OR=exp(beta)] # 
print ( exp(snp.beta) ) 
rs11123 rs11124 
2.134434 4.681034 

# 95% confidence interval for betas # 
ci = confint (result.snp12) 
Waiting for profiling to be done... 
print (ci) 

2.5 % 97.5 %
(Intercept) -0.6802726 -0.2135169
rs11123 0.4176220 1.1023701
rs11124 0.8984800 2.2475097

# 95% confidence intervals for OR # 
print ( exp(ci) ) 

2.5 % 97.5 % 
(Intercept) 0.5064789 0.8077385 
rs11123 1.5183466 3.0112947 
rs11124 2.4558674 9.4641382 
# --- Allelic model --- # 
snp.data = dbp[,c("affection", "rs1112")] 
summary(snp.data) 
affection rs1112 
0:300 2:297 
1:300 3:251 

4: 52 
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snp.data[,"rs1112"] <- as.numeric(snp.data[,"rs1112"]) - 1 
summary(snp.data) 
affection   rs1112 
0:300   Min.  :0.0000 
1:300   1st Qu.:0.0000 

Median :1.0000 
Mean :0.5917 
3rd Qu.:1.0000 
Max.  :2.0000 

Because we have coded the marker genotype as numeric, another summary than for factor data is 
provided. 

 
# --- Allelic model for allele 2 of marker rs1112 --- # 
result.all = glm (affection ~ rs1112, family=binomial("logit"), 

data=snp.data) 
dev.all = anova (result.all, test="Chi") 
summary(result.all) 
Call: 
glm(formula = affection ~ rs1112, family = binomial("logit"), 

data = snp.data) 
 

Deviance Residuals: 
Min 1Q Median 3Q Max 

-1.6582 -0.9944 -0.1154 1.0456 1.3722 
 

Coefficients: 
Estimate Std. Error z value Pr(>|z|) 

(Intercept) -0.4470 0.1142 -3.913 9.10e-05 *** 
rs1112 0.7652 0.1356 5.642 1.68e-08 *** 
--- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 831.78 on 599 degrees of freedom 
Residual deviance: 797.75 on 598 degrees of freedom 
AIC: 801.75 

 
Number of Fisher Scoring iterations: 4 

 
print(dev.all) 
Analysis of Deviance Table 

 
Model: binomial, link: logit 
Response: affection 
Terms added sequentially (first to last) 

 
Df Deviance Resid. Df Resid. Dev P(>|Chi|) 

NULL   599 831.78 
rs1112 1 34.03 598 797.75 5.438e-09 

 
Due to the numeric coding of the genotype, there is now an interpretable distance between 0, 1 and 2 copies of 
the second allele. This allele count can readily enter the regression model, without any need for creating dummy 
variables. With large-enough sample sizes, the P-values from the Wald test and from the likelihood-ratio test are 
very similar. 
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II. Adjustment for the effects of covariates and of other SNPs 
 

# --- Data conversion for all subsequent analyses --- # 
snp.data = dbp[,c("affection", "trait","sex", "age", "rs1112", "rs1117")] 
summary(snp.data) 
affection trait sex age rs1112 rs1117 
0:300 Min. : 60.50 1:329 Min. :18.00 2:297 2:396 
1:300 1st Qu.: 77.44 2:271 1st Qu.:38.00 3:251 3:190 

 Median : 82.00  Median :55.00 4: 52 4: 14 
 Mean : 81.85  Mean :55.49   
 3rd Qu.: 86.09  3rd Qu.:74.00   

Max. :101.49 Max. :90.00 
 

snp.data[,"rs1112"] <- as.numeric(snp.data[,"rs1112"]) - 1 
snp.data[,"rs1117"] <- as.numeric(snp.data[,"rs1117"]) - 1 

 
For the subsequent analysis, we convert the marker genotypes to numeric coding, i.e. we will consider an allele- 
based model. 

Adjustment for the effects of covariates 
 

# Adjustment for sex # 
result.adj = glm (affection ~ sex + rs1112 , family=binomial("logit"), 

data=snp.data) 
summary(result.adj) 
Call: 
glm(formula = affection ~ sex + rs1112, family = binomial("logit"), 

data = snp.data) 
 

Deviance Residuals: 
Min 1Q Median 3Q Max 

-1.82645 -1.12415 -0.09007 1.21323 1.57462 
 

Coefficients: 
Estimate Std. Error z value Pr(>|z|) 

(Intercept) -0.08386 0.13730 -0.611 0.541 
sex2 -0.81412 0.17253 -4.719 2.37e-06 *** 
rs1112 0.77139 0.13840 5.574 2.49e-08 *** 
--- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 831.78 on 599 degrees of freedom 
Residual deviance: 774.98 on 597 degrees of freedom 
AIC: 780.98 

 
Number of Fisher Scoring iterations: 4 

 
Compared to males, females have a significantly decreased risk (p=2.4×10-6; OR=e-0.814=0.44) of becoming 
affected. The sex-adjusted P-value for marker rs1112 is highly significant (p=2.5×10-8), which causes an 
increase in risk of e0.771=2.16 for heterozygous carriers and of 2.162=4.67 for homozygous carriers of the risk 
allele (allele-based, i.e. multiplicative risk model!). 
# Adjustment for age # 
result.adj = glm (affection ~ age + rs1112 , family=binomial("logit"), 

data=snp.data) 
summary(result.adj) 
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Call: 
glm(formula = affection ~ age + rs1112, family = binomial("logit"), 

data = snp.data) 
 

Deviance Residuals: 
Min 1Q Median 3Q Max 

-1.6776 -1.0066 -0.1132 1.0550 1.3937 
 

Coefficients: 
Estimate Std. Error z value Pr(>|z|) 

(Intercept) -0.520422 0.250956 -2.074 0.0381 * 
age 0.001322 0.004020 0.329 0.7423 
rs1112 0.765189 0.135624 5.642 1.68e-08 *** 
--- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 831.78 on 599 degrees of freedom 
Residual deviance: 797.64 on 597 degrees of freedom 
AIC: 803.64 

 
Number of Fisher Scoring iterations: 4 

 
# Adjustment for sex and age # 
result.adj = glm (affection ~ sex + age + rs1112, family=binomial("logit"), 

data=snp.data) 
summary(result.adj) 
Call: 
glm(formula = affection ~ sex + age + rs1112, family = binomial("logit"), 

data = snp.data) 
 

Deviance Residuals: 
Min 1Q Median 3Q Max 

-1.84985 -1.12493 -0.08714 1.19367 1.60989 
 

Coefficients: 
Estimate Std. Error z value Pr(>|z|) 

(Intercept) -0.198133 0.263732 -0.751 0.452 
sex2 -0.817603 0.172736 -4.733 2.21e-06 *** 
age 0.002084 0.004105 0.508 0.612 
rs1112 0.771546 0.138411 5.574 2.48e-08 *** 
--- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 831.78 on 599 degrees of freedom 
Residual deviance: 774.72 
AIC: 782.72 

on 596 degrees of freedom 

 
Number of Fisher Scoring iterations: 4 

Age has no significant impact on the phenotype, while sex does. Marker rs1112 is highly significantly 
associated with affection status (p=2.5×10-8) after adjusting for the effects of the covariates sex and age. 
Adjustment for the effects of other SNPs 
# Association analysis of rs1112, adjusted for the effects of rs1117 # 
result.adj = glm (affection ~ rs1117 + rs1112, family=binomial("logit"), 

data=snp.data) 
summary(result.adj) 
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Call: 
glm(formula = affection ~ rs1117 + rs1112, family = binomial("logit"), 

data = snp.data) 
 

Deviance Residuals: 
Min 1Q Median 3Q Max 

-1.7636 -0.9923 -0.1518 1.1154 1.3745 
 

Coefficients: 
Estimate Std. Error z value Pr(>|z|) 

(Intercept) -0.4523 0.1144 -3.955 7.66e-05 *** 
rs1117 0.2853 0.2297 1.242 0.21431  
rs1112 
--- 

0.5999 0.1883 3.186 0.00144 ** 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 831.78 on 599 degrees of freedom 
Residual deviance: 796.21 on 597 degrees of freedom 
AIC: 802.21 

 
Number of Fisher Scoring iterations: 4 

 
anova (result.adj, test="Chi") 
Analysis of Deviance Table 

 
Model: binomial, link: logit 
Response: affection 
Terms added sequentially (first to last) 

 
Df Deviance Resid. Df Resid. Dev P(>|Chi|) 

NULL   599 831.78 
rs1117 1 25.06 598 806.71 5.547e-07 
rs1112 1 10.50 597 796.21 1.193e-03 

 
The Wald test compares the model with the predictor (here: rs1117) against the model without it; marker rs1112 
is included in both models. The ANOVA sequence procedure first applied a likelihood-ratio test for the null 
model (no predictors) against the model that only includes rs1117 (p=5.5×10-7) and subsequently compares the 
latter model against the one that includes rs1117 and rs1112 (p=1.2×10-3). Thus, it first assesses the contribution 
of rs1117 and subsequently the additional contribution of rs1112. 

 
# Association analysis of rs1117, adjusted for the effects of rs1112 # 
result.adj = glm (affection ~ rs1112 + rs1117, family=binomial("logit"), 

data=snp.data) 
summary(result.adj) 
Call: 
glm(formula = affection ~ rs1112 + rs1117, family = binomial("logit"), 

data = snp.data) 
 

Deviance Residuals: 
Min 1Q Median 3Q Max 

-1.7636 -0.9923 -0.1518 1.1154 1.3745 
 

Coefficients: 
Estimate Std. Error z value Pr(>|z|) 

(Intercept) -0.4523 0.1144 -3.955 7.66e-05 *** 
rs1112 0.5999 0.1883 3.186 0.00144 ** 
rs1117 0.2853 0.2297 1.242 0.21431 
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--- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 831.78 on 599 degrees of freedom 
Residual deviance: 796.21 on 597 degrees of freedom 
AIC: 802.21 

 
Number of Fisher Scoring iterations: 4 

 
anova (result.adj, test="Chi") 
Analysis of Deviance Table 

 
Model: binomial, link: logit 
Response: affection 
Terms added sequentially (first to last) 

 
Df Deviance Resid. Df Resid. Dev P(>|Chi|) 

NULL   599 831.78 
rs1112 1 34.03 598 797.75 5.438e-09 
rs1117 1 1.54 597 796.21 0.21 

 
The Wald test again compares the model with the predictor (here: rs1117) against the model without it; marker 
rs1112 is included in both models. Results are therefore the identical for the models affection ~ rs1117 
+ rs1112 (see above) and affection ~ rs1112 + rs1117. However, the ANOVA sequence 
procedure (using a likelihood-ratio test) now first compares model affection ~ constant (null model) 
against affection ~ rs1112 and only includes rs1117: affection ~ rs1112 + rs1117. Marker 
rs1112 makes a significant contribution (p=5.4×10-9). On top of this, marker rs1117 does not contain any new 
information and does not provide a significant additional contribution (p=0.2). 

The explanation for this observation is that both markers, rs1112 and rs1117, are in linkage disequilibrium with 
each other and also with the causal genetic variant, but that marker rs1112 shows the higher allelic correlation 
with that variant. If marker rs1117 is first included in the regression model, then marker rs1112 can still provide 
some additional association information. However, if marker rs1112 is first included, then marker rs1117 has 
nothing to offer and will be insignificant. 

 
III. Analysis of quantitative instead of dichotomized trait 

 
# --- Single-marker analysis with *linear* model --- # 
result.adj = lm (trait ~ rs1112 , data=snp.data) 
summary(result.adj) 
Call: 
lm(formula = trait ~ rs1112, data = snp.data) 
Residuals: 

Min 1Q Median 3Q Max 
-22.5556 -3.9106 0.2194 4.0144 15.4809 
Coefficients: 

Estimate Std. Error t value Pr(>|t|) 
(Intercept) 80.1021 0.3301 242.680 < 2e-16 *** 
rs1112 2.9535 0.3774 7.826 2.29e-14 *** 
--- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
Residual standard error: 5.954 on 598 degrees of freedom 
Multiple R-squared: 0.09291,Adjusted R-squared: 0.09139 
F-statistic: 61.25 on 1 and 598 DF, p-value: 2.292e-14 
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The genotype of marker rs1112 has been coded as numeric; an allele-based test has therefore been performed. 
In a linear regression model, this corresponds to an additive risk model. Marker rs1112 is highly associated with 
the quantitative trait (Wald test: p=2.3×10-14). The linear regression model is able to explain about 9% of the 
observed variance in the quantitative trait (R2=0.093). 

 
# --- Additional adjustment for sex --- # 
result.adj = lm (trait ~ sex + rs1112, data=snp.data) 
summary(result.adj) 
Call: 
lm(formula = trait ~ sex + rs1112, data = snp.data) 

 
Residuals: 

Min 1Q Median 3Q Max 
-20.9404 -3.6272 0.2234 3.7815 16.3480 
Coefficients: 

Estimate Std. Error t value Pr(>|t|) 
(Intercept) 81.4542 0.3904 208.654 < 2e-16 *** 
sex2 -2.8823 0.4748 -6.071 2.27e-09 *** 
rs1112 2.8685 0.3668 7.820 2.41e-14 *** 
--- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Residual standard error: 5.784 on 597 degrees of freedom 
Multiple R-squared: 0.1456,Adjusted R-squared: 0.1428 
F-statistic: 50.89 on 2 and 597 DF, p-value: < 2.2e-16 

Marker rs1112 is highly associated with the quantitative trait after adjusting for the effect of sex (Wald test: 
p=2.4×10-14; likelihood-ratio test: p<2.2×10-16). The linear regression model is now able to explain more than 
14% of the observed trait variance, i.e. inclusion of sex provides a better model fit to the sample data. 

 
Questions 

1. Please enter the P-values for marker rs1112 from the analyses in the table below. 
 

 Type of Analysis P-value 

I. Single marker, case-control, genotypic model Wald test: 
het 1/2: 1.40e-05 
hom 2/2: 6.24e-06 

LRT: 4.077856e-08 
 Single marker, case-control, allelic model Wald: 1.68e-08 

LRT: 5.438e-09 

II. Single marker, case-control, adjustment for age 1.68e-08 
 Single marker, case-control, adjustment for sex 2.49e-08 
 Single marker, case-control, adjustment for sex & age 2.48e-08 
 Single marker, case-control, adjustment for marker rs1117 Wald: 0.00144 

LRT: 1.193e-03 

III. Single marker, quantitative trait, adjustment for sex 2.29e-14 
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2. Please give the odds ratio (OR) and its 95% confidence interval for marker rs1112 in the unadjusted,
genotype-based case-control analysis.

ORhet(1/2) = 2.134434 95% CI = 1.5183466 – 3.0112947 
ORhom(2/2) = 4.681034 95% CI = 2.4558674 – 9.4641382 

3. The P-values obtained from R slightly differ from those obtained from PLINK. Do you have an
explanation?

PLINK and R can slightly differ in the numerical implementation of the same statistical tests. However, the 
resulting differences are minor. 

4. In the combined analysis of rs1112 and rs1117 (section II., no interaction), the LRT-based P-values
strongly depended on the order of the markers in the regression model (affection ~ 
rs1117+rs1112: prs1117=5.547e-07 / prs1112=1.193e-03; affection ~ rs1112+rs1117:
prs1112=5.438e-09 / prs1117=0.21). Do you have an explanation? 

Both markers are correlated, i.e. they show allelic association (LD), and represent the same phenotypic 
association signal at the locus (remember that association analysis usually pursues an indirect approach). One of 
the SNPs, namely rs1112, is more strongly correlated with the causative variant than rs1117. The likelihood- 
ratio test (LRT) compares the following models: affection~SNP1 vs. affection~SNP1+SNP2. If the
marker rs1117 is included in the model first as SNP1, it already contains some but not all information on the
phenotypic association at the locus. Inclusion of rs1112 as SNP2 still contributes significant additional
information. However, if marker rs1112 is included first as SNP1, it already contains all information available
from the data set on the association of the locus. In this case, inclusion of marker rs1117 as SNP2 cannot
contribute any further information and is, thus, tested as being insignificant. 
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Genome-Wide Association Exercise 
Association Analysis Controlling for Population Substructure 

Copyrighted © 2022 Merry-Lynn N. McDonald, Isabelle Schrauwen & Suzanne M. Leal 

1. Population Stratification and Association Testing

The dataset from part I of this exercise which you performed data quality control (QC) on was 
obtained from HapMap Phase III data. It contains CEU founders (Caucasians from Utah), MEX 
founders (Mexicans from Los Angeles) and TSI (Tuscans from Italy). The CEU pedigree identifiers 
begin with only numbers e.g., 1347, the MEX pedigree identifies all start with M e.g., M017 and the 
TSI pedigree identifiers all start with NA e.g., NA0217. Before we start testing for association, we 
want to know if there are outliers. Even after removing the outliers when association analysis is 
performed population substructure and admixture may need to be controlled. If not, we risk observing 
an association, which is due to a difference in genotype frequencies in cases and controls, because of 
population substructure/admixture and not because of linkage disequilibrium (LD) between 
tagSNP(s) and the functional variant(s). We are going to use multidimensional scaling (MDS) and 
principal components analysis (PCA) within the PLINK software to generate 10 components. 
Disclaimer: You usually should not analyze data from European-Americans, Mexican- 
Americans and Italians together even if you control for population stratification. They can be 
analyzed separately, and the data combined using meta-analysis. 

Note: For a GWAS study instead of this toy study, you will have a denser set of markers of which 
some will be in LD. You should first prune your SNPs to obtain a subset in linkage equilibrium/weak 
LD (R2<0.5) prior to performing MDS or PCA analysis on the data. Although for association analysis 
is performed on the entire data set will be analyzed only this a subset of SNPs which are not in LD 
will be used to construct PCA and MDS components. For more information on how to do this in 
PLINK see https://www.cog-genomics.org/plink/1.9/ld. 

plink --file GWAS_clean4 --genome --cluster --mds-plot 10 

This command outputs the file plink.mds that contains the subject IDs and values for the 10 
components we just generated. There is another file in your folder called mds_components.txt. This 
file is identical to your plink.mds file with the exception that a group column which codes CEU 
individuals as 1, MEX individuals as 2 and TSI individuals as 3. This is done so when we plot the 
MDS components in R you can see which group the points belong to and judge how well does the 
data cluster, e.g., are there outliers. The following commands will generate a jpeg image file 
containing the mds plot (filename=mds.jpeg) in your current working directory. Open R and use the 
following command: 

mydata = read.table("mds_components.txt", header=T) 

mydata$pch[mydata$Group==1 ] <-15 
mydata$pch[mydata$Group==2 ] <-16 
mydata$pch[mydata$Group==3 ] <-2 

jpeg("mds.jpeg", height=500, width=500) 
plot(mydata$C1, mydata$C2 ,pch=mydata$pch) 
dev.off() 
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Visualizing population structure using MDS is useful for identifying subpopulations, population 
stratification and systematic genotyping or sequencing errors, and can also be used to detect 
individual outliers that may need to be removed, e.g. European-Americans included in a study of 

African-Americans. MDS coordinates help with 
visualizing genetic distances and population substructure. 
PLINK also offers another dimension reduction, --pca, for 
PCA, the PC components which can also be used for 
visualizing data to detect outliers in the same manner 
which was performed using MDS. Additionally, covariates 
either from either MDS or PCA can be used in a regression 
model to aid in correcting for population substructure and 
admixture. 

We will now continue performing the analysis using 
PLINK but will use PCA instead of MDS. We will 
generate PCs and determine how many PC covariates 
should be included in the regression model. When SNPs 
are tested for an association with a trait analysis can be 

performed, first by including no PC components, then one PC component and then two PC 
components and so on. Please note that as each PC component is added all the SNPs are analyzed, 
e.g. a complete GWAS is performed. Examining λ can aid in determining how many PC components
should be included in the analysis. If there is no population stratification or other biases, then λ
should equal 1 or ~1. We will use λ to determine how many PC components from our analysis will be
added to the logistic regression model. First, estimate λ without adjusting for any PC components:

plink --file GWAS_clean4 --pheno pheno.txt --pheno-name Aff --logistic --adjust - 
-out unadj 

Generated the first 10 PCA values: 

plink --file GWAS_clean4 --genome --cluster --pca 10 header 

Eigenvectors are written to plink.eigenvec, and top eigenvalues are written to plink.eigenval. The 
'header' modifier adds a header line to the .eigenvec file(s). 

And then find out what λ is when we adjust for the first component: 

plink --file GWAS_clean4 --pheno pheno.txt --pheno-name Aff --covar 
plink.eigenvec --covar-name PC1 --logistic --adjust --out PC1 

And the first and second components: 

plink --file GWAS_clean4 --pheno pheno.txt --pheno-name Aff --covar 
plink.eigenvec --covar-name PC1-PC2 --logistic --adjust --out PC1-PC2 

and so forth for all 10 components in the .log file completing the table: 

Table 1 
Un- 

adjusted 
PC 
1 

PC 
1-2

PC 
1-3

PC 
1-4

PC 
1-5

PC 
1-6

PC 
1-7

PC 
1-8

PC 
1-9

PC1- 
10 

λ 
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The number closest to 1.0, with the least number of PC components, would be the best for adjusting 
without overfitting and introducing unnecessary noise. You can check your table against the one 
provided in the answers section. 

Go to the assoc.logistic file that corresponds to that number of components and make a note of 
how you named the .assoc.logistic file for it and when you did not adjust for any components. Then 
go back to the R program to load the results and create a jpeg image file containing QQ plots for the 
adjusted and unadjusted results (using a modified script from http://www.broad.mit.edu/node/555) as 
follows: 

broadqq <-function(pvals, title) 
{ 

observed <- sort(pvals) 
lobs <- -(log10(observed)) 

expected <- c(1:length(observed)) 
lexp <- -(log10(expected / (length(expected)+1))) 

plot(c(0,7), c(0,7), col="red", lwd=3, type="l", xlab="Expected (-logP)", ylab="Observed (-logP)", 
xlim=c(0,max(lobs)), ylim=c(0,max(lobs)), las=1, xaxs="i", yaxs="i", bty="l", main = title) 

points(lexp, lobs, pch=23, cex=.4, bg="black") } 

jpeg("qqplot_compare.jpeg", height=1000, width=500) 
par(mfrow=c(2,1)) 
aff_unadj<-read.table("unadj.assoc.logistic", header=TRUE) 
aff_unadj.add.p<-aff_unadj[aff_unadj$TEST==c("ADD"),]$P 
broadqq(aff_unadj.add.p,"Some Trait Unadjusted") 
aff_C1C2<-read.table("PC1-PC2.assoc.logistic", header=TRUE) 
aff_C1C2.add.p<-aff_C1C2[aff_C1C2$TEST==c("ADD"),]$P 
broadqq(aff_C1C2.add.p, "Some Trait Adjusted for PC1 and PC2") 
dev.off() 

Now look for SNPs with genome-wide significance using the following R connamds: 

gws_unadj = aff_unadj[which(aff_unadj$P < 0.0000001),] 
gws_unadj 
gws_adjusted = aff_C1C2[which(aff_C1C2$P < 0.0000001),] 
gws_adjusted 

Note: These are the uncorrected p-values for multiple testing. The p-values which have been 
corrected using various multiple testing methods can be found in the .adjusted file. 

A common question when you have a finding with genome-wide significance in a GWAS is “Is the 
SNP in a known gene?” One way to look this information up is annotate variants in batch (please 
look at the annotating exercise for more information). You can do this using the Ensembl Variant 
Predictor. Go to the website: 

http://grch37.ensembl.org/Homo_sapiens/Tools/VEP (GRCh37 version) 

Type the rs number(s) of the SNP(s) with genome-wide significance in “Either paste data”, leave all 
options default and press run. In a few minutes you can view the results of your query. 
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Question 1: Did this study have a finding with genome-wide significance after adjusting for 
population substructure? Did you notice any difference in the p-values before and after adjustment 
for substructure? How many PC components should you include in the regression model. Please also, 
complete the tables below. 

Table 2. SNPS with genome-wide significance unadjusted for substructure: 
CHR SNP BP A1 TEST NMISS OR STAT P 

Table 3. SNPs with genome-wide significance adjusted for components 1 and 2: 
CHR SNP BP A1 TEST NMISS OR STAT P 

Question 2: Why would you not want to include in your analysis individuals from different ethnic 
backgrounds even if you control for population substructure? 

Question 3. Are any SNPs with genome-wide significance in known genes? 
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Answers and Output 

Table 1 
Un- 

adjusted PC1 
PC1- 

2 
PC1 
-3

PC1 
-4

PC1 
-5

PC1 
-6

PC1 
-7

PC1 
-8

PC1 
-9

PC1- 
10 

lambda 1.121 1.085 1.026 1.033 1.040 1.050 1.043 1.021 1.036 1.043 1.051 

Answer to Question 1: 

Question 1: 

Did this study have a finding with genome-wide significance after adjusting for population 
substructure? How many PC components should you include in the regression model. Did you notice 
any difference in the p-values before and after adjustment for substructure? 

 Yes, see tables below. It is best to include to two PC components in the analysis, however the 
lambda is still inflated. Since we are analyzing three unique populations inclusion of PCs did not 
adequately control for substructure. If you compare the QQ plots below you can see that for this 
dataset the most significant SNPs were changed minimally when we adjusted for substructure but 
some of the moderately significant SNPs became less significant after adjustment. However, in some 
situations the p-values can become smaller. 

Table 2. SNPS with genome-wide significance unadjusted for substructure: 
CHR SNP BP A1 TEST NMISS OR STAT P 

8 rs4571722 60326734 T ADD 242 0.04126 -7.436 1.04E-13 

4 rs10008252 179853616 G ADD 244 0.1665 -6.639 3.16E-11 

Table 3. SNPs with genome-wide significance adjusted for components 1 and 2: 
CHR SNP BP A1 TEST NMISS OR STAT P 

8 rs4571722 60326734 T ADD 242 0.04382 -7.237 4.59E-13 
4 rs10008252 179853616 G ADD 244 0.13070 -6.707 1.99E-11 
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Question 2: Why would you not want to include in your analysis individuals from different ethnic 
backgrounds even if you control for population substructure?  

Firstly, you may not be able to adequately control for population substructure. Secondly, even if 
within the different populations the same genes are involved, for common variants LD structure can 
vary between populations, e.g., the tagSNPs in the different populations can have different allele 
frequencies, therefore the functional variant will not be tagged equally well in all populations and 
power can be reduced. It is also possible that different variants are associated, but for common 
variants, which are very old, usually this is not the cause. If a study involves individuals of different 
ancestry analysis can be performed separately and the results can be combined via meta-analysis. 
Studying individuals of different ancestry can be highly beneficial to fine map loci. 

Question 3. Are any SNPs with genome-wide significance in known genes? 

 No, both rs457122 and rs10008252 are intergenic/intronic. 
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Association Analysis of Sequence Data using Variant Association Tools 
(VAT) for Complex Traits   

 
Copyright (c) 2022 - Gao Wang, Biao Li, Diana Cornejo Sánchez & Suzanne M. Leal 
 
 
PURPOSE 
Variant Association Tools [VAT, Wang et al (2014)] [1] was developed to perform quality control and 
association analysis of sequence data. It can also be used to analyze genotype data, e.g. exome chip data and 
imputed data. The software incorporates many rare variant association methods which include but not limited to 
Combined Multivariate Collapsing (CMC) [2], Burden of Rare Variants (BRV) [3], Weighted Sum Statistic 
(WSS) [4], Kernel Based Adaptive Cluster (KBAC) [5], Variable Threshold (VT) [6] and Sequence Kernel 
Association Test (SKAT) [7]. 

VAT inherits the intuitive command-line interface of Variant Tools (VTools) [8] with re-design and 
implementation of its infrastructure to accommodate the scale of dataset generated from current sequencing 
efforts on large populations. Features of VAT are implemented into VTools subcommand system. 
 
RESOURCES 
 
A list of all commands that are used in this exercise can be found at 
https://statgenetics.github.io/statgen-courses/notebooks/VAT.html 
 
Basic concepts to handle sequence data using vtools can be found at: 
http://varianttools.sourceforge.net/Main/Concepts 
 
VAT Software documentation 
http://varianttools.sourceforge.net/Main/Documentation 
 
Genotype data 
Exome genotype data was downloaded from the 1000 Genomes pilot data July 2010 release for both the CEU 
and YRI populations. Only the autosomes are contained in the datasets accompanying this exercise. 

The data sets (CEU.exon.2010 03.genotypes.vcf.gz, YRI.exon.2010 
03.genotypes.vcf.gz) are available from: 
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/release/2010_07/exon/snps 
 
Phenotype data 
To demonstrate the association analysis, we simulated a quantitative trait phenotype (BMI). Please note that 
these phenotypes are NOT from the 1000 genome project. 
 
Computation resources 
Due to the nature of next-generation sequencing data, a reasonably powerful machine with high speed internet 
connection is needed to use this tool for real-world applications. For this reason, in this tutorial we will use a 
small demo dataset to demonstrate association analysis. 
 
 
1 Data Quality Control, Annotation and Variant/sample Selection - Part I 
 
1.1 Getting started 
Check the available subcommands by typing:  
 
vtools -h 
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Subcommand system is used for various data manipulation tasks (to check details of each subcommand use 
vtools name of subcommand -h). This tutorial is mission oriented and focuses on a subset of the 
commands that are relevant to variant-phenotype association analysis, rather than introducing them 
systematically. For additional functionality, please refer to documentation and tutorials online.       
Initialize a project  
vtools init VATDemo 

 
OUTPUT 
INFO: variant tools 3.0.9 : Copyright (c) 2011 - 2016 Bo Peng 
INFO: Please visit https://github.com/vatlab/varianttools for more information. 
INFO: Creating a new project VATDemo    
 
Command vtools init creates a new project in the current directory. A directory can only have one project. 
After a project is created, subsequent vtools calls will automatically load the project in the current directory. 
Working from outside of a project directory is not allowed. 
 
Import variant and genotype data 
Import all vcf files under the current directory: 
  
vtools import *.vcf.gz --var_info DP filter --geno_info DP_geno --build hg18 -j1  

  
OUTPUT 
INFO: Importing variants from CEU.exon.2010_03.genotypes.vcf.gz (1/2) 
CEU.exon.2010_03.genotypes.vcf.gz: 100% [================================================] 4,306 3.1K/s in 00:00:01 
INFO: 3,489 new variants (3,489 SNVs) from 3,500 lines are imported. 
Importing genotypes: 100% [=============================================================] 3,489 10.7K/s in 00:00:00 
INFO: Importing variants from YRI.exon.2010_03.genotypes.vcf.gz (2/2) 
YRI.exon.2010_03.genotypes.vcf.gz: 100% [===============================================] 5,967 10.8K/s in 00:00:00 
INFO: 3,498 new variants (5,175 SNVs) from 5,186 lines are imported. 
Importing genotypes: 100% [=============================================================] 6,987 22.7K/s in 00:00:00 
 
Command vtools import imports variants, sample genotypes and related information fields. The imported 
variants are saved to the master variant table for the project, along with their information fields. 

The command above imports two vcf files sequentially into an empty vtools project. The second INFO 
message in the screen output shows that 3,489 variant sites are imported from the first vcf file, where 3,489 new 
means that all of them are new because prior to importing the first vcf the project was empty so there was 0 site. 
The fourth INFO message tells that 5,175 variant sites are imported from the second vcf file, but only 3,498 of 
them are new (which are not seen in the existing 3,489) because prior to importing the second vcf there were 
already 3,489 existing variant sites from first vcf.  

Thus, 5,175 - 3,498 = 1,677 variant sites are overlapped sites between first and second vcfs. More details 
about vtools import command can be found at http://varianttools.sourceforge.net/ 
Vtools/Import 

Since the input VCF file uses hg18 as the reference genome while most modern annotation data sources are 
hg19-based, we need to liftover our project using hg19 in order to use various annotation sources in the analysis. 
Vtools provides a command which is based on the tool of USCS liftOver to map the variants from existing 
reference genome to an alternative build. More details about vtools liftover command can be found at 
http://varianttools.sourceforge.net/Vtools/Liftover  
 
vtools liftover hg19 --flip  

 
OUTPUT   

INFO: Downloading liftOver chain file from UCSC 
INFO: Exporting variants in BED format 
Exporting variants: 100% [============================================================================================] 6,987 
333.2K/s in 00:00:00 
INFO: Running UCSC liftOver tool 
INFO: Flipping primary and alternative reference genome 
Updating table variant: 100% [=========================================================================================] 6,987 
46.1K/s in 00:00:00 Updating table variant: 100% [=========================================================================================] 6,987 46.1K/s in 00:00:0 
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Import phenotype data 
The aim of the association test is to find variants that modulate the phenotype BMI. We simulated BMI values 
for each of the individuals. The phenotype file must be in plain text format with sample names matching the 
sample IDs in the vcf file(s):   
head phenotypes.csv  

 
 

.phenotypes.csv  
sample_name,panel,SEX,BMI  
NA06984,ILLUMINA,1,36.353  
NA06985,NA,2,21.415  
NA06986,ABI_SOLID+ILLUMINA,1,26.898  
NA06989,ILLUMINA,2,25.015  
NA06994,ABI_SOLID+ILLUMINA,1,23.858  
NA07000,ABI_SOLID+ILLUMINA,2,36.226  
NA07037,ILLUMINA,1,32.513  
NA07048,ILLUMINA,2,17.57  
NA07051,ILLUMINA,1,37.142  
 
The phenotype file includes information for every individual, the sample name, sequencing panel, sex and BMI. 
To import the phenotype data:  
 
vtools phenotype --from_file phenotypes.csv --delimiter "," 

 
   . .       ….   OUTPUT   
INFO: Adding phenotype panel of type VARCHAR(24)  
INFO: Adding phenotype SEX of type INT  
INFO: Adding phenotype BMI of type FLOAT  
INFO: 3 field (3 new, 0 existing) phenotypes of 202 samples are updated.  
 
Unlike vtools import, this command imports/adds properties to samples rather than to variants. More 
details about vtools phenotype command can be found at 
http://varianttools.sourceforge.net/Vtools/Phenotype 
 
View imported data 
Summary information for the project can be viewed anytime using the command vtools show, which 
displays various project and system information. More details about vtools show can be found at http: 
//varianttools.sourceforge.net/Vtools/Show. Some useful data summary commands are:   
vtools show project  
vtools show tables  
vtools show table variant  
vtools show samples  
vtools show genotypes  
vtools show fields 

 
1.2 Overview of variant and genotype data 
 
Total number of variants 
The number of imported variants may be greater than number of lines in the vcf file, because when a variant has 
two alternative alleles (e.g. A->T/C) it is treated as two separate variants. 

  
vtools select variant --count 

 
There are 6987 variants in our test data. 
 
vtools select table condition action selects from a variant table table a subset of variants 
satisfying a specified condition, and perform an action of 
 

• creating a new variant table if --to table is specified. 
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• counting the number of variants if --count is specified. 
• outputting selected variants if --output is specified. 

 
The condition should be a SQL expression using one or more fields in a project (displayed in vtools 
show fields). If the condition argument is unspecified, then all variants in the table will be selected. An optional 
condition --samples [condition] can also be used to limit selected variants to specific samples. More 
details about vtools select command can be found at 
http://varianttools.sourceforge.net/Vtools/Select 
 
Genotype Summary 
The command vtools show genotypes displays the number of genotypes for each sample and names of 
the available genotype information fields for each sample, e.g. GT - genotype; DP geno - genotype read depth. 
Such information is useful for the calculation of summary statistics of genotypes (e.g. depth of coverage).   
vtools show genotypes > GenotypeSummary.txt  
head GenotypeSummary.txt 
 

sample name Filename num genotypes sample genotype fields 
NA06984 CEU.exon.2010 03.genotypes.vcf.gz 3162 GT,DP geno 
NA06985 CEU.exon.2010 03.genotypes.vcf.gz 3144 GT,DP geno 
NA06986 CEU.exon.2010 03.genotypes.vcf.gz 3437 GT,DP geno 
NA06989 CEU.exon.2010 03.genotypes.vcf.gz 3130 GT,DP geno 
NA06994 CEU.exon.2010 03.genotypes.vcf.gz 3002 GT,DP geno 
NA07000 CEU.exon.2010 03.genotypes.vcf.gz 3388 GT,DP geno 
NA07037 CEU.exon.2010 03.genotypes.vcf.gz 3374 GT,DP geno 
NA07048 CEU.exon.2010 03.genotypes.vcf.gz 3373 GT,DP geno 
NA07051 CEU.exon.2010 03.genotypes.vcf.gz 3451 GT,DP geno  

 
Variant Quality Overview 
The following command calculates summary statistics on the variant site depth of coverage (DP). Below is the 
command to calculate depth of coverage information for all variant sites. 
 
vtools output variant "max(DP)" "min(DP)" "avg(DP)" "stdev(DP)" "lower_quartile(DP)" 
"upper_quartile(DP)" --header 

 
max DP min DP avg DP stdev DP lower quartile DP upper quartile DP 
25490 13 6815.77028768 3434.28040091 4301 9143  

 
In the test data, the maximum DP for variant sites is 25490, minimum DP 13, average DP about 6815, standard 
deviation of DP about 3434, lower quartile of DP 4301 and upper quartile of DP 9143. 

The same syntax can be applied to other variant information or annotation information fields. The command 
vtools output name of variant table outputs properties of variants in a specified variant table. 
The properties include fields from annotation databases and variant tables, basically fields outputted from 
command vtools show fields, and SQL-supported functions and expressions. There are several freely 
available SQL resources on the web to learn more about SQL functions and expressions. 

It is also possible to view variant level summary statistic for variants satisfying certain filtering criteria 
using vtools select name of variant table command, for example to count only variants 
having passed all quality filters:  
 
vtools select variant "filter=’PASS’" --count 

 
All 6987 variants have passed the quality filters. To combine variant filtering and summary statistics:  
 
vtools select variant "filter=’PASS’" -o "max(DP)" "min(DP)" "avg(DP)" "stdev(DP)" 
"lower_quartile(DP)" "upper_quartile(DP)" --header 

 
The output information of command above will be the same as the previous vtools output command, since 
all variants have passed quality filter. 
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1.3 Data exploration 
 
Variant level summaries 
The command below will calculate: 

• total: Total number of genotypes (GT) for a variant 
• num: Total number of alternative alleles across all samples 
• het: Total number of heterozygote genotypes 1/0 
• hom: Total number of homozygote genotypes 1/1 
• other: Total number of double-homozygotes 1/2 
• min/max/meanDP: Summaries for depth of coverage and genotype quality across samples 
• maf: Minor allele frequency 
• Add calculated variant level statistics to fields, which can be shown by commands vtools show 
fields and vtools show table variant   

vtools update variant --from_stat ’total=#(GT)’ ’num=#(alt)’ ’het=#(het)’ ’hom=#(hom)’ 

’other=#(other)’ ’minDP=min(DP_geno)’ ’maxDP=max(DP_geno)’ ’meanDP=avg(DP_geno)’ ’maf=maf()’  
 
OUTPUT  
INFO: Reading genotype info for processing.... 
INFO: Adding variant info field num with type INT 
INFO: Adding variant info field hom with type INT 
INFO: Adding variant info field het with type INT 
INFO: Adding variant info field other with type INT 
INFO: Adding variant info field total with type INT 
INFO: Adding variant info field maf with type FLOAT 
INFO: Adding variant info field minDP with type INT 
INFO: Adding variant info field maxDP with type INT 
INFO: Adding variant info field meanDP with type FLOAT 

Updating variant: 100% [================================================================] 6,987 42.5K/s in 00:00:00 
 
vtools show fields  
vtools show table variant 

 
Command vtools update updates variant info fields (and to a lesser extend genotype info fields) by adding 
more fields or updating values at existing fields. It does not add any new variants or genotypes, and does not 
change existing variants, samples, or genotypes. Using three parameters --from file, --from stat, and 
--set, variant information fields could be updated from external file, sample genotypes, and existing fields. 
More details about vtools update command can be found at 
http://varianttools.sourceforge.net/Vtools/Update 
 
Summaries for different genotype depth (GD) and genotype quality (GQ) filters 
The --genotypes CONDITION option restricts calculation to genotypes satisfying a given condition. Later we will 
remove individual genotypes by DP geno filters. The command below will calculate summary statistics genotypes of all 
samples per variant site. It can assist us in determining filtering criteria for genotype call quality.   
vtools update variant --from_stat ’totalGD10=#(GT)’ ’numGD10=#(alt)’ ’hetGD10=#(het)’ 
’homGD10=#(hom)’ ’otherGD10=#(other)’ ’mafGD10=maf()’ --genotypes "DP_geno > 10"  

 
OUTPUT 
INFO: Reading genotype info for processing.... 
INFO: Adding variant info field numGD10 with type INT 
INFO: Adding variant info field homGD10 with type INT 
INFO: Adding variant info field hetGD10 with type INT 
INFO: Adding variant info field otherGD10 with type INT 
INFO: Adding variant info field totalGD10 with type INT 
INFO: Adding variant info field mafGD10 with type FLOAT 
Updating variant: 100% [========================================================================] 6,987 52.1K/s in 00:00:00 

 
 
vtools show fields  
vtools show table variant 
 

You will notice the change in genotype counts when applying the filter on genotype depth of coverage and only 
retaining those genotypes with a read depth greater than 10X. There are now 6987 variant sites after filtering on 
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DP geno>10. Note that some variant sites will become monomorphic after removing genotypes due to low 
read depth. 

 
Minor allele frequencies (MAFs) 
In previous steps, we calculated MAFs for each variant site before and after filtering on genotype read depth. 
Below is a summary of the results:   
vtools output variant chr pos maf mafGD10 --header --limit 20 

 
    

 OUTPUT   
     
       

chr pos Maf mafGD10 
1 1105366 0.0350877192982 0.0512820512821 
1 1105411 0.00943396226415 0.0128205128205 
1 1108138 0.192307692308 0.18023255814 
1 1110240 0.00561797752809 0.0     
1 1110294 0.228125 0.242307692308 
1 3537996 0.12012987013 0.152173913043 
1 3538692 0.0410256410256 0.0432098765432 
1 3541597 0.00561797752809 0.00617283950617 
1 3541652 0.0444444444444 0.0533333333333 
1 3545211 0.00561797752809 0.00581395348837 
...        
        

 
Adding “> filename.txt” at the end of the above command will write the output to a file. 
 
Next, we examine population specific MAFs. Our data is imported from two files, a CEU dataset (90 samples) 
and an YRI dataset (112 samples). To calculate allele frequency for each population, let us first assign an 
additional RACE phenotype (0 for YRI samples and 1 for CEU samples):  
vtools phenotype --set "RACE=0" --samples "filename like ’YRI%’"    
vtools phenotype --set "RACE=1" -- samples "filename like ’CEU%’"    
vtools show samples --limit 10          

 
           
    

 OUTPUT      
        
          

sample_name filename  panel SEX BMI RACE 
NA06984 CEU.exon...notypes.vcf.gz ILLUMINA 1 36.353 1 
NA06985 CEU.exon...notypes.vcf.gz .     2 21.415 1 
NA06986 CEU.exon...notypes.vcf.gz ABI_SOLID+ILLUMINA 1 26.898 1 
NA06989 CEU.exon...notypes.vcf.gz ILLUMINA 2 25.015 1 
NA06994 CEU.exon...notypes.vcf.gz ABI_SOLID+ILLUMINA 1 23.858 1 
NA07000 CEU.exon...notypes.vcf.gz ABI_SOLID+ILLUMINA 2 36.226 1 
NA07037 CEU.exon...notypes.vcf.gz ILLUMINA 1 32.513 1 
NA07048 CEU.exon...notypes.vcf.gz ILLUMINA 2 17.57 1 
NA07051 CEU.exon...notypes.vcf.gz ILLUMINA 1 37.142 1 
NA07346 CEU.exon...notypes.vcf.gz . 2 30.978 1 (192 records omitted)  
 
 
Population specific MAF calculations will be performed using those genotypes that passed the read depth filter 
(DP geno>10)  
vtools update variant --from_stat ’CEU_mafGD10=maf()’ --genotypes ’DP_geno>10’ --samples "RACE=1" 
vtools update variant --from_stat ’YRI_mafGD10=maf()’ --genotypes ’DP_geno>10’ --samples "RACE=0" 
vtools output variant chr pos mafGD10 CEU_mafGD10 YRI_mafGD10 --header --limit 10 

    

 
 
    

 OUTPUT    
      
        

chr Pos mafGD10 CEU_mafGD10 YRI_mafGD10 
1 1105366 0.0512820512821 0.0512820512821 0.0 
1 1105411 0.0128205128205 0.0128205128205 0.0 
1 1108138 0.18023255814 0.0212765957447 0.371794871795 
1 1110240 0.0 0.0     0.0 
1 1110294 0.242307692308 0.025    0.428571428571 
1 3537996 0.152173913043 0.170454545455 0.135416666667 

065



 

 

1 3538692 0.0432098765432 0.0833333333333 0.00595238095238 
1 3541597 0.00617283950617 0.00617283950617 0.0 
1 3541652 0.0533333333333 0.0533333333333 0.0 
1 3545211 0.00581395348837 0.00581395348837 0.0 
         

 
You will observe zero values because some variant sites are monomorphic or they are population specific. 
 
Sample level genotype summaries 
Similar operations could be performed on a sample level instead of on a variant level. More details about 
obtaining genotype level summary information using vtools phenotype --from stat can be found at 
http://varianttools.sourceforge.net/Vtools/Phenotype 
 
  
 
vtools phenotype --from_stat ’CEU_totalGD10=#(GT)’ ’CEU_numGD10=#(alt)’ --genotypes ’DP_geno>10’ --samples "RACE=1"  
vtools phenotype --from_stat ’YRI_totalGD10=#(GT)’ ’YRI_numGD10=#(alt)’ --genotypes ’DP_geno>10’ --samples "RACE=0"  

 
……………        ……   OUTPUT   
180 values of 2 phenotypes (2 new, 0 existing) of 90 samples are updated.  
224 values of 2 phenotypes (2 new, 0 existing) of 112 samples are updated.  
vtools phenotype  --output sample_nameCEU_totalGD10CEU_numGD10YRI_totalGD10YRI_numGD10 --header 

           
     

 OUTPUT     
        
          

sample_name  CEU_totalGD10 CEU_numGD10  YRI_totalGD10 YRI_numGD10  
NA06984 2774 849 NA NA       
NA06985 1944 570 NA NA       
NA06986 3386 1029 NA NA       
NA06989 2659 819 NA NA       
NA06994 1730 486 NA NA       
...           
NA19257 NA NA 4969 1229       
NA19259 NA NA 4182 1005       
NA19260 NA NA 4404 1076       
NA19262 NA NA 4308 1044       
NA19266 NA NA 4878 1211       
           

 
1.4 Variant Annotation 
 
For rare variant aggregated association tests, we want to focus on analyzing aggregating variants having 
potential functional contribution to a phenotype. Thus, each variant site needs to be annotated for its 
functionality. Annotation is performed using variant annotation tools [7] which implements an 
ANNOVAR pipeline for variant function annotation [9]. More details about the ANNOVAR pipeline can be 
found at http://varianttools.sourceforge.net/Pipeline/Annovar  
 
vtools execute ANNOVAR geneanno  

 
…..  OUTPUT   

INFO: Running vtools update variant --from_file cache/annovar_input.variant_function --format ANNOVAR_variant_functio  
n --var_info region_type, region_name  
... 
 
Running vtools update variant --from_file cache/annovar_input.exonic_variant_function --format 
ANNOVAR_exonic_variant _function --var_info mut_type, function  
...  
INFO: Fields mut_type, function of 6,920 variants are updated  
 
The following command will output the annotated variant sites to the screen.  
 
vtools output variant chr pos ref alt mut_type --limit 20 --header 
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 OUTPUT   
       
        

chr pos ref alt mut_type   
1 1105366 T C nonsynonymous SNV   
1 1105411 G A nonsynonymous SNV   
1 1108138 C T synonymous SNV   
1 1110240 T A nonsynonymous SNV   
1 1110294 G A nonsynonymous SNV   
1 3537996 T C synonymous SNV   
...       
         

 
Many more annotation sources are available which are not covered in this tutorial. Please read 
http://varianttools.sourceforge.net/Annotation for annotation databases, and 
http://varianttools.sourceforge.net/Pipeline for annotation pipelines. 
 
1.5 Data Quality Control (QC) and Variant Selection 
 
Ti/Tv ratio evaluations 
Before performing any data QC we examine the transition/transversion (Ti/Tv) ratio for all variant sites. Note that 
here we are obtaining Ti/Tv ratios for the entire sample, Ti/Tv ratios can also be obtained for each sample. 
 
 
vtools_report trans_ratio variant -n num 

  
 
 

 
The command above counts the number of transition and transversion variants and calculates its ratio. More 
details about vtools report trans ratio command can be found at 
http://varianttools.sourceforge.net/VtoolsReport/TransRatio 
  
If only genotype calls having depth of coverage greater than 10 are considered:  
 
vtools_report trans_ratio variant -n numGD10 

 
 

num of transition num of transversion ratio 
140,392 38,710 3.62676  

 
 
We can see that Ti/Tv ratio has increase slightly if low depth of coverage calls are removed. There is only a 
small change in the Ti/Tv ratio since only a few variant sites become monomorphic and are no longer included 
in the calculation. In practice Ti/Tv ratios can be used to evaluate which threshold should be used in data QC. 
 
Removal of low quality variant sites 
We should not need to remove any variant site based on read depth because all variants passed the quality filter. 
To demonstrate removal of variant sites, let us   
remove those with a total read depth {$\(\le\)$} 15.  
vtools select variant "DP<15" -t to_remove  
vtools show tables 
vtools remove variants to_remove -v0  
vtools show tables 

 
We can see that one variant site has been removed from master variant table. The vtools remove command 
can remove various items from the current project. More details about vtools remove command can be 
found at http://varianttools.sourceforge.net/Vtools/Remove. Using a combination of 
select/remove subcommands low quality variant sites can be easily filtered out. The vtools show fields, 

num of transition num of transversion ratio 
161,637 44,641 3.62082 
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vtools show tables, and vtools show table variant commands will allow you to see the 
new/updated fields and tables you have added/changed to the project. 
 
Filter genotype calls by quality 
We have calculated various summary statistics using the command --genotypes ‘CONDITION’ but we 
have not yet removed genotypes having genotype read depth of coverage lower than 10X. The command below 
removes these genotypes.   
vtools remove genotypes "DP_geno<10" -v0 

 
 
Select variants by annotated functionality 
To select potentially functional variants for association mapping:  
 
vtools select variant "mut_type like ’non%’ or mut_type like ’stop%’ or region_type=’splicing’"  
-t v_funct  
vtools show tables 

 
The command above selects variant sites that are either nonsynonymous (by condition "mut type like 
’non%’) or stop-gain/stop-loss (by condition mut type like ’stop%’) or alternative splicing (by 
condition region-type=’splicing’)   
3367 functional variant sites are selected 
 
2 Association Tests for Quantitative Traits - Part II 
 
 
2.1 View phenotype data  
 
vtools show samples --limit 5 

 
   

 OUTPUT      
       
         

sample_name filename panel SEX BMI ... 
NA06984 CEU.exon...notypes.vcf.gz ILLUMINA 1 36.353 ... 
NA06985 CEU.exon...notypes.vcf.gz .     2 21.415 ... 
NA06986 CEU.exon...notypes.vcf.gz ABI_SOLID+ILLUMINA 1 26.898 ... 
NA06989 CEU.exon...notypes.vcf.gz ILLUMINA 2 25.015 ... 
NA06994 CEU.exon...notypes.vcf.gz ABI_SOLID+ILLUMINA 1 23.858 ... 
          

 
 
2.2 Analysis plan 
 
We want to carry out the association analysis for CEU and YRI separately. For starters we demonstrate analysis 
of CEU samples; and the same commands will be applicable for YRI samples. After completing the analysis of 
CEU samples please use the same commands to analyze the YRI data set. You should not analyze the data from 
different populations together, once you have the p-values from each analysis, you may perform a meta-analysis.   

 
2.3 Subset data by MAFs 
 
To carry out association tests we need to treat common and rare variants separately. The dataset for our tutorial 
has very small sample size, but with large sample size it is reasonable to define rare variants as having observed 
MAF<0.01, and common variants as variants having observed MAF³0.05. First, we create variant tables based 
on calculated alternative allele frequencies for both populations   
vtools select variant "CEU_mafGD10>=0.05" -t common_ceu  
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vtools select v_funct "CEU_mafGD10<0.01" -t rare_ceu 

 
Notice that for selection of rare variants we only keep those that are annotated as functional (chosen from v 
funct table). There are 1450 and 604 variant sites selected for MAF³0.05 and MAF<0.01, respectively. 
 
2.4 Annotate variants to genes 
 
For gene based rare variant analysis we need annotations that tell us the boundaries of genes. We use the 
refGene annotation database for this purpose.  
 
vtools use refGene 

 
OUTPUT   

INFO: Downloading annotation database annoDB/refGene-hg19_20130904.ann  
INFO: Downloading annotation database from annoDB/refGene-hg19_20130904.DB.gz refGene-hg19_20130904.DB.gz: 
100% [================================================================================== ==] 8,056,345.0 
411.6K/s in 00:00:19 
INFO: Using annotation DB refGene as refGene in project ceu.  
INFO: Known human protein-coding and non-protein-coding genes taken from the NCBI RNA reference 
sequences collection (RefSeq).  
 

 
vtools show annotation refGene 

 
 
   OUTPUT   
   
    

Annotation database refGene (version hg19_20130904) 
Description: Known human protein-coding and non-protein-coding genes taken from the NCBI RNA reference seq 
uences collection (RefSeq). 
Database type: range 
Reference genome hg19: chr, txStart, txEnd 
name (char) Gene name 
chr (char)      
strand (char) which DNA strand contains the observed alleles 
txStart (int) Transcription start position (1-based) 
txEnd (int) Transcription end position 
cdsStart (int) Coding region start (1-based) 
cdsEnd (int) Coding region end 
exonCount (int) Number of exons 
exonStarts (char) Starting point of exons (adjusted to 1-based positions) 
exonEnds (char) Ending point of exons 
score (int) Score 
name2 (char) Alternative name 
cdsStartStat (char) cds start stat, can be 'non', 'unk', 'incompl', and 'cmp1' 
cdsEndStat (char) cds end stat, can be 'non', 'unk', 'incompl', and 'cmp1' 

      

 
The names of genes are contained in the refGene.name2 field. The vtools use command, attaches an 
annotation database to the project, effectively incorporating one or more attributes available to variants in the 
project. More details about vtools use command can be found at 
http://varianttools.sourceforge.net/Vtools/Use 
 
2.5 Association testing of common/rare variants 
 
The association test program VAT is currently under development and is temporarily implemented as the 
vtools associate subcommand. To list available association test options   
vtools associate -h  
vtools show tests  
vtools show test LinRegBurden 
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Note that we use the quantitative trait BMI as the phenotype, and we will account for “SEX” as a covariate in 
the regression framework. More details about vtools associate command can be found at http: 
//varianttools.sourceforge.net/Vtools/Associate 
 
Analysis of common variants 
By default, the program will perform single variant tests using a simple linear model, and the Wald test statistic 
will be evaluated for p-values:   
vtools associate common_ceu BMI --covariate SEX -m "LinRegBurden --
alternative 2" -j1 --to_db EA_CV > EA_CV.asso.res  

 
OUTPUT   

INFO: 90 samples are found  
INFO: 1450 groups are found  
Loading genotypes: 100% [==================================================================] 90 56.7/s in 00:00:01  
Testing for association: 100% [======================================================] 1,450/5 684.5/s in 00:00:02  
INFO: Association tests on 1450 groups have completed. 5 failed.  
INFO: Using annotation DB EA_CV as EA_CV in project ceu.  
INFO: Annotation database used to record results of association tests. Created on Fri, 25 Mar 2016 17:45:52  
INFO: 1450 out of 3484 variant.chr, variant.pos are annotated through annotation database EA_CV  
 
 

 Note  
Option -j1 specifies that 1 CPU core be used for association testing. You may use larger number of jobs 
for real world data analysis, e.g., use -j16 if your computational resources has 16 CPU cores available. 
Linux command cat /proc/cpuinfo shows the number of cores and other information related to the 
CPU on your computer. 

 
Association tests on 1450 groups have completed. 5 failed. 
 
The following command displays error messages about the failed tests. In each case, the sample size was too 
small to perform the regression analysis.   
grep -i error *.log  

 
OUTPUT 

2016-03-25 12:45:57,373: DEBUG: An ERROR has occurred in process 0 while processing '6:30018583': 
Sample size too small (2) to be analyzed for '6:30018583'.   
2016-03-25 12:45:57,378: DEBUG: An ERROR has occurred in process 0 while processing '6:30018721': 
Sample size too small (2) to be analyzed for '6:30018721'.  
2016-03-25 12:45:57,574: DEBUG: An ERROR has occurred in process 0 while processing '7:148552665': 
Sample size too small (2) to be analyzed for '7:148552665'.  
2016-03-25 12:45:57,662: DEBUG: An ERROR has occurred in process 0 while processing '8:145718728': 
Sample size too small (4) to be analyzed for '8:145718728'. 
2016-03-25 12:45:57,669: DEBUG: An ERROR has occurred in process 0 while processing '9:205057': Sample 
size too small(4) to be analyzed for '9:205057'.  
 
 
A summary from the association test is written to the file EA CV.asso.res. The first column indicates the 
variant chromosome and base pair position so that you may follow up on the top signals using various 
annotation sources that we will not introduce in this tutorial. The result will be automatically built into 
annotation database if --to db option is specified.   
You may view the summary using the less command 
 
less EA_CV.asso.res 

 
To sort the results by p-value and output the first 10 lines of the file use the command:  
 
sort -g -k7 EA_CV.asso.res | head 
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If you obtain significant p-values be sure to also observe the accompanying sample size. Significant p-values 
from too small of a sample size may not be results you can trust. 

Also, depending on your phenotype you may have to add additional covariates to your analysis. VAT allows 
you to test many different models for the various phenotypes and covariates. P-values for covariates are also 
reported. 

Similar to using an annotation database, you can use the results from the association test to annotate the 
project and follow up variants of interest, for example:   
vtools show fields  

 

 
 association analysis result columns  

Field name Description  
EA_CV.variant_chr  
EA_CV.variant_pos  
EA_CV.sample_size_LinRegBurden  
EA_CV.beta_x_LinRegBurden  
EA_CV.pvalue_LinRegBurden  
EA_CV.wald_x_LinRegBurden  
EA_CV.beta_2_LinRegBurden  
EA_CV.beta_2_pvalue_LinRegBurden  
EA_CV.wald_2_LinRegBurden 
variant_chr  
variant_pos  
sample size  
test statistic. In the context of regression, this is estimate of effect size for x p-value  
Wald statistic for x (beta_x/SE(beta_x))  
estimate of beta for covariate 2  
p-value for covariate 2  
Wald statistic for covariate 2  
 
 
You see additional annotation fields starting with EA CV, the name of the annotation database you just created 
from association test (if you used the --to db option mentioned above). You can use them to easily 
select/output variants of interest. More details about outputting annotation fields for significant findings can be 
found at http: //varianttools.sourceforge.net/Vtools/Output 
  
Burden test for rare variants (BRV) 
BRV method uses the count of rare variants in given genetic region for association analysis, regardless of the 
region length. 

We use the -g option and use the ‘refGene.name2’ field to define the boundaries of a gene. By default, the 
test is a linear regression using aggregated counts of variants in a gene region as the regressor.  
 
vtools associate rare_ceu BMI --covariate SEX -m "LinRegBurden --alternative 2" -g refGene.name2 -j1 --

to_db EA_RV  > EA_RV.asso.res  
 

OUTPUT   
INFO: 90 samples are found  
INFO: 254 groups are found  
Loading genotypes: 100% [==================================================================] 90 48.6/s in 00:00:01  
Testing for association: 100% [=======================================================] 254/20 685.4/s in 00:00:00  
INFO: Association tests on 254 groups have completed. 20 failed.  
INFO: Using annotation DB EA_RV as EA_RV in project ceu.  
INFO: Annotation database used to record results of association tests. Created on Fri, 25 Mar 2016 17:47:26  
INFO: 254 out of 25360 refGene.refGene.name2 are annotated through annotation database EA_RV  
 
Association tests on 254groups have completed. 20 failed. To view failed tests:  
 
grep -i error *.log | tail -10  

 
OUTPUT 
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2016-03-25 12:49:49,553: DEBUG: An ERROR has occurred in process 0 while processing 'ABCC1': No variant 
found in geno type data for 'ABCC1'.   
2016-03-25 12:49:49,620: DEBUG: An ERROR has occurred in process 0 while processing 'ANO9': No variant 
found in genot ype data for 'ANO9'.  
2016-03-25 12:49:49,781: DEBUG: An ERROR has occurred in process 0 while processing 'C10orf71': No 
variant found in g enotype data for 'C10orf71'.  
2016-03-25 12:49:49,875: DEBUG: An ERROR has occurred in process 0 while processing 'CCDC127': No 
variant found in ge notype data for 'CCDC127'.  
2016-03-25 12:49:50,313: DEBUG: An ERROR has occurred in process 0 while processing 'FBXL13': No 
variant found in genotype data for 'FBXL13'.  
...  
 
 
The output file is EA RV.asso.res. The first column is the gene name, with corresponding p-values in the 
sixth column for the entire gene.  
 
less EA_RV.asso.res 

 
You can also sort these results by p-value using command:  
 
sort -g -k6 EA_RV.asso.res | head 

 
Variable thresholds test for rare variants (VT) 
The variable thresholds (VT) method will carry out multiple testing in the same gene region using groups of 
variants based on observed variant allele frequencies. This test will maximize over statistics thus obtain a final 
test statistic, and calculate the empirical p-value so that multiple comparisons are adjusted for correctly. 

We will use adaptive permutation to obtain empirical p-values. Therefore, to avoid performing too large 
number of permutations we use a cutoff to limit the number of permutations when the p-value is greater than 
0.0005, e.g. not all 100,000 permutations are performed. Generally, even more permutations are used but we 
limit it to 100,000 to save time for this exercise. 
 
The command using variable thresholds method on our data is:  
 
vtools associate rare_ceu BMI --covariate SEX -m "VariableThresholdsQt --alternative 2 
-p 100000 \ --adaptive 0.0005" -g refGene.name2 -j1 --to_db EA_RV > EA_RV_VT.asso.res 

 
To view test that failed,  
 
grep -i error *.log | tail -10 

 
To view results,  
 
less EA_RV_VT.asso.res 

 
 

 Note 
The p values you obtained for VT might be slightly different for each run. This is due to the randomness 
in permutation tests. 

 
Sort and output the lowest p-values using the command:  
 
sort -g -k6 EA_RV_VT.asso.res | head 

 
 
Why do some tests fail? 
Notice that vtools associate command will fail on some association test units. Instances of failure are 
printed to terminal in red and are recorded in the project log file. Most failures occur due to an association test 
unit having too few samples or number of variants (for gene based analysis). You should view these error 
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messages after each association scan is complete, e.g., using the Linux command grep -i error *.log 
and make sure you are informed of why failures occur. 

In the variable thresholds analysis above, gene ABCC1 failed the association test. If we look at this gene 
more closely we can see which variants are being analyzed by our test:   
vtools select rare_ceu "refGene.name2=’ABCC1’" -o chr pos ref alt CEU_mafGD10 numGD10 mut_type --header 

 
 

chr Pos ref alt CEU mafGD10 numGD10 mut type 
16 16178858 T C 0.0 243 nonsynonymous SNV 

 

After applying our QC filters we are left with one variant within the ABCC1 gene to analyze. Because the MAF 
for this variant is 0.0 there are no variants in the gene to analyze so that this gene is ignored. Note that all 
individuals are homozygous for the alternative allele for this variant site. 
 
QQ and Manhattan plots for association results 
The vtools report plot association command generates QQ and Manhattan plots from output of 
vtools associate command. More details about vtools report plot association can be 
found at  http://varianttools.sourceforge.net/VtoolsReport/PlotAssociation 
   
vtools_report plot_association qq -o QQRV -b --label_top 2 -f 6 < EA_RV.asso.res  
vtools_report plot_association manhattan -o MHRV -b --label_top 5 --color Dark2 --
chrom_prefix None -f 6 < EA_RV.asso.res 

 
QQ plots aid in evaluating if there is systematic inflation of test statistics. A common cause of inflation is 
population structure or batch effects.  If you observe significant inflation of test you may consider including 
MDS components in the association test model.  
vtools associate rare_ceu BMI --covariate SEX KING_MDS1 KING_MDS2 -m "LinRegBurden --name RVMDS2 --alternative 2" -\ 
g refGene.name2 -j1 --to_db EA_RV > EA_RV_MDS2.asso.res   
vtools_report plot_association qq -o QQRV_MDS2 -b -- label_top 2 -f 6 < EA_RV_MDS2.asso.res 

    

 
To visualize the plots copy them to the work directory by typing: 
$ cp MHRV.pdf /home/jovyan/work 
$ cp QQRV.pdf /home/jovyan/work 
Now visualize from your computer’s home directory 
 
You should not arbitrarily include MDS (or PCA) components in the analysis.  Instead put in each 
MDS component and examine the lambda value, i.e. include MDS component 1 them MDS 
components 1 and 2, etc. Visualization of the QQ plot is also useful to determine if population 
substructure/admixture is controlled 
 
2.6 Association analysis of YRI samples 
 
Procedures for YRI sample association analysis is the same as for CEU samples as previously has been 
described, thus is left as an extra exercise for you to work on your own. Commands to perform 
analysis for YRI are found below:  
 

BASH   
cd ..  
vtools select variant --samples "RACE=0" -t YRI  
mkdir -p yri; cd yri  
vtools init yri --parent ../ --variants YRI --samples 
"RACE=0" --build hg19 vtools select variant 
"YRI_mafGD10>=0.05" -t common_yri vtools select v_funct 
"YRI_mafGD10<0.01" -t rare_yri  
vtools use refGene  
vtools associate common_yri BMI --covariate SEX -m "LinRegBurden --alternative 2" -j1 --to_db YA_CV > YA_CV.asso.res  

073



 

 

vtools associate rare_yri BMI --covariate SEX -m "LinRegBurden --alternative 2" -g refGene.name2 -j1 --
to_db YA_RV > YA_RV.asso.res vtools associate rare_yri BMI --covariate SEX -m "VariableThresholdsQt --
alternative 2 -p 100000 \  

--adaptive 0.0005" -g refGene.name2 -j1 --to_db YA_RV 
> YA_RV_VT.asso.res cd ..  
 
2.7 MDS analysis and PC adjustment 
This pipeline needs PLINK 1.9 and KING. 
 
vtools execute KING 
$ cp KING.mds.pdf /home/jovyan/work  
 
 
2.8  Meta-analysis 
 
Here we demonstrate the application of meta-analysis to combine association results from the two 
populations via vtools report meta analysis. More details about vtools report 
meta analysis command can be found at  
http://varianttools.sourceforge.net/VtoolsReport/MetaAnalysis 
 
The input to this command are the association results files generated from previous steps, for example:   
vtools_report meta_analysis ceu/EA_RV_VT.asso.res yri/YA_RV_VT.asso.res --beta 5 --pval 6 --
se 7 -n 2 --link 1 > ME\ TA_RV_VT.asso.res 

 
To view the results, 
 
cut -f1,3 META_RV_VT.asso.res | head 
 
 
  

refgene name2 pvalue meta 
CASP7 4.751E-01 
POLR2J2 3.110E-01 
GNAO1 6.875E-02 
C18orf25 9.456E-01 
GBP7 3.498E-01 
MSH5 5.905E-01 
OR51B5 5.521E-01 
MAPK14 3.063E-01 
BAZ2B 7.941E-01  

 
 
Note that for genes that only appears in one study but not the other, or only have a valid p-value in one study but 
not the other, will be ignored from meta-analysis. 
 
2.8 Summary 
 
Analyzing variants with VAT is much like any other analysis software with a general workflow of: 

• Variant level cleaning 
• Sample genotype cleaning 
• Variant annotation and phenotype information processing 
• Sample/variant selection 
• Association analysis 
• Interpreting the findings 

 
The data cleaning and filtering conditions within this exercise should be considered as general guidelines. Your 
data may allow you to be laxer with certain criteria or force you to be more stringent with others. 
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Questions 
 
Question 1 List the four lowest p-values and associated variants or gene regions for the EA CV.asso.res, EA 
RV.asso.res, and EA RV VT.asso.res test outputs, which are results from single variant Wald test, rare variant 
BRV and VT tests, respectively, using the European American (CEU) population. Also, list the results using 
Yoruba African (YRI) population from YA CV.asso.res, YA RV.asso.res and YA RV VT.asso.res   
EA CV.asso.res - single variant tests using CEU  
 
1) ; 2)   
3) ; 4)   
EA RV.asso.res - BRV tests using CEU  
1) ; 2)   
3) ; 4)   
EA RV VT.asso.res - VT tests using CEU  
 
1) ; 2)   
3) ; 4)   
YA CV.asso.res - single variant tests using YRI  
 
1) ; 2)   
3) ; 4)   
YA RV.asso.res - BRV tests using YRI  
 
1) ; 2)   
3) ; 4)   
YA RV VT.asso.res - VT tests using YRI  
 
1) ; 2)   
3) ; 4)  
 
Question 2 List any gene regions that show up in the lowest eight p-values for both the BRV and the VT tests. 
Why might the p-values for the VT tests be higher than the p-values for the BRV tests? Are any of the top p-
value hits significant? Why or why not?  
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Answers 
 
Question 1 
 
EA CV.asso.res 
107888886 0.000105185 
1) 15869257 0.00038548 
2) 56293401 0.000386273 
3) 15869388 0.00279873 
 
EA RV.asso.res 
1) CIDEA 0.00504822 
2) UGT1A10 0.00549521 
3) UGT1A5 0.00549521 
4) UGT1A6 0.00549521 
 
EA RV VT.asso.res 
1) UGT1A9 0.007996 
2)CPED1 0.00999001 
3) UGT1A10 0.00999001 
4) UGT1A6 0.011988 
 
YA CV.asso.res 
 
1) 107888886 0.00000974 
2) 6003506 0.000211457 
3) 25901623 0.001329 
4) 3392651 0.00194995 
 
YA RV.asso.res 
 
1) EMILIN2 0.00262487 
2) ASIC2 0.0551664 
3) MDN1 0.0593085 
4) BAZ2B 0.0607625 
 
YA RV VT.asso.res 
 
1) EMILIN2 0.00533156 
2) MDN1 0.013986 
3) VLDLR 0.01998 
4) LRRC9 0.025974 
 
 
Question 2: The p-values do not achieve significance based on the corrected p values above (Bonferroni 
correction for multiple tests). Since the BMI values were randomly generated for each individual it is unlikely 
that any of the p-values for the single variant and aggregation tests would have achieved significance. Also, 
because of the multiple testing, the p-values for the VT tests might be higher than the p-values for the BRV 
tests. 
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Association Analysis of Sequence Data using PLINK/SEQ (PSEQ) 

Copyright (c) 2022 Stanley Hooker, Biao Li, Di Zhang and Suzanne M. Leal 

Purpose 

PLINK/SEQ (PSEQ) is an open-source C/C++ library for working with human genetic variation data. The 
specific focus is to provide a platform for analytic tool development for variation data from large-scale 
resequencing and genotyping projects, particularly whole-exome and whole-genome studies. PSEQ is 
independent of, but designed to be complementary to, the existing PLINK (Purcell et al., 2007) package. 
Here we give an overview of analysis of exome sequence data using PSEQ. 

Software Resource 

This tutorial was completed with PSEQ 0.10, (released on 14-Jul-2014) available from 
https://atgu.mgh.harvard.edu/plinkseq/download.shtml. Links to PSEQ documentation can also be found on 
the webpage. Below is an outline of what PSEQ documentation offers: 

• Basic Syntax and Conventions
• Project Management
• Data Input
• Attaching Auxiliary Data
• Viewing Data
• Data Output
• Summary Statistics
• Association Analysis
• Locus Database Operations
• Reference Database Operations
• Miscellaneous commands

Exercise Genotype Data 

Autosomal exome genotype data was downloaded from the 1000 Genomes pilot data July 2010 release for 
both the CEU (Utah residents with Northern and Western European ancestry) and YRI (Yoruba in Ibadan, 
Nigeria) populations. The data sets (CEU.exon.201003.genotypes.vcf.gz and 
YRI.exon.201003.genotypes.vcf.gz) are available from: 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/release/2010_07/exon/snps 

The genomic co-ordinate for this data set is hg18 based. To use the PSEQ annotation data source which is 
hg19 based, you will lift over this data set to use hg19 co-ordinate. Since PSEQ does not provide a liftover 
feature therefore the data has already been lifted over for you using Variant Association Tools. The resulting 
data files, CEU.exon.201003.genotypes.hg19.vcf.gz and YRI.exon.201003.genotypes.hg19.vcf.gz, will be 
used for this exercise. One data set contains exome data for European-Americans (CEU) from 1000 
Genomes while the other for Yoruba (YRI). The liftover feature may also have to be used with your data set 
as new hg coordinates become available. For additional information see 
http://varianttools.sourceforge.net/Vtools/Liftover 

Phenotype Data 

To demonstrate performing an association analysis, we simulated a quantitative trait phenotype (BMI). 
Please note that these phenotypes are NOT from the 1000 genomes project. The phenotype data for the 
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exercise can be found in the text file phenotype.phe. This phenotype file contains data for 202 individuals 
from both the CEU and YRI populations. 

 
Computation Resources 

 
The following tutorial uses a small data set so that the association analysis can be completed in a short 
period-of-time. Large next-generation sequenced data sets require a reasonably powerful machine with a 
high-speed internet connection. 

 
Data Cleaning and Variant/Sample Selection 

 
Getting Started 

 
To get a list of PSEQ subcommands use: 

 

pseq help 
 

Or, 
 

pseq help all 
 

Create a new project 
 

pseq myproj new-project --resources hg19 
Creating new project specification file [ myproj.pseq ] 

 

The “--resources” flag tells pseq where your supporting databases are located. For this exercise the 
necessary databases have already been created and are within your exercise directory. Instructions on how to 
create these databases is located at: 

 
http://atgu.mgh.harvard.edu/plinkseq/resources.shtml. 

 

Load variant data 
 

Import all vcf files under the current directory: 
 

pseq myproj load-vcf --vcf CEU.exon.2010_03.genotypes.hg19.vcf.gz YRI.exon.2010_03.genotypes.hg19.vcf.gz 
loading : /home/gmc01/data/pseq/CEU.exon.2010_03.genotypes.hg19.vcf.gz ( 90 individuals ) 
parsed 3000 rows 
loading : /home/gmc01/data/pseq/YRI.exon.2010_03.genotypes.hg19.vcf.gz ( 112 individuals ) 
parsed 5000 rows 
/home/gmc01/data/pseq/CEU.exon.2010_03.genotypes.hg19.vcf.gz : inserted 3489 variants 
/home/gmc01/data/pseq/YRI.exon.2010_03.genotypes.hg19.vcf.gz : inserted 5175 variants 

 
Note CEU are European-Americans and YRI are Yoruba from Nigeria. 

Load phenotype data 
 

pseq myproj load-pheno --file phenotype.phe 
Processed 202 rows 

 
The “phenotype.phe” file contains phenotypes for SEX, BMI and RACE (BMI is body mass index, males 
are denoted by a 1 and females by 2). Instruction on formatting .phe file can be found at 
https://atgu.mgh.harvard.edu/plinkseq/input.shtml#phe. 
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View variants and samples 

To view variant sites info: 
 

pseq myproj v-view | head 
 
chr1:1115461 . C/T . 1 PASS 
chr1:1115503 . T/C . 1 SBFilter 
chr1:1115510 . C/T . 1 PASS 
chr1:1115548 . G/A . 1 PASS 
chr1:1115604 . C/A . 1 PASS 
chr1:1118275 rs61733845 C/T . 2 PASS 
chr1:1119399 . C/T . 1 PASS 
chr1:1119434 . C/A . 1 PASS 
chr1:1120370 . C/G . 1 PASS 
chr1:1120377 . T/A . 1 PASS 

 
v-view command outputs a per-variant level view of a project, with the above fields: chromosome (base- 
position); variant-ID (or ‘.’ If novel); ref/alt alleles; a sample/file identifier (or ‘.’ If consensus variant); # of 
samples the variant observed in; filter values for samples (here ‘PASS’ means that the variant site passes all 
filter and ‘SBFilter’ means that the variant site fails to pass the strand bias (SB) filter). More details about v- 
view command can be found at https://atgu.mgh.harvard.edu/plinkseq/view.shtml#var 

 

To view samples and phenotypes: 
 

i-view command writes to standard output to view individuals’ phenotype information 
 

pseq myproj i-view | head 
 
#BMI (Float) "BMI" 
#RACE (String) "RACE" 
#SEX (Integer) "SEX" 
#PHE . 
#STRATA . 
#ID FID 
NA06984 . 
NA06985 . 
NA06986 . 
NA06989 . 

 

There are 3 fields, BMI, RACE and SEX contained in the input phenotype file, phenotype.phe. The headers 
are #ID – main unique individual ID; FID – optional family ID; IID: optional individual ID; MISS – a flag 
to indicate missing data; SEX – sex; PAT – paternal ID; MAT – maternal ID; META – meta information of 
fields from input phenotype file. More details about i-view command outputs can be found at 
https://atgu.mgh.harvard.edu/plinkseq/view.shtml#ind. 

 

Summary 

To view a summary of the complete project 
 

pseq myproj summary 
 

Command above will generate a long list of output. To view summaries of portions of the project, i.e., 
variant data, phenotype data, locus data, reference data, sequence data, input files and meta data: 

 

pseq myproj var-summary 
-‐-‐-‐Variant DB summary-‐-‐-‐ 

 
6987 unique variants 
File tag : 1 (3489 variants, 90 individuals) 
File tag : 2 (5175 variants, 112 individuals) 

IID MISS SEX PAT MAT META 
. 0 0 . . BMI=36.353;RACE=CEU;SEX=1 
. 0 0 . . BMI=21.415;RACE=CEU;SEX=2 
. 0 0 . . BMI=26.898;RACE=CEU;SEX=1 
. 0 0 . . BMI=25.015;RACE=CEU;SEX=2 
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pseq myproj ind-summary 
-‐-‐-‐Individual DB summary-‐-‐-‐ 

 
202 unique individuals 
Phenotype : BMI (Float) "BMI" 
Phenotype : RACE (String) "RACE" 
Phenotype : SEX (Integer) "SEX" 

 

pseq myproj loc-summary 
 

pseq myproj ref-summary 
 

pseq myproj seq-summary 
 

pseq myproj file-summary 
 

pseq myproj meta-summary 
 

More details about viewing summary information for project databases can be found at 
https://atgu.mgh.harvard.edu/plinkseq/proj.shtml#summ 

 

Based on the “pseq myproj var-summary” command there are 6987 unique variant sites for CEU and YRI, 
with the CEU sample having 3489 variant sites and the YRI sample 5175 variant sites. . 

 
For an overview of variant summary statistics: 

 

pseq myproj v-stats 
NVAR 6987 
RATE 0.568384 
MAC 19.8557 
MAF 0.0691347 
SING 2064 
MONO 30 
TITV 3.57264 
TITV_S 3.77778 
DP 8426.74 
QUAL NA 
PASS 0.999857 
FILTER|PASS 0.999857 
FILTER|SBFilter 0.000143123 
PASS_S 1 

v-stats command obtains summary statistics across variants. Output statistics are NVAR – total number of 
variants; RATE – average call rate; MAC – mean minor allele count; MAF – mean minor allele frequency; 
SING – number of singletons; MONO – number of monomorphic sites; TITV – transition/transversion 
(Ti/Tv) ratio; TITV_S – Ti/Tv ratio for singletons; DP – mean variant read depth; QUAL – mean QUAL 
score from VCF; PASS – proportion of variants that PASS all FILTERS; FILTER|PASS – proportion of 
variants that pass all filters; FILTER|SBFilter – proportion of variants that fail to pass SB filter. More details 
about v-stats command outputs can be found at https://atgu.mgh.harvard.edu/plinkseq/stats.shtml#var 

For individual level summary statistics: 

pseq myproj i-stats | head 
 

ID NALT NMIN NHET NVAR RATE SING TITV PASS PASS_S QUAL DP 
NA06984 719 568 480 3162 0.452555 8 3.61789 568 8 NA 13489 
NA06985 655 531 420 3144 0.449979 10 3.5 531 10 NA 13530.3 
NA06986 773 643 503 3437 0.491914 22 3.69343 643 22 NA 12535.8 
NA06989 699 532 469 3130 0.447975 8 3.22222 532 8 NA 13549.7 
NA06994 591 464 377 3002 0.429655 3 3.59406 464 3 NA 13923.8 
NA07000 802 613 517 3388 0.484901 10 3.67939 613 10 NA 12292.6 
NA07037 800 631 512 3374 0.482897 4 3.60584 631 4 NA 12357.4 
NA07048 817 675 607 3373 0.482754 15 3.29936 675 15 NA 12909.5 
NA07051 825 637 507 3451 0.493917 13 3.05732 637 13 NA 11929 

 
i- stats command obtains a matrix of summary statistics for every individual in a project. Output statistics are 
ID – individual ID; NALT – number of non-reference genotypes; NMIN – number of genotypes with a 
minor allele; NHET – number of heterozygous genotypes for individual; NVAR – total number of called 
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variants for individual; RATE – genotyping rate for individual; SING – number of singletons individuals has; 
TITV – mean Ti/Tv for variants for which individual has a nonreference genotype; PASS – number of 
variants passing for which individual has a nonreference genotype; PASS_S - number of singletons passing 
for which individual has a (singleton) nonreference genotype; QUAL - mean QUAL for variants for which 
individual has a nonreference genotype; DP - mean variant DP for variants for which individual has a 
nonreference genotype. More details about i-stats command output can be found at 
https://atgu.mgh.harvard.edu/plinkseq/stats.shtml#ind 

The file tags (listed at the top of the “pseq myproj var-summary” results as “1” for the CEU imported VCF 
file and “2” for YRI imported VCF file) can be changed to more identifiable names using the commands: 

pseq myproj tag-file --id 1 --name CEU 

pseq myproj tag-file --id 2 --name YRI 

To view changes use the command: 

pseq myproj var-summary 
-‐-‐-‐Variant DB summary-‐-‐-‐

6987 unique variants 
File tag : CEU (3489 variants, 90 individuals) 
File tag : YRI (5175 variants, 112 individuals) 

This will help us later for viewing population specific data as well as filtering and analyzing data based on 
population. 

Variant statistics 

Variant statistics such as Hardy-Weinberg equilibrium, minor allele count, and minor allele frequency can be 
output using the “v-freq” command: 

pseq myproj v-freq | head 
VAR CHR 
chr1:1115461 1 
chr1:1115503 1 
chr1:1115510 1 
chr1:1115548 1 
chr1:1115604 1 
chr1:1118275 1 
chr1:1119399 1 
chr1:1119434 1 
chr1:1120370 1 

Please note that it is not valid to filter for deviation from HWE using the entire project since there are two 
populations, instead the HWE much be examined for each individual project. 
For population specific variant statistics use the “--mask” flag with the “file” option: 

pseq myproj v-freq --mask file=CEU | head 
VAR CHR POS REF ALT FILTER QUAL TI GENO MAC MAF REFMIN HWE HET NSNP 
chr1:1115503 1 1115503 T C SBFilter 0 1 0.633333 4 0.0350877 0 1 0.0701754 1 
chr1:1115548 1 1115548 G A PASS 0 1 0.588889 1 0.00943396 0 1 0.0188679 0 
chr1:1118275 1 1118275 C T PASS 0 1 0.677778 3 0.0245902 0 1 0.0491803 0 
chr1:1120377 1 1120377 T A PASS 0 0 0.988889 1 0.00561798 0 1 0.011236 1 
chr1:1120431 1 1120431 G A PASS 0 1 0.855556 6 0.038961 0 1 0.0779221 0 
chr1:3548136 1 3548136 T C PASS 0 1 0.811111 18 0.123288 1 1 0.219178 0 
chr1:3548832 1 3548832 G C PASS 0 0 0.988889 13 0.0730337 0 1 0.146067 0 
chr1:3551737 1 3551737 C T PASS 0 1 0.988889 1 0.00561798 0 1 0.011236 1 
chr1:3551792 1 3551792 G A PASS 0 1 1 8 0.0444444 0 1 0.0888889 0 

pseq myproj v-freq --mask file=YRI | head 
VAR CHR POS REF ALT FILTER QUAL TI GENO MAC MAF REFMIN HWE HET NSNP 
chr1:1115461 1 1115461 C T PASS 0 1 0.5625 4 0.031746 0 1 0.0634921 1 
chr1:1115510 1 1115510 C T PASS 0 1 0.598214 2 0.0149254 0 1 0.0298507 1 
chr1:1115604 1 1115604 C A PASS 0 0 0.517857 3 0.0258621 0 1 0.0517241 0 
chr1:1118275 1 1118275 C T PASS 0 1 0.5 42 0.375 0 0.395585 0.535714 0 
chr1:1119399 1 1119399 C T PASS 0 1 0.892857 3 0.015 0 1 0.03 1 
chr1:1119434 1 1119434 C A PASS 0 0 0.892857 1 0.005 0 1 0.01 0 
chr1:1120370 1 1120370 C G PASS 0 0 0.892857 16 0.08 0 0.478564 0.14 1 
chr1:1120431 1 1120431 G A PASS 0 1 0.741071 67 0.403614 0 0.360868 0.542169 4 
chr1:1120488 1 1120488 A C PASS 0 0 0.857143 10 0.0520833 0 1 0.104167 3 

As you see, the “--mask” flag is used to set conditions for the viewing or filtering variants or individuals. 
More details about “v-freq” command can be found at 
https://atgu.mgh.harvard.edu/plinkseq/tutorial.shtml 

POS REF ALT FILTER QUAL TI GENO MAC MAF REFMIN HWE HET NSNP 
1115461 C T PASS . 1 0.311881 4 0.031746 0 1 0.0634921 3 
1115503 T C SBFilter . 1 0.282178 4 0.0350877 0 1 0.0701754 2 
1115510 C T PASS . 1 0.331683 2 0.0149254 0 1 0.0298507 2 
1115548 G A PASS . 1 0.262376 1 0.00943396 0 1 0.0188679 1 
1115604 C A PASS . 0 0.287129 3 0.0258621 0 1 0.0517241 0 
1118275 C T PASS . 1 0.579208 45 0.192308 0 0.367544 0.282051 0 
1119399 C T PASS . 1 0.49505 3 0.015 0 1 0.03 1 
1119434 C A PASS . 0 0.49505 1 0.005 0 1 0.01 0 
1120370 C G PASS . 0 0.49505 16 0.08 0 0.478564 0.14 2 

082



Data Cleaning 
 

Removal of low quality variants 
 

To view the number of variants that passed all quality filters: 
 

pseq myproj v-view --mask any.filter.ex | head 
 
chr1:1115461 . C/T . 1 PASS 
chr1:1115510 . C/T . 1 PASS 
chr1:1115548 . G/A . 1 PASS 
chr1:1115604 . C/A . 1 PASS 
chr1:1118275 rs61733845 C/T . 2 PASS 
chr1:1119399 . C/T . 1 PASS 
chr1:1119434 . C/A . 1 PASS 
chr1:1120370 . C/G . 1 PASS 
chr1:1120377 . T/A . 1 PASS 
chr1:1120431 rs1320571 G/A . 2 PASS 

 
pseq myproj v-view --mask any.filter.ex | wc -l 

 
There are 6986 unique variant sites that have passed the quality filters. The “--mask” flag gives the 
condition(s) that must be met for the variant to be listed. Here “any.filter.ex” tells pseq to remove any 
variants that failed 1 or more quality filters. Only variants that have a ‘PASS’ value in the FILTER field of 
the vcf file will be selected. More details about filtering variants on FILTER field can be found at 
https://atgu.mgh.harvard.edu/plinkseq/masks.shtml#filter 

 

To view the number of variants that failed any quality filter: 
 

pseq myproj v-view --mask any.filter | wc -l 
 

One variant failed the filter. To select only variants that passed all quality filters: 
 

pseq myproj var-set --group pass --mask any.filter.ex 
 

pseq myproj var-summary 

-‐-‐-‐Variant DB summary-‐-‐-‐ 

6987 unique variants 
File tag : CEU (3489 variants, 90 individuals) 
File tag : YRI (5175 variants, 112 individuals) 

 
Set pass containing 8663 variants 

 
The “var-set” option tells pseq that we will be creating a new set of variants, the input following the “-- 
group” flag gives the name of the new variant set, and the input following the “--mask” flag gives the 
condition(s) that must be met for the variant to be included in the new variant set. 

If we consider variant sites with a read depth < 15 as low quality variant sites and we want to remove 
variants that did not meet this threshold. Note that ‘DP’, which denotes total read depth of a variant site, is 
contained in the INFO field of vcf file. 

 

pseq myproj var-set --group pass_DP15 --mask include="DP>14" var=pass 
 

pseq myproj var-summary 

-‐-‐-‐Variant DB summary-‐-‐-‐ 

6987 unique variants 
File tag : CEU (3489 variants, 90 individuals) 
File tag : YRI (5175 variants, 112 individuals) 

 
Set pass containing 8663 variants 
Set pass_DP15 containing 8662 variants 
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Only one variant site is removed. The “var=allpass” option allows us to use a previously defined variant set 
as a reference for additional filtering of a previously filtered variant set. By using various “--mask” 
commands you can filter out variants that are not useful for your particular study. 

 
Filter data by genotype read depth 10 

 

pseq myproj var-set --group pass_DP15_DPgeno10 --mask geno=DP:ge:11 var=pass_DP15 
 

pseq myproj var-summary 
-‐-‐-‐Variant DB summary-‐-‐-‐ 

 
6987 unique variants 
File tag : CEU (3489 variants, 90 individuals) 
File tag : YRI (5175 variants, 112 individuals) 

 
Set pass containing 8663 variants 
Set pass_DP15 containing 8662 variants 
Set pass_DP15_DPgeno10 containing 8662 variants 

 

This command sets all genotypes with a sequencing depth (DP) < 11 to null using the option 
“geno=DP:ge:11”. In the vcf file, genotype level DP information is contained in the genotype columns, 
present under each individual ID and is specific to every individual’s genotype. Available genotype level 
information is denoted by FORMAT column in the vcf file. 

 
Association Tests for a Quantitative Trait 

 
NOTE: From this step forward the association tests will be performed for the CEU population only. The 
“file=YRI” tag can be used to perform the same tests on the YRI data. 

 
Select CEU variant sites 

 
pseq myproj var-set --group pass_DP15_DPgeno10_CEU --mask file=CEU var=pass_DP15_DPgeno10 

 

pseq myproj var-summary 
 

-‐-‐-‐Variant DB summary-‐-‐-‐ 
… 
Set pass_DP15_DPgeno10_CEU containing 3488 variants 

 

There are 3488 variant sites that can be found in CEU population dataset after QC. 
 

Exclude variant sites with HWE p-value < 5.7e-7 
 

pseq myproj var-set --group pass_DP15_DPgeno10_CEU_HWE --mask hwe=5.7e-7:1 var=pass_DP15_DPgeno10_CEU 
 

pseq myproj var-summary 
 

-‐-‐-‐Variant DB summary-‐-‐-‐ 
… 
Set pass_DP15_DPgeno10_CEU containing 3479 variants 

 
There are 3479 variant sites that are in HWE (Hardy-Weinberg equilibrium) in CEU population. Details 
about tests for deviation from HWE can be found at http://en.wikipedia.org/wiki/Hardy–Weinberg_principle. 
Here we use a p-value cutoff of 5.7e-7 to exclude variant sites, for more details see reference 
http://www.nature.com/nature/journal/v447/n7145/full/nature05911.html 

 

Filter variants by minor allele frequency (MAF) 
 

We wish to analyze variant sites with different allele frequencies. In order to obtain the different data sets the 
following commands are used. 
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To extract variant sites with MAF ≥ 0.05: 
 

pseq myproj var-set --group pass_DP15_DPgeno10_CEU_HWE_MAFgt05 --mask maf=0.05:0.5  
var=pass_DP15_DPgeno10_CEU_HWE 

 

pseq myproj var-summary 
 

-‐-‐-‐Variant DB summary-‐-‐-‐ 
… 
Set pass_DP15_DPgeno10_CEU_HWE_MAFgt05 containing 1429 variants 

 
There are 1429 variant sites in the CEU data set that pass QC with a MAF ≥ 0.05. These variant sites are 
saved to the variant table; pass_DP15_DPgeno10_CEU_HWE_MAFgt05. 

 
To extract variant sites with MAF ≤ 0.01: 

 

pseq myproj var-set --group pass_DP15_DPgeno10_CEU_HWE_MAFlt01 --mask "mac=1 maf=0.01"  
var=pass_DP15_DPgeno10_CEU_HWE 

 

pseq myproj var-summary 
 

-‐-‐-‐Variant DB summary-‐-‐-‐ 
Set pass_DP15_DPgeno10_CEU_HWE_MAFlt01 containing 1083 variants 

 
There are 1083 variant sites in the CEU dataset which pass QC with a MAF ≤ 0.01. The variant sites are 
saved to the variant table; pass_DP15_DPgeno10_CEU_HWE_MAFlt01. Note that condition “mac=1” 
excludes monomorphic sites. 

More details about --mask options on filtering variants on sample polymorphism can be found at 
https://atgu.mgh.harvard.edu/plinkseq/masks.shtml#maf 

 

Analysis of common variants (MAF ≥ 0.05) 
 

To run a linear or logistic regression on each single variant, use the glm command. The type of test will 
depend on the phenotype (quantitative trait or dichotomous disease trait). 

 
To detect single variant association between quantitative phenotype BMI, controlling for sex and a group of 
variants, contained in variant table pass_DP15_DPgeno10_CEU_HWE_MAFgt05, filtered using each of the 
previous filtering conditions: 

 

pseq myproj glm --phenotype BMI --covar SEX --mask var=pass_DP15_DPgeno10_CEU_HWE_MAFgt05 > SNV_CEU.result  
 

head SNV_CEU.result 
VAR REF ALT N F BETA SE STAT P 
chr1:3548136 T C 73 0.876712 -‐1.53374 1.85033 -‐0.828897 0.40998 
chr1:3548832 G C 89 0.0730337 1.13049 2.26738 0.49859 0.619341 
chr1:6524501 T C 86 0.0697674 0.433904 2.49357 0.174009 0.862282 
chr1:6524688 T C 88 0.0511364 -‐1.86795 2.70494 -‐0.690568 0.491718 
chr1:11710561 T G 47 0.117021 -‐0.347495 1.92692 -‐0.180337 0.857716 
chr1:17914057 G A 86 0.0755814 -‐1.59486 2.34734 -‐0.679432 0.498754 
chr1:17914122 G A 85 0.0823529 2.61561 2.1748 1.20269 0.232558 
chr1:17961345 C T 68 0.110294 2.99054 2.00047 1.49492 0.139775 
chr1:17981184 A C 80 0.15 -‐1.83108 1.63531 -‐1.11972 0.266315 

 
The output statistics are VAR – variant identifier; REF – reference allele; ALT – alternate allele(s); N – 
number of individuals included in analysis; F – frequency of the alternate allele(s); BETA – regression 
coefficient; SE – standard error of estimate; STAT – test statistic; P – asymptotic p-value. More details about 
linear and logistic regression models can be found at https://atgu.mgh.harvard.edu/plinkseq/assoc.shtml#glm 

 

To view the results sorted by p-value: 
 

cat SNV_CEU.result | awk '{if(FNR==1) print $0; if(NR>1) print $0 | "sort -k9"}' | grep -v "NA\s\+NA\s\+NA" | head 
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VAR REF ALT N F BETA SE STAT P 
chr11:108383676 A G 90 0.138889 6.36308 1.60942 3.95365 0.000156342 
chr19:16008388 A C 53 0.122642 6.88317 1.73915 3.95778 0.000239339 
chr19:16006413 G A 80 0.1 6.31788 1.78167 3.54604 0.000669193 
chr14:39901157 C A 36 0.0555556 10.8531 3.12283 3.47542 0.00144933 
chr16:57735900 G C 80 0.29375 -‐4.18114 1.43663 -‐2.91039 0.004718 
chr2:49189921 C T 90 0.588889 -‐3.345 1.17772 -‐2.84025 0.0056123 
chr7:156742501 C G 9 0.277778 -‐12.1592 2.89402 -‐4.20149 0.00567644 
chr2:49191041 C T 89 0.58427 -‐3.36254 1.19515 -‐2.81348 0.00607226 
chr15:25926204 C G 83 0.0783133 5.79532 2.13611 2.71302 0.00816109 

 
 

Analysis of rare variants (MAF <0.01) 
 

PSEQ has a collection of gene-based tests, see https://atgu.mgh.harvard.edu/plinkseq/assoc.shtml#genic for 
details. 

 
However, Currently only the SKAT and SKAT-O can be used to analyze quantitative traits so the SKAT test 
will be used in the following rare variant burden analysis (if we choose to use other tests, e.g. WSS – 
frequency-weighted test, VT – variable threshold test, etc., the following error will be returned. 

 

pseq myproj assoc --tests fw vt --phenotype BMI  
pseq error : only SKAT/SKAT-‐O can handle quantitative traits 

 
To perform SKAT, where rare variants aggregated across a gene region, a group-by mask is required. Here 
we use loc.group=refseq, where refseq denotes NCBI Reference Sequence Database. More details about 
grouping variants can be found at https://atgu.mgh.harvard.edu/plinkseq/masks.shtml#groups. More details 
about refseq can be found at http://www.ncbi.nlm.nih.gov/refseq/ 

 

When performing single variant analysis data QC can be performed and then variant table containing 
selected variants can be analyzed. If a rare variant aggregate association test is being performed it is not 
possible using PSEQ to specify the name of the variant table, instead all of the QC parameters must be 
included in the command line in addition to the association test parameters. 

 
Running the SKAT test using the variant table results in an error: 

 

pseq myproj assoc --tests skat --phenotype BMI --covar SEX --mask var=pass_DP15_DPgeno10_CEU_HWE_MAFlt01  
loc.group=refseq > SKAT_CEU.result 

 
pseq error : you cannot specify other includes in the mask with loc.group 

 
Additional details can be found at https://atgu.mgh.harvard.edu/plinkseq/whatisnew.shtml), 

 

Although we use the most recent version pseq-0.10 in this exercise (for which there is no updated 
documentation), the error still remains unresolved. Therefore, we have to redo cleaning on original data by 
re-specifying each filtering condition and run SKAT using one command as below: 

 

pseq myproj assoc --tests skat --phenotype BMI --covar SEX --mask include="DP>14" geno=DP:ge:11 file=CEU hwe=5.7e-7:1  
"mac=1 maf=0.01" loc.group=refseq > SKAT_CEU.result 

 

head -20 SKAT_CEU.result 
LOCUS POS ALIAS NVAR TEST P I DESC 
NM_000055 chr3:165548187 G/A W=1 0:0    

NM_000055 chr3:165548187..165548187 BCHE 1 SKAT 0.237374 . . 
NM_000112 chr5:149359938 C/G W=1 0:0    

NM_000112 chr5:149360143 T/C W=1 0:0    

NM_000112 chr5:149360212 A/G W=1 0:0    

NM_000112 chr5:149360215 T/C W=1 0:0    

NM_000112 chr5:149361245 G/A W=1 0:0    

NM_000112 chr5:149359938..149361245 SLC26A2 5 SKAT 0.293096 . . 
NM_000119 chr15:43498537 C/T W=1 0:0    

NM_000119 chr15:43499436 G/A W=1 0:0    

NM_000119 chr15:43500478 C/T W=1 0:0    

NM_000119 chr15:43498537..43500478 EPB42 3 SKAT 0.422114 . . 
NM_000122 chr2:128016983 C/T W=1 0:0    

NM_000122 chr2:128038204 T/C W=1 0:0    
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NM_000122 chr2:128016983..128038204 ERCC3 2 SKAT 0.386466 . . 
NM_000124 chr10:50732644 G/C W=1 0:0  

NM_000124 chr10:50738781 T/C W=1 0:0  

NM_000124 chr10:50740844 G/A W=1 0:0  

NM_000124 chr10:50740861 C/T W=1 0:0  

 

For each gene region the list of the variants within the gene are listed, followed by gene-based association 
results. The I field is only available for case control data and provides the smallest possible empirical p- 
value which can be obtained for the variant sites and the DESC field which is also only available for case 
control data and it provides the number of case and control alternative alleles. Since we are analyzing 
quantitative trait data these fields are blank. Detailed explanation about each output field can be found at 
https://atgu.mgh.harvard.edu/plinkseq/assoc.shtml#genic 

 

To view the smallest p-values for each SKAT test: 
 

cat SKAT_CEU.result | grep SKAT | grep -v "P=NA" | sort -k6 | head -15 
NM_024837 chr15:50152449..50264848 ATP8B4 5 SKAT 0.00405073 . . 
NM_001055 chr16:28617413..28617413 SULT1A1 1 SKAT 0.00418122 . . 
NM_177529 chr16:28617413..28617413 . 1 SKAT 0.00418122 . . 
NM_177530 chr16:28617413..28617413 . 1 SKAT 0.00418122 . . 
NM_177534 chr16:28617413..28617413 . 1 SKAT 0.00418122 . . 
NM_177536 chr16:28617413..28617413 . 1 SKAT 0.00418122 . . 
NM_001137559 chr12:121746337..121764935 ANAPC5 3 SKAT 0.00621198 . . 
NM_016237 chr12:121746337..121764935 . 3 SKAT 0.00621198 . . 
NM_006371 chr3:33174163..33174163 CRTAP 1 SKAT 0.00748816 . . 
NM_006944 chr2:234959642..234967570 SPP2 3 SKAT 0.00753125 . . 
NM_018328 chr2:149221327..149241000 MBD5 4 SKAT 0.00755692 . . 
NM_000782 chr20:52779338..52779338 CYP24A1 1 SKAT 0.00794735 . . 
NM_001128915 chr20:52779338..52779338 . 1 SKAT 0.00794735 . . 
NM_001018088 chr15:62204043..62302757 . 3 SKAT 0.0221564 . . 
NM_017684 chr15:62204043..62302757 VPS13C 3 SKAT 0.0221564 . . 

Note that each test has been performed on each alternative transcript (NM_*) of each gene, e.g. transcripts 
NM_001055, NM_177529, NM_177530, NM_177534 and NM_177536 all belong to gene SULT1A1. 

 
Questions 

 
Repeat the above analysis but using the data from the Yoruba (YRI) population and answer the following 
questions. 

 
Question 1 

 
List the four smallest p-values for the single variant tests for the common variants i.e. MAF >0.05: 

 

1.)                
 

2.)   
 

3.)   
 

4.)   
 

List the four smallest p-values for the SKAT rare variant test: 

1.)   

2.)   
 

3.)   
 

4.)   
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Answers 

Question 1 

Single variant test 

1.)   chr21:26979752  0.00084882  
 

2.)   chr17:3445901  0.000956475  
 

3.)   chr17:9729445  0.0010022  
 

4.)   chr19:15303225 0.0011692  
 

SKAT aggregate burden test 
 

1.)   NM_207317  0.0210752  
 

2.)   NM_032048  0.0238947  
 

3.)   NM_002738  0.0255961  
 

4.)   NM_212535  0.0255961  
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Sample Size Calculations - Cochran-Armitage Test for Trend 
 
Copyrighted Ó 2022 Suzanne M. Leal  
 
Webpage for the exercises: 
http://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/index.html  
http://ihg.helmholtz-muenchen.de/cgi-bin/hw/power2.pl  
http://zzz.bwh.harvard.edu/gpc/cc2.html  
 
Question 1 
For a complex disease study, you plan to collect 35,000 cases and 70,000 controls and wish to know if this is a 
sufficient sample size to detect associations with disease susceptibility loci. The disease has a population 
prevalence of 5%. You wish to estimate the power for a genotypic relative risk of 1.2 and a disease allele 
frequency of 0.02. What is the power for α=5x10-8 under a under a multiplicative model ( ) 
a.)_________and dominant model ( ) b.) _____________? 
 
Question 2 
For your study, you hypothesize that you will try to replicate associations for 100 variants that are in linkage 
equilibrium and you want to reject the null hypothesis using a p-value of 0.05. What is the Bonferroni 
correction you should use a.)__________. Determine what your power would be if you used a Bonferroni 
correction to control for the Family Wise Error Rate (FWER) for testing 100 variants.  Using the parameters 
provided in question 1 but for a sample size of 20,000 cases and 20,000 controls what is the power under the 
multiplicative model b.)_______________ and under a dominant model c.)___________________? 
 
Question 3 
You determine that you can ascertain 50,000 cases and 50,000 controls what is the power using the same 
parameters as described in question 1 for the multiplicative model _______________ and dominant 
model______________________? 
 
Question 4 
The power of the Cochran-Armitage test for trend is dependent on the underlying genetic model. Using the 
parameters from question 1 which of the following underlying genetic models: multiplicative ( ), 
additive( ), dominant ( ) or  recessive ( ) would you predict to be the most powerful 
a.)______________ and least powerful  b.)____________________? 
 
Question 5 
For study design with equal numbers of cases and controls a genotype relative risk of 1.5 under a recessive 
model for a disease with a population prevalence of 0.05 and disease allele frequency of 0.1.  How many cases 
a.)______ and controls b.) ________should you ascertain for α=5.0 x 10-8 and 1-β=0.80? *Use power2 or 
Genetic Power Calculator, GAS power cannot calculate for more than 100,000 cases. 
 
Question 6  
You are performing a rare variant association study and you assume that that cumulative frequency of the causal 
variants in your gene region is 0.01 with every variant having an effect size of 1.4.  The disease you are 
studying has a prevalence of 5%.  For a study with 0.8 power and an α=2.5 x 10-6 under a dominant model for 
equal numbers of cases and controls what is the total sample size a.) __________ do you need to ascertain. 
What is the total sample size b.)_________you need to ascertain if the cumulative frequency of causal variants 
is only 0.005? 
 
 
 

2
12 gg =

12 gg =

2
12 gg =

12 12 -= gg 12 gg = 11 =g
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Question 7 
You are performing a study using the UK Biobank and for your phenotype of interest you have 50,000 cases 
and 100,000 controls.  For a disease with 10% prevalence, disease allele frequency of 0.01, where each variant 
has an effect size of 1.2 under a dominant model what would be the power for an aggregate test where the 
cumulative allele frequency is 0.01 _________and a single variant test ____________?  Clue use the 
appropriate alpha for each test.  
 
Question 8  
Using have a replication sample of 50,000 cases and 50,000 controls and you plan to try to replicate 15 genes 
and 100 variants. Using the same parameters as in question 7 what would be your power to replicate 
a.)________________?  Note for alpha use a Bonferroni correction. 
 
Question 9 
For the above power calculations, you have been using the relative risk which only approximates the odds ratio 
when a.) _______________________? You are performing a power calculation for a case control study for a 
disease/variant frequency of 0.01. You use a dominant model and a gamma of 1.2 for a disease with a 
prevalence for 0.2. What is the odds ratio for which the power calculations are being performed b.) 
_________________? *Use Genetic Power Calculator – information not provided by GAS or Power2. 
 
ANWSERS 
1. a.) 0.702 b.) 0.654 
2. a.) 5.0x10-4  b.) 0.690 c.) 0.657  
3. a.) 0.798 b.) 0.755 
4. a.) multiplicative b.) recessive 
5. a.) 170,910 b.) 170,910 
6. a.) ~43,000 b.) ~84,300 
7. a.) 0.73 b.) 0.45 Hint: use α=5x10-8 for single variant test and α=2.5x10-6 for the aggregate test 
8. a.) 0.87 (Hint: use α=4.3x10-4) 
9. a.) only for disease with low prevalence does the relative risk does not estimate the odds ratio b.) 1.26 
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Exercise 

Multiple Testing 
Simultaneous testing of several hypotheses increases the probability to observe at least one significant result by 
chance. The single-test significance levels (or, correspondingly, the P-values) have to be corrected for this 
multiplicity. Correction can either aim at controlling the number of false-positives (i.e. the family-wise error 
rate; FWER) or the proportion of false-positives (i.e. the false discovery rate; FDR). Corrections can be made 
following either a stepwise procedure (single-step, step-down, etc.) or by permutation. 
In this exercise, stepwise as well as permutation-based correction will be applied. All methods in this exercise 
do not adjust the single-test significance level, but instead adjust the P-value by multiplying it with some 
correction factor. Thus, all adjusted P-values smaller than the pre-set experiment-wise significant level (usually 
0.05) can be considered significant after correction for multiple testing. Please also answer the questions at the 
end. 
Attention: PLINK expects each command to be in a single line! PLINK ignores arguments on subsequent lines 
after a line break. Please type each command without a line break or use a backslash (‘\’) before a line break. A 
backslash causes PLINK to ignore the line break. 

 
Correction with PLINK 
Please change the working directory as requested. You are provided with a data set on diastolic blood pressure 
and the genotypes of 20 SNP markers. The data are already in binary PLINK format. There are three files 

• dbp.fam: Pedigree file with information on family, sex and affection status 
• dbp.bim: SNP marker description 
• dbp.bed: SNP genotypes (in compressed, binary form) 

Stepwise correction 

Run an association analysis where you test each marker in the data file for association with the case-control 
status under an allelic genetic risk model. To this end, use the --assoc flag of PLINK. Since you perform 
multiple tests, you will also request stepwise multiple testing corrections by additionally using the --adjust 
flag. Write the results to files named multtest.*: 
plink --bfile dbp --assoc --adjust --out multtest 

Use a text editor (e.g. notepad/Wordpad under Windows, pico/vi/nano/emacs under Linux) to 
evaluate the contents the results file ‘multtest.assoc.adjusted’. The markers in this file are sorted in 
ascending order by their “raw”, unadjusted P-values. The further columns list the adjusted P-values for a 
number of correction methods. 

 
Correction by permutation 

Now run two separate permutation corrections (the ‘Westfall & Young’ approach), one with 5000 and one with 
100,000 permutations: 
plink --bfile dbp --assoc --mperm 5000 --out multperm5000 
plink --bfile dbp --assoc --mperm 100000 --out multperm100000 

Inspect the resulting files, multperm5000.assoc.mperm and multperm100000.assoc.mperm, with 
a text editor and answer the questions below. 
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If this command results in an error message that the library is not installed: 

You have to install the multtest library on your computer. Under Linux, please ask your system 
administrator. Under Windows (given you have Administrator privileges), please follow the 
following steps: 

1. Install Bioconductor core packages on your computer by typing the following commands in the R 
shell: 
if (!requireNamespace("BiocManager", quietly = TRUE)) 

install.packages("BiocManager") 
BiocManager::install() 

2. Install the multtest package: 
BiocManager::install("multtest") 

3. Load the multtest package: 
library(multtest) 

Correction with R 
In this exercise, only stepwise correction will be applied. Please also answer the questions at the end. 

Start R and change the working directory as requested. P-values for the diastolic blood pressure have already 
been calculated and stored in the R archive file ‘p.values.R’. Load the P-values for the exercise into the R 
working memory: 
load(“p.values.R”) 
ls() 
p.values 

 
 

Loading a dedicated R library 

The function that calculates multiplicity-corrected P-values is contained in a library (or package). This is a 
bundle of functions and/or data sets for use in R. Libraries have to be loaded into the R working memory, before 
their functions can be used. The library multtest contains various functions for multiple-testing correction 
and is available from Bioconductor. 
Load the library into working memory with the following command: 
library (multtest) 

 

 

Stepwise correction 

The function for multiplicity correction is called mt.rawp2adjp. It expects a list of “raw” P-values as well as 
a vector of the names of those methods that should be applied. 

Call this function and assign the result to an object adj.p.values. Then print this object: 
adj.p.values = mt.rawp2adjp(p.values,c("Bonferroni","Holm","SidakSS","BH")) 
adj.p.values 

The object is an R list that contains two elements: a matrix of P-values (adjp) and an index (index). The 
markers have been sorted by their “raw” P-values and this order is given in the index. For convenience, we will 
name the rows of the P-value matrix by the corresponding marker name and then print the object again. The 
column EMP2 contains the adjusted empirical P-values: 
rownames(adj.p.values$adjp) = names(p.values[adj.p.values$index]) 
adj.p.values$adjp 
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Questions 

1. Please enter the raw and stepwise adjusted P-values for markers rs1112 and rs1117 from the analysis 
in PLINK in the table below. 

 

Marker Raw P-value 

UNADJ 

Adjusted P-value following 

BONF± HOLM¶ SIDAK_SS* FDR_BH** 

rs1112      

rs1117      

± Bonferroni correction 
¶ Holm correction 
* Šidak single-step correction 
** Benjamini-Hochberg (false-discovery rate!) 

 
2. Please enter the adjusted empirical P-values for markers rs1112 and rs1117 from the analysis with 
PLINK in the table below. 

 

Marker Empirical adjusted P-value (EMP2) after 

5000 permutations 100000 permutations 

rs1112   

rs1117   

 
 
3. The Bonferroni-adjusted P-value for rs1112 is, despite the conservativeness of this correction, much 
smaller than the adjusted empirical P-value. Do you have an explanation? 

 
 
 
 
 
 
 
 
4. Please enter the raw and adjusted P-values for markers rs1112 and rs1117 from the analysis in R in the 
table below. 

 

Marker Raw P-value Adjusted P-value following 

Bonferroni Holm SidakSS* BH** 

rs1112      

rs1117      

* Šidak single-step correction 
** Bonferroni-Holm (false-discovery rate!) 
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Answers 
Multiple Testing 

Correction with PLINK 

Stepwise correction 
plink --bfile dbp --assoc --adjust --out multtest 

multtest.assoc.adjusted 

 
 
 
 
 
The output file contains one line for each tested marker. The column ‘UNADJ’ contains the nominal P-value 
without correction for multiple testing. The subsequent columns contain the corrected P-values for different 
correction methods, e.g. ‘BONF’ for Bonferroni correction and ‘SIDAK_SS’ for Šidak correction. 

 
Correction by permutation 
plink --bfile dbp --assoc --mperm 5000 --out multperm5000 
plink --bfile dbp --assoc --mperm 100000 --out multperm100000 

multperm5000.assoc.mperm 
 

CHR SNP EMP1 EMP2 
11 rs1101 0.6727 1 
11 

... 
rs1102 0.8414 1 

11 rs1112 0.0002 0.0002 
11 rs1113 0.0004999 0.0022 

... 
11 

 
rs1117 

 
0.0002 

 
0.0002 

...    

multperm100000.assoc.mperm 

CHR SNP EMP1 EMP2 
11 rs1101 0.6801 1 
11 rs1102 0.8389 1 

...    
11 rs1112 1e-05 1e-05 
11 

... 
rs1113 0.000125 0.00216 

11 
... 

rs1117 1e-05 6e-05 

The column ‘EMP2’ contains the desired maxT (‘Westfall & Young’) empirical P-value, corrected for multiple 
testing (e.g. p=6.0×10-5 for rs1117). The ‘EMP1’ column contains the empirical P-value for the single-marker 
test without multiplicity correction (e.g. p=1.0×10-5 for rs1117) based on permutation rather than on asymptotic 
statistical theory, like the ξ2 test. 

Correction with R 
load ("p.values.R") 
ls() 
[1] p.values 

 
p.values 

rs1101 rs1102 rs1103 rs1104 rs1105 
7.277672e-01 8.958136e-01 4.179383e-01 7.649468e-02 7.280132e-01 

rs1106 rs1107 rs1108 rs1109 rs1110 

CHR SNP UNADJ GC BONF HOLM SIDAK_SS ... FDR_BH ... 
11 rs1112 8.634e-09 0.0001088 1.727e-07 1.727e-07 1.727e-07 ..... 1.727e-07 ... 
11 rs1115 4.616e-07 0.000699 9.231e-06 8.77e-06 9.231e-06 ..... 4.616e-06 ... 
11 rs1117 1.654e-06 0.001273 3.308e-05 2.977e-05 3.308e-05 ..... 1.103e-05 ... 
11 
... 

rs1119 0.0001107 0.009339 0.002214 0.001882 0.002211 ... 0.0005535 ... 
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6.979278e-01 4.219864e-01 1.838581e-01 1.000000e+00 6.428679e-01 
rs1111 rs1112 rs1113 rs1114 rs1115 

7.709398e-01 1.253122e-08 2.043651e-04 2.920328e-01 6.485844e-07 
rs1116 rs1117 rs1118 rs1119 rs1120 

9.152594e-01 2.395866e-06 3.379778e-04 1.497200e-04 4.326036e-04 
 
Loading a dedicated R library 
library (multtest) 
Load required package: BiocGenerics 
Load required package: parallel 
... 
Load required package: Biobase 
Welcome to Bioconductor 
Welcome to Bioconductor 
... 

 
Stepwise correction 
adj.p.values = mt.rawp2adjp(p.values,c("Bonferroni","Holm","SidakSS","BH")) 
adj.p.values 
$adjp 

rawp Bonferroni Holm SidakSS BH 
[1,] 1.253122e-08 2.506245e-07 2.506245e-07 2.506244e-07 2.506245e-07 
[2,] 6.485844e-07 1.297169e-05 1.232310e-05 1.297161e-05 6.485844e-06 
[3,] 2.395866e-06 4.791732e-05 4.312558e-05 4.791622e-05 1.597244e-05 
[4,] 1.497200e-04 2.994400e-03 2.545240e-03 2.990145e-03 7.486001e-04 

... 
$index 
[1] 12 15 17 19 13 18 20 4 8 14 3 7 10 6 1 5 11 2 16 9 

$h0.ABH 
NULL 
$h0.TSBH 
NULL 

The resulting data object is a list. The first list entry (‘adjp’) is a matrix of raw and multiple-testing adjusted P- 
values. These values are sorted in ascending order; correction is applied by multiplying the nominal P-value 
with some correction factor. For each requested correction method, a corresponding column is appended to the 
column of nominal (‘raw’) P-values. The second list entry (‘index’) reports the index with regard to the 
original P-value list, i.e. p.values. 
We subsequently use the names of the p.values object to assign row names to the P-value matrix for better 
readability, i.e. which P-value belongs to which marker: 
rownames(adj.p.values$adjp) = names(p.values[adj.p.values$index]) 
adj.p.values$adjp 

rawp Bonferroni Holm SidakSS BH 
rs1112 1.253122e-08 2.506245e-07 2.506245e-07 2.506244e-07 2.506245e-07 
rs1115 6.485844e-07 1.297169e-05 1.232310e-05 1.297161e-05 6.485844e-06 
rs1117 2.395866e-06 4.791732e-05 4.312558e-05 4.791622e-05 1.597244e-05 
rs1119 1.497200e-04 2.994400e-03 2.545240e-03 2.990145e-03 7.486001e-04 
rs1113 2.043651e-04 4.087302e-03 3.269841e-03 4.079376e-03 8.174604e-04 
rs1118 3.379778e-04 6.759556e-03 5.069667e-03 6.737897e-03 1.126593e-03 
rs1120 4.326036e-04 8.652072e-03 6.056451e-03 8.616607e-03 1.236010e-03 
rs1104 7.649468e-02 1.000000e+00 9.944309e-01 7.963952e-01 1.912367e-01 
rs1108 1.838581e-01 1.000000e+00 1.000000e+00 9.828085e-01 4.085736e-01 
rs1114 2.920328e-01 1.000000e+00 1.000000e+00 9.989994e-01 5.840657e-01 
rs1103 4.179383e-01 1.000000e+00 1.000000e+00 9.999801e-01 7.033107e-01 
rs1107 4.219864e-01 1.000000e+00 1.000000e+00 9.999827e-01 7.033107e-01 
rs1110 6.428679e-01 1.000000e+00 1.000000e+00 1.000000e+00 9.069880e-01 
rs1106 6.979278e-01 1.000000e+00 1.000000e+00 1.000000e+00 9.069880e-01 
rs1101 7.277672e-01 1.000000e+00 1.000000e+00 1.000000e+00 9.069880e-01 
rs1105 7.280132e-01 1.000000e+00 1.000000e+00 1.000000e+00 9.069880e-01 
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rs1111 7.709398e-01 1.000000e+00 1.000000e+00 1.000000e+00 9.069880e-01 
rs1102 8.958136e-01 1.000000e+00 1.000000e+00 1.000000e+00 9.634309e-01 
rs1116 9.152594e-01 1.000000e+00 1.000000e+00 1.000000e+00 9.634309e-01 
rs1109 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 

 

Questions 

1. Please enter the raw and stepwise adjusted P-values for markers rs1112 and rs1117 from the PLINK 
analysis in the table below. 

 

Marker Raw P-value 

UNADJ 

Adjusted P-value following 

BONF± HOLM¶ SIDAK_SS* FDR_BH** 

rs1112 8.634e-09 1.727e-07 1.727e-07 1.727e-07 1.727e-07 

rs1117 1.654e-06 3.308e-05 2.977e-05 3.308e-05 1.103e-05 
± Bonferroni correction 
¶ Holm correction 
* Šidak single-step correction 
** Benjamini-Hochberg (false-discovery rate!) 

 
2. Please enter the adjusted empirical P-values for markers rs1112 and rs1117 from the PLINK analysis 
in the table below. 

 

Marker Empirical adjusted P-value (EMP2) after 

5000 permutations 100000 permutations 

rs1112 0.0002 1e-05 

rs1117 0.0002 6e-05 
 
3. The Bonferroni-adjusted P-value for rs1112 is, despite the conservativeness of this correction, much 
smaller than the adjusted empirical P-value. Do you have an explanation? 

Empirical P-values are calculated as the proportion of permutations that yield an even more extreme value for 
the test statistic (maxT) than that observed with the original sample. With small P-values, the number of 
permutations acts as a “resolution” limit for estimating the empirical P-value, because extreme values are by 
definition rare events. The inverse of the number of permutations equals the smallest P-value larger than zero 
that can be obtained by permutation testing; here: 1/5000 = 0.0002 and 1/100000 = 1e-05. Correcting P-value 
that are known to be very small therefore requires a large number of permutations and, correspondingly, a 
considerable amount of time. 

 
4. Please enter the raw and adjusted P-values for markers rs1112 and rs1117 from the R analysis in the 
table below. 

 

Marker Raw P-value Adjusted P-value following 

Bonferroni Holm SidakSS* BH** 

rs1112 1.253e-08 2.506e-07 2.506e-07 2.506e-07 2.506e-07 

rs1117 2.396e-06 4.792e-05 4.313e-05 4.792e-05 1.597e-05 
* Šidak single-step correction 
** Bonferroni-Holm (false-discovery rate!) 
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Exercise 

Multifactorial Analysis 2 
Analyses using PLINK 
Here, we continue the regression exercise and test for gene-gene and gene-environmental interaction. Since the 
syntax for many of the commands is repetitive, please use the copy & paste functionality of your text editor and 
subsequently make the necessary changes to the copied text. 

Attention: PLINK expects each command to be in a single line! PLINK ignores arguments on subsequent lines 
after a line break. Please type each command without a line break or use a backslash (‘\’) before a line break. A 
backslash causes PLINK to ignore the line break. 
Please also answer the questions at the end of the exercise. 

 
The data set 

Please change the working directory as requested. You are provided with a data set on diastolic blood pressure 
and the genotypes of 20 SNP markers. The data are already in PLINK format. There are some files: 

• dbp.[fam|bim|bed]:  Set of binary PLINK files with a dichotomized trait 
(affection status: elevated blood pressure yes/no) 

Use a text editor (notepad/Wordpad under Windows, pico/vi/nano/emacs under Linux) to inspect the 
contents of these files (except for *.bed file which is binary). Make sure you understand the meaning of each 
column in the files. 

For this exercise, data cleaning will be skipped. First, please have a look to the questions sheet in the back. 
Enter the P-values in the table while proceeding with the exercise. 

 
IV. Gene-environment (GxE) and gene-gene (GxG) interaction 

Interaction between factors (genetic and non-genetic) can also be tested in regression models. The model then 
includes a main effect term for each factor as well as additional product terms for all pairs of factors. With 
PLINK, use the --interaction flag to include interaction terms in the model. 

It is important to note, however, that statistical interaction does not necessarily imply biological interaction, 
such as epistasis or synergy. Statistical interaction only denotes the deviation from linearity in the regression 
model! 

Gene-environment (GxE) interaction 

Run a regression analysis where all SNPs are considered under an allelic model, where the effects are adjusted 
for the effect of the covariate sex, and where additionally the gene-environmental interaction of SNP marker 
and sex is considered: 
plink --bfile dbp --logistic sex interaction --out logreg.sex.inter.add 

Inspect the results file with a text editor: 
logreg.sex.inter.add.assoc.logistic 

 

CHR SNP BP A1 TEST NMISS OR STAT P 
11 rs1101 1021 1 ADD 600 1.124 0.636 0.5248 
11 rs1101 1021 1 SEX 600 2.769 3.62 0.0002948 
11 rs1101 

... 
1021 1 ADDxSEX 600 0.7912 -0.9564 0.3389 

! 
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The ADD and SEX lines contain the P-values for the marker and the environmental covariate, respectively. The 
ADDxSEX line gives the P-value for the interaction term. 

Gene-gene (GxG) interaction 

Gene-gene interaction is incorporated in a very similar fashion by combining the --condition and -- 
interaction flags. Run a regression analysis as before, but now incorporate SNP-SNP interaction terms 
while adjusting for SNP rs1112: 
plink --bfile dbp --logistic interaction --condition rs1112 \ 

--out logreg.snp1112.inter.add 

Inspect the results file with a text editor. 
logreg.snp1112.inter.add.assoc.logistic 

 

CHR SNP BP A1 TEST NMISS OR STAT P 
11 rs1101 1021 1 ADD 600 0.7121 -2.034 0.04195 
11 rs1101 1021 1 rs1112 600 1.377 1.535 0.1247 
11 rs1101 

... 
1021 1 ADDxCSNP1 600 1.721 2.686 0.007232 

The ADD and rs1112 lines contain the P-values for the considered marker and for SNP rs1112 as the factor 
the analysis is adjusted for, respectively. The ADDxCSNP1 line contains the P-value for the interaction term. 

Questions 

1. Please enter the P-values for marker rs1112 from the analyses in the table below. 
 

 Type of analysis P-value 

IV. Interaction P-value with covariate sex  

 Interaction P-value with marker rs1117  

 
 

2. Is there evidence for statistical interaction between marker rs1112 and sex? 
 
 
 
 

3. Is there evidence for statistical interaction between markers rs1112 and rs1117? 
 
 
 
 

Analyses using R 
In this exercise, we continue the regression analysis with considering gene-gene and gene-environmental 
interaction as well as model selection. 

The data set is the same as with the PLINK exercise. For convenience, it has already been converted to R format 
and stored in the file dbp.R. 

Since the syntax for many of the commands is highly repetitive and in order to save time, please use the copy & 
paste functionality of your text editor and subsequently make the necessary changes to the copied text. 
Please also answer the questions at the end of the exercise. 
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Data set import 

Start R and change the working directory as requested. Load the data set for the exercise and get an overview 
which objects have been loaded into the R working memory: 
load("dbp.R") 
ls() 
dbp[1:5,] 
summary(dbp) 

 
IV. Gene-environment (GxE) and gene-gene (GxG) interaction 
Interaction between factors (genetic and non-genetic) can also be tested. The model then additionally includes 
the product term of the two factors. In R, this is achieved by using the * operator in the model formulation, for 
example affection ~ sex * snp, which is equivalent to affection ~ sex + snp + sex:snp. 
The variables sex and snp denote the main effect terms, while sex:snp denotes the interaction term. 

It is important to note, however, that statistical interaction does not necessarily imply biological interaction, 
such as epistasis or synergy. Statistical interaction only denotes the deviation from linearity within the 
regression model! 

 
Gene-environment (GxE) interaction 
Test SNP rs1112 for significant interaction with each of the two covariates sex and age: 
result.inter = glm (affection ~ sex * rs1112, family=binomial("logit"), 

data=snp.data) 
summary(result.inter) 

 
result.inter = glm (affection ~ age * rs1112, family=binomial("logit"), 

data=snp.data) 
summary(result.inter) 

 
Gene-gene (GxG) interaction 

Now test markers rs1112 and rs1117 for significant statistical interaction: 
result.inter = glm (affection ~ rs1112 * rs1117, family=binomial("logit"), 

data=snp.data) 
summary(result.inter) 

 
V. Model selection 

The use of parsimonious statistical models to describe the relation between response and predictor variables is 
recommended. Model selection can often help to extract the relevant variables from a list of potential 
candidates. For example, one SNP among numerous ones in strong LD is sufficient to represent the underlying 
phenotypic association. Model selection offers a convenient way to select only those markers that show 
independent signals. 
In a first step, run a logistic regression analysis of the full model, which includes all markers and all covariates 
under consideration: 
result.reg = glm (affection ~ sex + age + rs1112 + rs1117, 

family=binomial("logit"), data=snp.data) 
summary(result.reg) 

Now perform the model selection using R’s step function. R will document the steps that led to the exclusion 
of variables on screen. Use the summary function to print the result of the model selection process: 
modelchoice.result <- step (result.reg) 
summary(modelchoice.result) 
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Quitting 
Quit the R session by calling the quit function. Note that this exercise will be continued in part II, so please type 
Y to save your workspace image. 
q() 

 (Y)es for saving the workspace image. 
 

Questions 

1. Please enter the P-values for marker rs1112 from the analyses in the table below. 
 
 

 Type of Analysis P-value 

IV. Interaction P-value with covariate sex  

 Interaction P-value with marker rs1117  

 
 

2. Which variables are included in the final regression model after model selection? 
 
 

 
Answers 

 
Multifactorial Analysis 2 

Analyses using PLINK 

IV. Gene-environment (GxE) and gene-gene (GxG) interaction 
plink --bfile dbp --logistic sex interaction --out logreg.sex.inter.add 

logreg.sex.inter.add.assoc.logistic 

 
 
 
 
 
 

plink --bfile dbp --logistic interaction --condition rs1112 \ 
--out logreg.snp1112.inter.add 

logreg.snp1112.inter.add.assoc.logistic 

 
 
 
 
 

When considering the effects of a covariate and a possible interaction between marker and covariate, the output 
file contains three lines. One line reports the results for the tested marker (‘ADD’), while a second line reports 
the results for the covariate (e.g. ‘SEX’). A third line (e.g. ‘ADDxSEX’) reports the results for the interaction 
term between marker and covariate in the regression model. In this example, marker rs1112 shows significant 

CHR SNP BP A1 TEST NMISS OR STAT P 
... 
11 

 
rs1112 

 
1245604 

 
2 

 
ADD 

 
600 

 
2.115 

 
3.681 

 
0.0002325 

11 rs1112 1245604 2 SEX 600 2.204 3.361 0.0007774 
11 rs1112 1245604 2 ADDxSEX 600 1.042 0.1491 0.8815 
...         

 

CHR 
... 

SNP BP A1 TEST NMISS OR STAT P 

11 rs1117 1258119 2 ADD 600 1.451 0.8555 0.3923 
11 rs1117 1258119 2 rs1112 600 1.846 3.125 0.001779 
11 
... 

rs1117 1258119 2 ADDxCSNP1 600 0.9281 -0.2363 0.8132 
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association with the affection status (p=0.0002) after correction for the effect of sex and a potential interaction 
between rs1112 and sex. While sex shows significant phenotypic association (p=0.0008), the interaction term is 
not significant (p=0.9). Thus, while males and females do have different baseline risks, there is no evidence that 
the risk increase caused by the minor allele (allele ‘2’) differs between males and females. 

 
Questions 

1. Please enter the P-values for marker rs1112 from the analyses in the table below. 
 

 Type of analysis P-value 

IV. Interaction P-value with covariate sex 0.8815 
 Interaction P-value with marker rs1117 0.8132 

2. Is there evidence for statistical interaction between marker rs1112 and sex? 

No, the P-value of 0.8815 for the interaction term in the logistic regression model does not indicate a deviation 
from linearity in the model. 

 
3. Is there evidence for statistical interaction between markers rs1112 and rs1117? 
No. 

 
Analyses using R 

IV. Gene-environment (GxE) and gene-gene (GxG) interaction 
Gene-environment (GxE) interaction 
# --- Interaction between sex and marker --- # 
result.inter = glm (affection ~ sex * rs1112, family=binomial("logit"), 

data=snp.data) 
summary(result.inter) 
Call: 
glm(formula = affection ~ sex * rs1112, family = binomial("logit"), 

data = snp.data) 
 

Deviance Residuals: 
Min 1Q Median 3Q Max 

-1.8388 -1.1205 -0.0965 1.2176 1.5685 
 

Coefficients: 
Estimate Std. Error z value Pr(>|z|) 

(Intercept) -0.09415 0.15371 -0.613 0.540174  
sex2 -0.79026 0.23515 -3.361 0.000777 *** 
rs1112 0.79049 0.18896 4.183 2.87e-05 *** 
sex2:rs1112 -0.04141 0.27771 -0.149 0.881472  
---     
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 831.78 on 599 degrees of freedom 
Residual deviance: 774.96 on 596 degrees of freedom 
AIC: 782.96 

 
Number of Fisher Scoring iterations: 4 
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While marker rs1112 is associated with affection status after adjusting for the effect of sex (Wald test: 
p=2.9×10-5), there is no evidence that the marker risk allele causes different risk increases in females compared 
to males (p=0.9). 

 
# --- Interaction between age and marker --- # 
result.inter = glm (affection ~ age * rs1112, family=binomial("logit"), 

data=snp.data) 
summary(result.inter) 
Call: 
glm(formula = affection ~ age * rs1112, family = binomial("logit"), 

data = snp.data) 
 

Deviance Residuals: 
Min 1Q Median 3Q Max 

-1.8044 -1.0479 -0.1256 1.0606 1.4655 
 

Coefficients: 
Estimate Std. Error z value Pr(>|z|) 

(Intercept) -0.764365 0.328207 -2.329 0.01986 * 
age 0.005719 0.005508 1.038 0.29909 
rs1112 1.193715 0.393377 3.035 0.00241 ** 
age:rs1112 
--- 

-0.007716 0.006585 -1.172 0.24130 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 831.78 on 599 degrees of freedom 
Residual deviance: 796.26 on 596 degrees of freedom 
AIC: 804.26 

 
Number of Fisher Scoring iterations: 4 

While marker rs1112 is associated with affection status after adjusting for the effect of age (Wald test: 
p=2.9×10-5), there is no evidence for a significant association of age with affection status (p=0.3) nor an 
interaction between age and the marker (p=0.2). 

Gene-gene (GxG) interaction 
# --- Interaction between markers rs1112 and rs1117 --- # 
result.inter = glm (affection ~ rs1112 * rs1117, family=binomial("logit"), 

data=snp.data) 
summary(result.inter) 
Call: 
glm(formula = affection ~ rs1112 * rs1117, family = binomial("logit"), 

data = snp.data) 
 

Deviance Residuals: 
Min 1Q Median 3Q Max 

-1.7167 -0.9899 -0.1342 1.1126 1.3773 
 

Coefficients: 
Estimate Std. Error z value Pr(>|z|) 

(Intercept) -0.45855 0.11749 -3.903 9.5e-05 *** 
rs1112 0.61285 0.19612 3.125 0.00178 ** 
rs1117 0.37232 0.43522 0.855 0.39228 
rs1112:rs1117 
--- 

-0.07464 0.31590 -0.236 0.81323 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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(Dispersion parameter for binomial family taken to be 1) 
 

Null deviance: 831.78 on 599 degrees of freedom 
Residual deviance: 796.16 on 596 degrees of freedom 
AIC: 804.16 
Number of Fisher Scoring iterations: 4 

While marker rs1112 is associated with affection status after adjusting for the effect of marker rs1117 (Wald 
test: p=0.002), there is no evidence for a significant association of marker rs1117 with affection status (p=0.4) 
nor an interaction between both markers (p=0.8), i.e. that the genotype of rs1117 may have a modifying effect 
on the risk increase caused by marker rs1112. 

 
V. Model selection 
# --- Regression analyis of full model (including all variables) --- # 
result.reg = glm (affection ~ sex + age + rs1112 + rs1117, 

family=binomial("logit"), data=snp.data) 
summary(result.reg) 
Call: 
glm(formula = affection ~ sex + age + rs1112 + rs1117, family = binomial("logit"), 

data = snp.data) 
 

Deviance Residuals: 
Min 1Q Median 3Q Max 

-1.9152 -1.1211 -0.1128 1.1820 1.6111 
 

Coefficients: 
Estimate Std. Error z value Pr(>|z|) 

(Intercept) -0.211378 0.264220 -0.800 0.42371 
sex2 -0.808941 0.173019 -4.675 2.93e-06 *** 
age 0.002183 0.004109 0.531 0.59519 
rs1112 0.635080 0.193437 3.283 0.00103 ** 
rs1117 
--- 

0.233915 0.235438 0.994 0.32045 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 831.78 on 599 degrees of freedom 
Residual deviance: 773.74 on 595 degrees of freedom 
AIC: 783.74    

 
Number of Fisher Scoring iterations: 4 
# --- Backward model selection, starting with full model --- # 
modelchoice.result <- step (result.reg) 
Start: AIC=783.74 
affection ~ sex + age + rs1112 + rs1117 

 Df Deviance AIC 
- age 1 774.02 782.02 
- rs1117 1 774.72 782.72 
<none>  773.74 783.74 
- rs1112 1 784.97 792.97 
- sex 1 796.08 804.08 
Step: AIC=782.02 
affection ~ sex + rs1112 + rs1117 

Df Deviance AIC 
- rs1117 1 774.98 780.98 
<none> 774.02 782.02 
- rs1112 1 785.34 791.34 
- sex 1 796.21 802.21 
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Step: AIC=780.98 
affection ~ sex + rs1112 

Df Deviance AIC 
<none> 774.98 780.98 
- sex 1 797.75 801.75 
- rs1112 1 808.19 812.19 

 
# --- Final model (result of selection procedure) --- # 
summary(modelchoice.result) 
Call: 
glm(formula = affection ~ sex + rs1112, family = binomial("logit"), 

data = snp.data) 
 

Deviance Residuals: 
Min 1Q Median 3Q Max 

-1.82645 -1.12415 -0.09007 1.21323 1.57462 
Coefficients: 

Estimate Std. Error z value Pr(>|z|) 
(Intercept) -0.08386 0.13730 -0.611 0.541 
sex2 -0.81412 0.17253 -4.719 2.37e-06 *** 
rs1112 0.77139 0.13840 5.574 2.49e-08 *** 
--- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 831.78 on 599 degrees of freedom 
Residual deviance: 774.98 on 597 degrees of freedom 
AIC: 780.98 

 
Number of Fisher Scoring iterations: 4 

 
The model selection procedure started with the full model, i.e. it contained all predictor terms that were to be 
considered. If interaction terms should also be considered, these would have to be included in the initial model 
estimation request (i.e. the glm call). Covariates age and rs1117 were subsequently discarded from the model 
since there do not significantly improve the model fit (i.e. decrease the error) or, with backward selection, did 
not significantly worsened the model fit (i.e. dropping did not lead to largely increased error). Model fit is 
measured by the AIC criterion which, in addition to the deviance, penalized larger numbers of predictors in the 
regression model. The final model includes sex and rs1112 as predictors. 

 
Questions 

1. Please enter the P-values for marker rs1112 from the analyses in the table below. 
 

 Type of Analysis P-value 

IV. Interaction P-value with covariate sex 0.881472 
 Interaction P-value with marker rs1117 0.81323 

 
 

2. Which variables are included in the final regression model after model selection? 

sex and marker rs1112 
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