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Getting Started 
 
 
Please view the following videos to install Docker to your computer 
 
For MAC  
https://www.youtube.com/watch?v=DRCDNBlxZ-w 
 
For Windows PC 
https://www.youtube.com/watch?v=sxv45NCSFMk 
 
For Ubuntu Linux 
https://www.youtube.com/watch?v=3K-sGzxsyK0 
 
 
How to install and run course exercises 
https://www.youtube.com/watch?v=OgHvRVtIIog 
 
For more detail, please read our course wiki  
https://github.com/statgenetics/statgen-courses/wiki/How-to-launch-course-tutorials#use-your-
own-computer 
 
Please go to https://statgen.us/Tutorials  to install course tutorials. 
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Launching Exercises 
 
Please use the following commands to launch the exercises.  Please note that all exercises (except 
those that are web based) can be performed either in the command line console or JupyterLab 
environment. Exercises developed in Jupyter Notebook (within a JupyterLab environment) that 
have graphics will not have this output if the command line version is used. Please do not attempt 
to run the command line and JupyterLab at the same time on your computer, since it will create a 
file conflict.  
 

• PLINK  
o Command line*: ./statgen-setup login --tutorial plink 
o Jupyter Notebook in JupyterLab: ./statgen-setup launch --tutorial plink  

• VAT  
o Command line*: ./statgen-setup login --tutorial vat 
o Jupyter Notebook in JupyterLab: ./statgen-setup launch --tutorial vat 

• PSEQ  
o Command line*: ./statgen-setup login --tutorial pseq 
o Jupyter Notebook in JupyterLab: ./statgen-setup launch --tutorial pseq 

• REGENIE  
o Jupyter Notebook in JupyterLab: ./statgen-setup launch --tutorial regenie 

• FASTLMM & GCTA 
o Command Line*: ./statgen-setup login --tutorial fastlmm-gcta 

• Epistasis (PLINK and CASSI) 
o Command Line*: ./statgen-setup login --tutorial epistasis 

• Power and Sample Size Estimation 
o Web-based 

• TWAS (MR-JTI)  
o Jupyter Notebook in JupyterLab: ./statgen-setup launch --tutorial twas 

• LD-Clumping  
o Jupyter Notebook in JupyterLab: ./statgen-setup launch –tutorial clumping 

• Fine-mapping (SuSiE) 
o Jupyter Notebook in JupyterLab: ./statgen-setup launch --tutorial finemap 

• Mendelian Randomization (MR-base) 
o Web-based 

• Pleiotropy 
o Command Line*: ./statgen-setup login --tutorial pleiotropy 

• Polygenic Risk Score (LDpred2) 
o Jupyter Notebook in JupyterLab: ./statgen-setup launch --tutorial ldpred2 

• Annovar 
o Jupyter Notebook in JupyterLab: ./statgen-setup login --tutorial annovar 

 
*Run  get-data command if you don’t see the data for the exercise already loaded (hint use ls 
command).  Before you start the exercise, you will need to cd into the work directory (cd 
~/work). 
 



Genome-wide Association Analysis - Data Quality Control 

Copyright © 2023 Merry-Lynn McDonald, Isabelle Schrauwen & Suzanne M. Leal 

Introduction 
In this exercise, you will learn how to perform data quality control (QC) by removing markers and samples 
that fail QC quality control criteria. You will also examine your samples for individuals that are related to 
each other and/or are duplicate samples. Each sample will also be tested for excess homozygosity and 
heterozygosity of genotype data. Each SNP will be tested for deviations from Hardy-Weinberg Equilibrium. 
These exercises will be carried out using PLINK1.9 and R. 

1. Using PLINK

PLINK can upload data in different formats please see the PLINK documentation (https://www.cog- 
genomics.org/plink/1.9/input) for additional details. The data for this exercise is in PLINK/LINKAGE file 
format. There are two files: a pedfile (GWAS.ped) and a map file (GWAS.map). Please examine these files 
and the PLINK documentation. Please note the commands must be given in the directory where the data 
residues. 

Navigate via the command prompt to the directory which contains the files for the exercise. Type plink in 
the command prompt and make note of the output. Next type: 

plink --file GWAS 

Note, that PLINK outputs a file called plink.log that contains the same output which you see on the screen. 
To see all options, type plink --help for more information. Determine how many samples there are in your 
data set and fill in Oval 1 of the flowchart below. 

2. Data Quality Control

a. Removing Samples and SNPs with Missing Genotypes.

You will exclude samples that are missing more than 10% of their genotype calls. These samples are likely 
to have been generated using low quality DNA and can also have higher than average genotyping error rates. 

plink --file GWAS --mind 0.10 --recode --out GWAS_clean_mind 

Examine GWAS_clean_mind.log to see how many samples are excluded based on this criterion and fill in 
Box 1. 

Create two versions of your dataset, one with SNPs with a minor allele frequencies (MAFs) >5% and the 
other with SNPs with a MAFs <5%. 

You will now remove SNPs with MAFs>5% that are missing >5% of their genotypes and then remove SNPs 
with MAFs<5% that are missing >1% of their genotypes. SNPs which are missing genotypes can have 
higher error rates than those SNP markers without missing data. 

plink --file GWAS_clean_mind --maf 0.05 --recode --out MAF_greater_5 
plink --file GWAS_clean_mind --exclude MAF_greater_5.map --recode --out MAF_less_5 

plink --file MAF_greater_5 --geno 0.05 --recode --out MAF_greater_5_clean 

Fill in Box 2a. 

plink --file MAF_less_5 --geno 0.01 --recode --out MAF_less_5_clean 
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Fill in Box 2b. 

Merge the two files. 

plink --file MAF_greater_5_clean --merge MAF_less_5_clean.ped MAF_less_5_clean.map -- 
recode --out GWAS_MAF_clean 

 
A more stringent criterion for missing data is used, samples missing >3% of their genotypes are removed. 

 
plink --file GWAS_MAF_clean --mind 0.03 --recode --out GWAS_clean2 

 
Fill in Box 3. 

 
b. Checking Sex 

 
Error of the reported sex of an individual can occur. Information from the SNP genotypes can be used to 
verify the sex of individuals, by examining homozygosity (F) on the X chromosome for every individual. F 
is expected to be <0.2 in females and >0.8 in males. To check sex run 

 
plink --file GWAS_clean2 --check-sex --out GWAS_sex_checkingUse R to examine the 
GWAS_sex_checking.sexcheck file and determine if there are individuals whose recorded sex is 
inconsistent with genetic sex. 

 
R 
sexcheck = read.table("GWAS_sex_checking.sexcheck", header=T) 
names(sexcheck) 
sex_problem = sexcheck[which(sexcheck$STATUS=="PROBLEM"),] 
sex_problem 
q() 

 
NA20530 and NA20506 were coded as a female (2) and from the genotypes appear to be males (1). In 
addition, 3 individuals (NA20766, NA20771 and NA20757) do not have enough information to determine if 
they are males or females and PLINK reports sex = 0 for the genotyped sex. Fill in the table below: 

 
Table 1: Sex check  
FID IID PEDSEX SNPSEX STATUS F 
NA20506 NA20506     
NA20530 NA20530     
NA20766 NA20766     
NA20771 NA20771     
NA20757 NA20757     

 
Reasons for these kinds of discrepancies, include the records are incorrect, incorrect data entry, sample 
swap, unreported Turner or Klinefelter syndromes. Additionally, if a sufficient number of SNPs have not 
been genotyped on the X chromosome it can be difficult to accurately predict the sex of an individual. In this 
dataset, there are only 194 X chromosomal SNPs. If you cannot validate the sex of the individual they 
should be removed. For this exercise, we are going to assume that when the sex was checked, we found it 
was incorrectly recorded (i.e. these samples were male). Therefore, this error could simply be corrected. 

 
Question 1: Why do you expect the homozygosity rate to be higher on the X chromosome in males than 
females? 
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c. Duplicate Samples 
 

The following PLINK command can be used to check for duplicate samples: 
 
plink --file GWAS_clean2 --genome --out duplicates 

 
Open the duplicates.genome file in R with the following command: 

 
dups = read.table("duplicates.genome", header = T) 

 
We are interested in the Pi-Hat (the estimated proportion IBD sharing) value. You may notice that there is 
more than one duplicate (Pi-Hat=~1). Also, examine the output for pairs of individuals with high Pi-Hat 
values which can indicate they are related. The amount of allele sharing [Z(0), Z(1) and Z(2)] across all 
SNPs provides information on the type of relative pair. 

problem_pairs = dups[which(dups$PI_HAT > 0.4),] 
problem_pairs 

 

Table 2: Duplicate and Related Individuals 
FID1 IID1 FID2 IID2 Z(0) Z(1) Z(2) PI_HAT 

        
        
        
        

F1D1- Family ID for 1st individual; ID1 - Individual ID for 1st individual; F1D2- Family 
ID for 2nd individual; ID2 - Individual ID for 2nd individual; Z(0)- P(IBD=0); Z(1)- 
P(IBD=1); Z(2)- P(IBD=2); PI_HAT-P(IBD=2)+0.5*P(IBD=1) ( proportion IBD ) 

 
Question 2: How many duplicate pairs do your find (hint: Pi-Hat = ~1)? Do pairs with a Pi-Hat = ~1 have 
to be duplicate samples? What is another explanation? What proportion would you expect a parent/ child to 
share IBD? Can you find any such relationship?  
 
 
 
 
 

 

Note: Pi-hat can be inflated and individuals appear to be related to each other if you have samples from 
different populations. This explains why we observe pairs of individuals with Pi-hat >0.05 since three 
distinct populations were analyzed. Additionally, this phenomenon can be observed if a subset(s) of 
samples have higher genotyping/sequencing error rates, which creates two or more “populations” and the 
individuals within these “populations” incorrectly appear to be related. 

 
Using this R script please observe how many sample pairs have pi-hat >0.05: 

 
problem_pairs = dups[which(dups$PI_HAT > 0.05),] 
myvars = c("FID1", "IID1", "FID2", "IID2", "PI_HAT") 
problem_pairs[myvars] 

 
Create the following txt file: 

 
1344 NA12057 
1444 NA12739 
M033 NA19774 

 
name it ‘IBS_excluded.txt’ and save it to the folder with your PLINK data. Give the command: 

plink --file GWAS_clean2 --remove IBS_excluded.txt --recode --out GWAS_clean3 

Fill in Box 4 and Oval 3. 3



As part of QC usually the data is examined for outliers by plotting the 
first and second principal or multidimensional scaling (MDS) 
components. Using a subset of markers that have been trimmed to 
remove LD (r2<0.5). Principal components analysis (PCA) and MDS 
will be performed in the second part of the exercise to detect outliers 
and control for populations substructure. Outlier can be due to study 
subjects coming from different populations e.g. European- and 
African-Americans or batch effects. If it is suspected that outliers are 
due to study subjects having been sampled from different populations 
than data from HapMap can be included to elucidate population 
membership, e.g. for a study of European-Americans if African- 
American study subjects are included they would cluster between the 
European and African HapMap samples. If you perform this type of 
analysis you should remove the HapMap samples and re-estimate the 
MDS or PC components before adjusting for population substructure 

or stratification. For this exercise data is used from HapMap Phase III which consists of CEU (Europeans 
from Utah), MEX (Mexicans from Los Angeles) and TSI (Tuscans from Italy). Three clusters can be 
observed that consist of the three data sets but no extreme outliers are observed. This data set is being used 
for demonstration purposes. Different populations should be analyzed separately and the results can be 
combined using meta-analysis. In part two of this exercise MDS and PC components will be constructed 
and analyzed. 

 
d. Hardy-Weinberg Equilibrium (HWE): 

 
To test for HWE we will test separately in each ancestry group and by case-control status. Therefore, we 
will need to use information on ancestry and cases-control status. Please note that this should be tested in the 
3 different populations separately (CEU, MEX, TSI), but due to the small sample sizes, we tested it in the 3 
populations together for example purposes. It should also be noted if the sample sizes are small it is difficult 
to detect a deviation from HWE. 

 
plink --file GWAS_clean3 --pheno pheno.txt --pheno-name Aff --hardy 

 
Using R examine the file plink.hwe and look for SNPs with p-values of 10-7 or smaller. 

 
hardy = read.table("plink.hwe", header = T) 
names(hardy) 
hwe_prob = hardy[which(hardy$P < 0.0000009),] 
hwe_prob 

 
Using a criterion of p <10-7 to reject the null hypothesis of HWE, how many SNPs fail HWE in the controls? 
Fill out Oval 5 and Box 4. Using the same criteria, how many SNPs fail HWE in the controls? Complete 
Table 2 with this information. 

 
Table 3: Hardy-Weinberg Equilibrium 
Cases Controls 
SNP Pvalue Population(s) SNP Population(s) Pvalue 

      

 
Create a text file called HWE_out.txt with the following SNP in it: 

 
rs2968487 

 
and type the following command: 

 
plink --file GWAS_clean3 --exclude HWE_out.txt --recode --out GWAS_clean4 
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Oval 1 
N =  DNA 

samples 
N = _ _ SNPs 

Box 1 
_ _ DNA samples 

missing >10% of 
calls (MIND 0.10) 

Oval 2 
N =  DNA samples 
Nsnp = _ _  SNPs 

Box 2b 
_ _ SNPs (MAF <5%) missing 

>1% genotypes (GENO 0.01)

Box 4 

_ __  Individuals with inconsistent 
_ __  Duplicate pairs 
___ Individuals excluded due to 

relatedness 

Box 2a 
_ _ SNPs (MAF >5%) missing > 

5% of genotypes (GENO 

Box 3 
_ _ DNA samples failed missing 

> 3% of calls (MIND 0.03)

Oval 3 
N =  DNA samples 
Nsnp = _ _  SNPs 

Box 5 
SNPs in controls out 
of HWE with p<10-7 

Oval 4 
N =  DNA samples 
Nsnp = _ _  SNPs 

There are a number of SNPs with HWE p-values in the range of 10-5 to 10-6 in the controls. Based on above 
criterion they will not be excluded however, if they reach genome-wide significance during association 
testing they SNPs should be further investigated to ensure there is no genotyping error. You can now fill in 
Box 5 and Oval 4. 
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Answers to Questions: 
 

Oval 1 and 2 also and Box 1 information: 
 

PLINK v1.90b4.9 64-bit (13 Oct 2017) 
Options in effect: 

--file GWAS 
--mind 0.10 
--out GWAS_clean_mind 
--recode 

 
Random number seed: 1515434515 
16384 MB RAM detected; reserving 8192 MB for main workspace. 
Scanning .ped file... done. 
Performing single-pass .bed write (6424 variants, 248 people) [Oval 1]. 
--file: GWAS_clean_mind-temporary.bed + GWAS_clean_mind-temporary.bim + 
GWAS_clean_mind-temporary.fam written. 
6424 variants loaded from .bim file. 
248 people (125 males, 123 females) loaded from .fam. 
1 person removed due to missing genotype data (--mind) [Box 1]. 
ID written to GWAS_clean_mind.irem . 
Using 1 thread (no multithreaded calculations invoked). 
Before main variant filters, 247 founders and 0 nonfounders present. 
Calculating allele frequencies... done. 
Warning: 6 het. haploid genotypes present (see GWAS_clean_mind.hh ); many 
commands treat these as missing. 
Total genotyping rate in remaining samples is 0.996863. 
6424 variants and 247 people pass filters and QC [Oval 2]. 
Note: No phenotypes present. 
--recode ped to GWAS_clean_mind.ped + GWAS_clean_mind.map ... done. 

 
Box 2a information: 

 

PLINK v1.90b4.9 64-bit (13 Oct 2017) 
Options in effect: 

--file MAF_greater_5 
--geno 0.05 
--out MAF_greater_5_clean 
--recode 

 
Random number seed: 1515435189 
16384 MB RAM detected; reserving 8192 MB for main workspace. 
Scanning .ped file... done. 
Performing single-pass .bed write (5868 variants, 247 people). 
--file: MAF_greater_5_clean-temporary.bed + MAF_greater_5_clean-temporary.bim + 
MAF_greater_5_clean-temporary.fam written. 
5868 variants loaded from .bim file. 
247 people (125 males, 122 females) loaded from .fam. 
Using 1 thread (no multithreaded calculations invoked). 
Before main variant filters, 247 founders and 0 nonfounders present. 
Calculating allele frequencies... done. 
Warning: 6 het. haploid genotypes present (see MAF_greater_5_clean.hh ); many 
commands treat these as missing. 
Total genotyping rate is 0.996858. 
2 variants removed due to missing genotype data (--geno) [Box2a]. 
5866 variants and 247 people pass filters and QC. 
Note: No phenotypes present. 
--recode ped to MAF_greater_5_clean.ped + MAF_greater_5_clean.map ... done. 

 
Box 2b information: 

 

PLINK v1.90b4.9 64-bit (13 Oct 2017) 
Options in effect: 

--file MAF_less_5 
--geno 0.01 
--out MAF_less_5_clean 
--recode 

 
Random number seed: 1515435255 
16384 MB RAM detected; reserving 8192 MB for main workspace. 
Scanning .ped file... done. 
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Performing single-pass .bed write (556 variants, 247 people). 
--file: MAF_less_5_clean-temporary.bed + MAF_less_5_clean-temporary.bim + 
MAF_less_5_clean-temporary.fam written. 
556 variants loaded from .bim file. 
247 people (125 males, 122 females) loaded from .fam. 
Using 1 thread (no multithreaded calculations invoked). 
Before main variant filters, 247 founders and 0 nonfounders present. 
Calculating allele frequencies... done. 
Total genotyping rate is 0.996913. 
59 variants removed due to missing genotype data (--geno) [Box2b]. 
497 variants and 247 people pass filters and QC. 
Note: No phenotypes present. 
--recode ped to MAF_less_5_clean.ped + MAF_less_5_clean.map ... done. 

 
Box 3 information: 

 

PLINK v1.90b4.9 64-bit (13 Oct 2017) 
Options in effect: 

--file GWAS_MAF_clean 
--mind 0.03 
--out GWAS_clean2 
--recode 

 
Random number seed: 1515435827 
16384 MB RAM detected; reserving 8192 MB for main workspace. 
Scanning .ped file... done. 
Performing single-pass .bed write (6363 variants, 247 people). 
--file: GWAS_clean2-temporary.bed + GWAS_clean2-temporary.bim + 
GWAS_clean2-temporary.fam written. 
6363 variants loaded from .bim file. 
247 people (125 males, 122 females) loaded from .fam. 
0 people removed due to missing genotype data (--mind) [Box 3]. 
Using 1 thread (no multithreaded calculations invoked). 
Before main variant filters, 247 founders and 0 nonfounders present. 
Calculating allele frequencies... done. 
Warning: 6 het. haploid genotypes present (see GWAS_clean2.hh ); many commands 
treat these as missing. 
Total genotyping rate is 0.99716. 
6363 variants and 247 people pass filters and QC. 
Note: No phenotypes present. 
--recode ped to GWAS_clean2.ped + GWAS_clean2.map ... done. 

 
 

Answer to Question 1: Why do you expect the homozygosity rate to be higher on the X chromosome in 
males than females? 
 
Because males only have one allele for each SNP on the X chromosome they will appear homozygous. 

 

Table 1: Sex check  
FID IID PEDSEX SNPSEX STATUS F 
NA20506 NA20506 2 1 PROBLEM 1 
NA20530 NA20530 2 1 PROBLEM 1 
NA20766 NA20766 2 0 PROBLEM 0.2292 
NA20771 NA20771 2 0 PROBLEM 0.2234 
NA20757 NA20757 2 0 PROBLEM 0.2141 

 
 

Table 2: Duplicate and Related Individuals 
FID1 IID1 FID2 IID2 Z(0) Z(1) Z(2) PI_HAT 
M033 NA19774 M041 NA25000 0.0000 0.0000 1.0000 1.00 
1344 NA12057 13291 NA25001 0.0000 0.0025 0.9975 1.00 
1444 NA12739 1444 NA12749 0.0026 0.9807 0.0168 0.51 
1444 NA12739 1444 NA12748 0.0026 0.9949 0.0025 0.50 
F1D1- Family ID for 1st individual; ID1 - Individual ID for 1st individual; F1D2- Family 
ID for 2nd individual; ID2 - Individual ID for 2nd individual; Z(0)- P(IBD=0); Z(1)- 
P(IBD=1); Z(2)- P(IBD=2); PI_HAT-P(IBD=2)+0.5*P(IBD=1) ( proportion IBD ) 

7



Question 2: How many duplicate pairs do your find (hint: Pi-Hat = ~1)? Do pairs with a Pi-Hat = ~1 have 
to be duplicate samples? What is another explanation? What proportion would you expect a parent/ child to 
share IBD? Can you find any such relationship? 
There are two duplicate pairs and also a trio (two parents and a child). Parent/child relationships will have a 
Pi_Hat value of ~0.5, but so will sibpairs. We can tell that this is a parent child relationship by examine Z(0), 
Z(1) and Z(2). We will retain only one sample from each duplicate pair and the parents NA12749 and 
NA12748. If you perform mixed-model analysis related individuals can be retained in the sample. 

 

Oval 3 information 
 

PLINK v1.90b4.9 64-bit (13 Oct 2017) 
Options in effect: 

--file GWAS_clean2 
--out GWAS_clean3 
--recode 
--remove IBS_excluded.txt 

Random number seed: 1515440989 
16384 MB RAM detected; reserving 8192 MB for main workspace. 
Scanning .ped file... done. 
Performing single-pass .bed write (6363 variants, 247 people). 
--file: GWAS_clean3-temporary.bed + GWAS_clean3-temporary.bim + 
GWAS_clean3-temporary.fam written. 
6363 variants loaded from .bim file. 
247 people (125 males, 122 females) loaded from .fam. 
--remove: 244 people remaining. 
Using 1 thread (no multithreaded calculations invoked). 
Before main variant filters, 244 founders and 0 nonfounders present. 
Calculating allele frequencies... done. 
Warning: 6 het. haploid genotypes present (see GWAS_clean3.hh ); many commands 
treat these as missing. 
Total genotyping rate in remaining samples is 0.997225. 
6363 variants and 244 people pass filters and QC [Oval 3]. 
Note: No phenotypes present. 
--recode ped to GWAS_clean3.ped + GWAS_clean3.map ... done. 

 

Table 3: Hardy Weinberg Equilibrium 
Fail Cases Fail Controls 
SNP pvalue SNP pvalue 
None  rs2968487 2.262e-007 

PLINK v1.90b4.9 64-bit (13 Oct 2017) 
Options in effect: 

--exclude HWE_out.txt 
--file GWAS_clean3 
--out GWAS_clean4 
--recode 

 
Random number seed: 1515442367 
16384 MB RAM detected; reserving 8192 MB for main workspace. 
Scanning .ped file... done. 
Performing single-pass .bed write (6363 variants, 244 people). 
--file: GWAS_clean4-temporary.bed + GWAS_clean4-temporary.bim + 
GWAS_clean4-temporary.fam written. 
6363 variants loaded from .bim file. 
244 people (123 males, 121 females) loaded from .fam. 
--exclude: 6362 variants remaining. 
Using 1 thread (no multithreaded calculations invoked). 
Before main variant filters, 244 founders and 0 nonfounders present. 
Calculating allele frequencies... done. 
Warning: 6 het. haploid genotypes present (see GWAS_clean4.hh ); many commands 
treat these as missing. 
Total genotyping rate is 0.997229. 
6362 variants and 244 people pass filters and QC [Oval 4]. 
Note: No phenotypes present. 
--recode ped to GWAS_clean4.ped + GWAS_clean4.map ... done
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Oval 2 

N = 247  DNA samples 
Nsnp =  6424  SNPs 

Box 2b 
_59 _ SNPs (MAF <5%) missing 

>1% genotypes (GENO 0.01) 

Box 4 
 

_ 5__ Individuals with inconsistent 
_ 2__ Duplicate pairs 
__1_ Individuals excluded due to 

relatedness 

Box 2a 
_ 2_ SNPs (MAF >5%) missing > 

5% of genotypes (GENO 

Box 3 
_0_ DNA samples failed missing 

> 3% of calls (MIND 0.03) 

Oval 3 
N = 244 DNA samples 
Nsnp = _ 6_363  SNPs 

Box 5 
 1  SNPs in controls out 

of HWE with p<10-7 

 
Oval 4 

N = 244  DNA samples 
Nsnp = _63_62  SNPs 

 
 

 
 

 
 
 

 

 
Oval 1 

N = 248  DNA 
samples 

Nsnp = 6424 SNPs 

Box 1 
_ 1 DNA samples 

missing >10% of 
calls (MIND 0.10) 
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Genome-Wide Association Exercise 
Association Analysis Controlling for Population Substructure 

Copyrighted © 2023 Merry-Lynn N. McDonald, Isabelle Schrauwen & Suzanne M. Leal 

1. Population Stratification and Association Testing

The dataset from part I of this exercise which you performed data quality control (QC) on was obtained from 
HapMap Phase III data. It contains CEU founders (Caucasians from Utah), MEX founders (Mexicans from Los 
Angeles) and TSI (Tuscans from Italy). The CEU pedigree identifiers begin with only numbers e.g., 1347, the 
MEX pedigree identifies all start with M e.g., M017 and the TSI pedigree identifiers all start with NA e.g., 
NA0217. Before we start testing for association, we want to know if there are outliers. Even after removing the 
outliers when association analysis is performed population substructure and admixture may need to be 
controlled. If not, we risk observing an association, which is due to a difference in genotype frequencies in 
cases and controls, because of population substructure/admixture and not because of linkage disequilibrium 
(LD) between tagSNP(s) and the functional variant(s). We are going to use multidimensional scaling (MDS) 
and principal components analysis (PCA) within the PLINK software to generate 10 components. Disclaimer: 
You usually should not analyze data from European-Americans, Mexican-Americans and Italians 
together even if you control for population stratification. They can be analyzed separately and the data 
combined using meta-analysis. 

Note: For a GWAS study instead of this toy study, you will have a denser set of markers of which some will be 
in LD. You should first prune your SNPs to obtain a subset in linkage equilibrium/weak LD (R2<0.5) prior to 
performing MDS or PCA analysis on the data. Although for association analysis is performed on the entire data 
set will be analyzed only this a subset of SNPs which are not in LD will be used to construct PCA and MDS 
components. For more information on how to do this in PLINK see https://www.cog-genomics.org/plink/1.9/ld. 

plink --file GWAS_clean4 --genome --cluster --mds-plot 10 

This command outputs the file plink.mds that contains the subject IDs and values for the 10 components we 
just generated. There is another file in your folder called mds_components.txt. This file is identical to your 
plink.mds file with the exception that a group column which codes CEU individuals as 1, MEX individuals as 2 
and TSI individuals as 3. This is done so when we plot the MDS components in R you can see which group the 
points belong to and judge how well does the data cluster, e.g., are there outliers. The following commands will 
generate a jpeg image file containing the mds plot (filename=mds.jpeg) in your current working directory. Open 
R and use the following command: 

mydata = read.table("mds_components.txt", header=T) 

mydata$pch[mydata$Group==1 ] <--15 
mydata$pch[mydata$Group==2 ] <--16 
mydata$pch[mydata$Group==3 ] <--2 

jpeg("mds.jpeg", height=500, width=500) 
plot(mydata$C1, mydata$C2 ,pch=mydata$pch) 
dev.off() 
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Visualizing population structure using MDS is useful for identifying subpopulations, population stratification 
and systematic genotyping or sequencing errors, and can also be used to detect individual outliers that may need 
to be removed, e.g. European-Americans included in a study of African-Americans. MDS coordinates help with 

visualizing genetic distances and population substructure. PLINK 
also offers another dimension reduction, --pca, for PCA, the PC 
components which can also be used for visualizing data to detect 
outliers in the same manner which was performed using MDS. 
Additionally, covariates either from either MDS or PCA can be used 
in a regression model to aid in correcting for population substructure 
and admixture. 

 
We will now continue performing the analysis using PLINK but will 
use PCA instead of MDS. We will generate PCs and determine how 
many PC covariates should be included in the regression model. 
When SNPs are tested for an association with a trait analysis can be 
performed, first by including no PC components, then one PC 
component and then two PC components and so on. Please note that 
as each PC component is added all the SNPs are analyzed, e.g. a 

complete GWAS is performed. Examining λ can aid in determining how many PC components should be 
included in the analysis. If there is no population stratification or other biases, then λ should equal 1 or ~1. We 
will use λ to determine how many PC components from our analysis will be added to the logistic regression 
model. First, estimate λ without adjusting for any PC components: 

 
plink --file GWAS_clean4 --pheno pheno.txt --pheno-name Aff --logistic --adjust --out 
unadj 

 
Generated the first 10 PCA values: 

 
plink --file GWAS_clean4 --genome --cluster --pca 10 header 

 
Eigenvectors are written to plink.eigenvec, and top eigenvalues are written to plink.eigenval. The 'header' 
modifier adds a header line to the .eigenvec file(s). 

 
And then find out what λ is when we adjust for the first component: 

 
plink --file GWAS_clean4 --pheno pheno.txt --pheno-name Aff --covar plink.eigenvec -- 
covar-name PC1 --logistic --adjust --out PC1 

 
And the first and second components: 

 
plink --file GWAS_clean4 --pheno pheno.txt --pheno-name Aff --covar plink.eigenvec -- 
covar-name PC1-PC2 --logistic --adjust --out PC1-PC2 

 
and so forth for all 10 components in the .log file completing the table: 

 
Table 1  

Un- 
adjusted 

 
PC 
1 

 
PC 
1-2 

 
PC 
1-3 

 
PC 
1-4 

 
PC 
1-5 

 
PC 
1-6 

 
PC 
1-7 

 
PC 
1-8 

 
PC 
1-9 

 
PC1- 

10 
λ            
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The number closest to 1.0, with the least number of PC components, would be the best for adjusting without 
overfitting and introducing unnecessary noise. You can check your table against the one provided in the 
answers section. 

 
Go to the assoc.logistic file that corresponds to that number of components and make a note of how you 
named the .assoc.logistic file for it and when you did not adjust for any components. Then go back to the R 
program to load the results and create a jpeg image file containing QQ plots for the adjusted and unadjusted 
results (using a modified script from http://www.broad.mit.edu/node/555) as follows: 

 
broadqq <-function(pvals, title) 
{ 

observed <- sort(pvals) 
lobs <- -(log10(observed)) 

 
expected <- c(1:length(observed)) 
lexp <- -(log10(expected / (length(expected)+1))) 

 
plot(c(0,7), c(0,7), col="red", lwd=3, type="l", xlab="Expected (-logP)", ylab="Observed (-logP)", 

xlim=c(0,max(lobs)), ylim=c(0,max(lobs)), las=1, xaxs="i", yaxs="i", bty="l", main = title) 
points(lexp, lobs, pch=23, cex=.4, bg="black") } 

 
jpeg("qqplot_compare.jpeg", height=1000, width=500) 
par(mfrow=c(2,1)) 
aff_unadj<-read.table("unadj.assoc.logistic", header=TRUE) 
aff_unadj.add.p<-aff_unadj[aff_unadj$TEST==c("ADD"),]$P 
broadqq(aff_unadj.add.p,"Some Trait Unadjusted") 
aff_C1C2<-read.table("PC1-PC2.assoc.logistic", header=TRUE) 
aff_C1C2.add.p<-aff_C1C2[aff_C1C2$TEST==c("ADD"),]$P 
broadqq(aff_C1C2.add.p, "Some Trait Adjusted for PC1 and PC2") 
dev.off() 

 
Now look for SNPs with genome-wide significance using the following R connamds: 

 
gws_unadj = aff_unadj[which(aff_unadj$P < 0.0000001),] 
gws_unadj 
gws_adjusted = aff_C1C2[which(aff_C1C2$P < 0.0000001),] 
gws_adjusted 

 
Note: These are the uncorrected p-values for multiple testing. The p-values which have been corrected using 
various multiple testing methods can be found in the .adjusted file. 

 
A common question when you have a finding with genome-wide significance in a GWAS is “Is the SNP in a 
known gene?” One way to look this information up is annotate variants in batch (please look at the annotating 
exercise for more information). You can do this using the Ensembl Variant Predictor. Go to the website: 

 
http://grch37.ensembl.org/Homo_sapiens/Tools/VEP (GRCh37 version) 

 

Type the rs number(s) of the SNP(s) with genome-wide significance in “Either paste data”, leave all options 
default and press run. In a few minutes you can view the results of your query. 
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Question 1: Did this study have a finding with genome-wide significance after adjusting for population 
substructure? Did you notice any difference in the p-values before and after adjustment for substructure? How 
many PC components should you include in the regression model. Please also, complete the tables below. 
 
 

 
 
 
 

Table 2. SNPS with genome-wide significance unadjusted for substructure: 
CHR SNP BP A1 TEST NMISS OR STAT P 

         
         

 
Table 3. SNPs with genome-wide significance adjusted for components 1 and 2: 

CHR SNP BP A1 TEST NMISS OR STAT P 
         
         

 
Question 2: Why would you not want to include in your analysis individuals from different ethnic backgrounds 
even if you control for population substructure?  
 
 

 
 
 
 
 
 

Question 3. Are any SNPs with genome-wide significance in known genes? 
 

 
 

Answers and Output 
 

Table 1  
Un- 

adjusted 

 
 

PC1 

 
PC1- 

2 

 
PC1 

-3 

 
PC1 

-4 

 
PC1 

-5 

 
PC1 

-6 

 
PC1 

-7 

 
PC1 

-8 

 
PC1 

-9 

 
PC1- 

10 
lambda 1.121 1.085 1.026 1.033 1.040 1.050 1.043 1.021 1.036 1.043 1.051 

 
Answer to Question 1: 

 

Question 1: 
 

Did this study have a finding with genome-wide significance after adjusting for population substructure? How 
many PC components should you include in the regression model. Did you notice any difference in the p-values 
before and after adjustment for substructure? 
Yes, see tables below. It is best to include to two PC components in the analysis, however the lambda is still 
inflated. Since we are analyzing three unique populations inclusion of PCs did not adequately control for 
substructure. If you compare the QQ plots below you can see that for this dataset the most significant SNPs 
were changed minimally when we adjusted for substructure but some of the moderately significant SNPs 
became less significant after adjustment. However, in some situations the p-values can become smaller. 13



Table 2. SNPS with genome-wide significance unadjusted for substructure: 
CHR SNP BP A1 TEST NMISS OR STAT P 

8 rs4571722 60326734 T ADD 242 0.04126 -7.436 1.04E-13 
4 rs10008252 179853616 G ADD 244 0.1665 -6.639 3.16E-11 

 
Table 3. SNPs with genome-wide significance adjusted for components 1 and 2: 

CHR SNP BP A1 TEST NMISS OR STAT P 
8 rs4571722 60326734 T ADD 242 0.04382 -7.237 4.59E-13 
4 rs10008252 179853616 G ADD 244 0.13070 -6.707 1.99E-11 

 
 

 
Question 2: Why would you not want to include in your analysis individuals from different ethnic backgrounds 
even if you control for population substructure?  
 
Firstly, you may not be able to adequately control for population substructure. Secondly, even if within the 
different populations the same genes are involved, for common variants LD structure can vary between 
populations, e.g., the tagSNPs in the different populations can have different allele frequencies, therefore the 
functional variant will not be tagged equally well in all populations and power can be reduced. It is also 
possible that different variants are associated, but for common variants, which are very old, usually this is not 
the cause. If a study involves individuals of different ancestry analysis can be performed separately and the 
results can be combined via meta-analysis. Studying individuals of different ancestry can be highly beneficial to 
fine map loci. 

 

Question 3. Are any SNPs with genome-wide significance in known genes? 
No, both rs457122 and rs10008252 are intergenic/intronic.
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vtools -h 

Association Analysis of Sequence Data using Variant Association Tools (VAT) 
for Complex Traits 

Copyright (c) 2023 Gao Wang, Biao Li, Diana Cornejo Sánchez & Suzanne M. Leal 

PURPOSE 
Variant Association Tools [VAT, Wang et al (2014)] [1] was developed to perform quality control and association 
analysis of sequence data. It can also be used to analyze genotype data, e.g. exome chip data and imputed data. The 
software incorporates many rare variant association methods which include but not limited to Combined Multivariate 
Collapsing (CMC) [2], Burden of Rare Variants (BRV) [3], Weighted Sum Statistic (WSS) [4], Kernel Based Adaptive 
Cluster (KBAC) [5], Variable Threshold (VT) [6] and Sequence Kernel Association Test (SKAT) [7]. 

VAT inherits the intuitive command-line interface of Variant Tools (VTools) [8] with re-design and implementation 
of its infrastructure to accommodate the scale of dataset generated from current sequencing efforts on large populations. 
Features of VAT are implemented into VTools subcommand system. 

RESOURCES 

A list of all commands that are used in this exercise can be found at 
https://statgen.research.bcm.edu/index.php/Main_Page 

Basic concepts to handle sequence data using vtools can be found at: 
http://varianttools.sourceforge.net/Main/Concepts 

VAT Software documentation 
http://varianttools.sourceforge.net/Main/Documentation 

Genotype data 
Exome genotype data was downloaded from the 1000 Genomes pilot data July 2010 release for both the CEU and YRI 
populations. Only the autosomes are contained in the datasets accompanying this exercise. 

The data sets (CEU.exon.2010 03.genotypes.vcf.gz, YRI.exon.2010 03.genotypes.vcf.gz)
are available from: 
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/release/2010_07/exon/snps 

Phenotype data 
To demonstrate the association analysis, we simulated a quantitative trait phenotype (BMI). Please note that these 
phenotypes are NOT from the 1000 genome project. 

Computation resources 
Due to the nature of next-generation sequencing data, a reasonably powerful machine with high speed internet connection 
is needed to use this tool for real-world applications. For this reason, in this tutorial we will use a small demo dataset to 
demonstrate association analysis. 

1 Data Quality Control, Annotation and Variant/sample Selection - Part I 

1.1 Getting started 
Please navigate to the exercise data directory and check the available subcommands by typing: 
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vtools liftover hg19 --flip 

Subcommand system is used for various data manipulation tasks (to check details of each subcommand use vtools 
name of subcommand -h). This tutorial is mission oriented and focuses on a subset of the commands that are 
relevant to variant-phenotype association analysis, rather than introducing them systematically. For additional 
functionality, please refer to documentation and tutorials online. 

Initialize a project 
 

 

OUTPUT 

INFO: variant tools 2.6.1 : Copyright (c) 2011 - 2014 Bo Peng 

INFO: San Lucas FA, Wang G, Scheet P, Peng B (2012) Bioinformatics 28(3):421-422 
INFO: Please visit http://varianttools.sourceforge.net for more information. 
INFO: Creating a new project VATDemo 

 
Command vtools init creates a new project in the current directory. A directory can only have one project. After a 
project is created, subsequent vtools calls will automatically load the project in the current directory. Working from 
outside of a project directory is not allowed. 

 
Import variant and genotype data 
Import all vcf files under the current directory: 
vtools import *.vcf.gz --var_info DP filter --geno_info DP_geno --build hg18 -j1 

 

OUTPUT 
INFO: Importing variants and genotypes from CEU.exon.2010_03.genotypes.vcf.gz (1/2) 
CEU.exon.2010_03.genotypes.vcf.gz: 100% [============================================================================ 

=====] 4,306 603.0/s in 00:00:07 

INFO: 3,489 variants (3,489 new, 3,489 SNVs) from 3,500 lines are imported, with a total of 288,291 genotypes 
from 90 samples. 
INFO: Importing variants and genotypes from YRI.exon.2010_03.genotypes.vcf.gz (2/2) 
YRI.exon.2010_03.genotypes.vcf.gz: 100% [============================================================================ 

=====] 5,967 547.2/s in 00:00:10 

INFO: 5,175 variants (3,498 new, 5,175 SNVs) from 5,186 lines are imported, with a total of 513,911 genotypes 
from 112 samples. 

INFO: 8,664 variants (6,987 new, 8,664 SNVs) from 8,686 lines are imported, with a total of 802,202 genotypes 
from 202 samples. 

 
Command vtools import imports variants, sample genotypes and related information fields. The imported variants 
are saved to the master variant table for the project, along with their information fields. 

The command above imports two vcf files sequentially into an empty vtools project. The second INFO message 
in the screen output shows that 3,489 variant sites are imported from the first vcf file, where 3,489 new means that all of 
them are new because prior to importing the first vcf the project was empty so there was 0 site. The fourth INFO message 
tells that 5,175 variant sites are imported from the second vcf file, but only 3,498 of them are new (which are not seen in 
the existing 3,489) because prior to importing the second vcf there were already 3,489 existing variant sites from first vcf. 

Thus, 5,175 - 3,498 = 1,677 variant sites are overlapped sites between first and second vcfs. The last INFO message 
summarizes that the sum of variant sites contained in both vcfs is 8,664 = 3,489 + 5,175, where there are 6,987 variant 

sites after merging variants from both vcfs. 
More details about vtools import command can be found at 

http://varianttools.sourceforge.net/ Vtools/Import 
Since the input VCF file uses hg18 as the reference genome while most modern annotation data sources are hg19- 

based, we need to liftover our project using hg19 in order to use various annotation sources in the analysis. Vtools 
provides a command which is based on the tool of USCS liftOver to map the variants from existing reference genome to 
an alternative build. More details about vtools liftover command can be found at 
http://varianttools.sourceforge.net/Vtools/Liftover 

 

vtools init VATDemo 
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head phenotypes.csv 

.phenotypes.csv 

vtools phenotype --from_file phenotypes.csv --delimiter "," 

. . …. OUTPUT 

vtools show project 
vtools show tables 
vtools show table variant 
vtools show samples 
vtools show genotypes 
vtools show fields 

 
OUTPUT 

INFO: Downloading liftOver chain file from UCSC 
INFO: Exporting variants in BED format 
Exporting variants: 100% [=========================================================================================== 
=========] 6,987 59.3K/s in 00:00:00 
INFO: Running UCSC liftOver tool 
Updating table variant: 100% [======================================================================================= =========] 
6,987 157.6/s in 00:00:44 

 

 
 

Import phenotype data 
The aim of the association test is to find variants that modulate the phenotype BMI. We simulated BMI values for each of 
the individuals. The phenotype file must be in plain text format with sample names matching the sample IDs in the vcf 
file(s): 

 

 

sample_name,panel,SEX,BMI 
NA06984,ILLUMINA,1,36.353 
NA06985,NA,2,21.415 
NA06986,ABI_SOLID+ILLUMINA,1,26.898 
NA06989,ILLUMINA,2,25.015 
NA06994,ABI_SOLID+ILLUMINA,1,23.858 
NA07000,ABI_SOLID+ILLUMINA,2,36.226 
NA07037,ILLUMINA,1,32.513 
NA07048,ILLUMINA,2,17.57 
NA07051,ILLUMINA,1,37.142 

 

 
The phenotype file includes information for every individual, the sample name, sequencing panel, sex and BMI. To 
import the phenotype data: 

 

 

INFO: Adding phenotype panel of type VARCHAR(24) 
INFO: Adding phenotype SEX of type INT 
INFO: Adding phenotype BMI of type FLOAT 
INFO: 3 field (3 new, 0 existing) phenotypes of 202 samples are updated. 

 

 
Unlike vtools import, this command imports/adds properties to samples rather than to variants. More details about 
vtools phenotype command can be found at 
http://varianttools.sourceforge.net/Vtools/Phenotype 

 
View imported data 
Summary information for the project can be viewed anytime using the command vtools show, which displays various 
project  and  system  information.  More  details  about  vtools  show  can  be  found  at  http: 
//varianttools.sourceforge.net/Vtools/Show. Some useful data summary commands are: 

 

 

1.2 Overview of variant and genotype data 
 

Total number of variants 
The number of imported variants may be greater than number of lines in the vcf file, because when a variant has two 
alternative alleles (e.g. A->T/C) it is treated as two separate variants. 
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vtools select variant "filter=’PASS’" --count 

 
 

There are 6987 variants in our test data. 

vtools select table condition action selects from a variant table  table a subset of variants satisfying 
a specified condition, and perform an action of 

 

• creating a new variant table if --to table is specified. 
• counting the number of variants if --count is specified. 
• outputting selected variants if --output is specified. 

 
The condition should be a SQL expression using one or more fields in a project (displayed in vtools show fields). 
If the condition argument is unspecified, then all variants in the table will be selected. An optional condition --samples 
[condition] can also be used to limit selected variants to specific samples. More details about vtools select 
command can be found at http://varianttools.sourceforge.net/Vtools/Select 

 
Genotype Summary 
The command vtools show genotypes displays the number of genotypes for each sample and names of the 
available genotype information fields for each sample, e.g. GT - genotype; DP geno - genotype read depth. Such 
information is useful for the calculation of summary statistics of genotypes (e.g. depth of coverage). 

 
 

sample name Filename num genotypes sample genotype fields 
NA06984 CEU.exon.2010 03.genotypes.vcf.gz 3162 GT,DP geno 
NA06985 CEU.exon.2010 03.genotypes.vcf.gz 3144 GT,DP geno 
NA06986 CEU.exon.2010 03.genotypes.vcf.gz 3437 GT,DP geno 
NA06989 CEU.exon.2010 03.genotypes.vcf.gz 3130 GT,DP geno 
NA06994 CEU.exon.2010 03.genotypes.vcf.gz 3002 GT,DP geno 
NA07000 CEU.exon.2010 03.genotypes.vcf.gz 3388 GT,DP geno 
NA07037 CEU.exon.2010 03.genotypes.vcf.gz 3374 GT,DP geno 
NA07048 CEU.exon.2010 03.genotypes.vcf.gz 3373 GT,DP geno 
NA07051 CEU.exon.2010 03.genotypes.vcf.gz 

 

3451 GT,DP geno 
 

 
Variant Quality Overview 
The following command calculates summary statistics on the variant site depth of coverage (DP). Below is the command 
to calculate depth of coverage information for all variant sites. 

 
vtools output variant "max(DP)" "min(DP)" "avg(DP)" "stdev(DP)" "lower_quartile(DP)" "upper_quartile(DP)" -- 
header 

 
max DP 

  

min DP 
 

avg DP 
   

stdev DP lower quartile DP 
     

upper quartile DP 
   

25490 13 6815.77028768 3434.28040091  4301 9143 

 
In the test data, the maximum DP for variant sites is 25490, minimum DP 13, average DP about 6815, standard deviation 
of DP about 3434, lower quartile of DP 4301 and upper quartile of DP 9143. 

The same syntax can be applied to other variant information or annotation information fields. The command vtools 
output name of variant table outputs properties of variants in a specified variant table. The properties 
include fields from annotation databases and variant tables, basically fields outputted from command vtools show 
fields, and SQL-supported functions and expressions. There are several freely available SQL resources on the web to 
learn more about SQL functions and expressions. 

It is also possible to view variant level summary statistic for variants satisfying certain filtering criteria using vtools 
select name of variant table command, for example to count only variants having passed all quality filters: 

 

vtools select variant --count 

vtools show genotypes > GenotypeSummary.txt 
head GenotypeSummary.txt  
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vtools update variant --from_stat ’total=#(GT)’ ’num=#(alt)’ ’het=#(het)’ ’hom=#(hom)’ 

’other=#(other)’ ’minDP=min(DP_geno)’ ’maxDP=max(DP_geno)’ ’meanDP=avg(DP_geno)’ ’maf=maf()’ 

vtools show fields 
vtools show table variant 

All 6987 variants have passed the quality filters. To combine variant filtering and summary statistics: 
 

vtools select variant "filter=’PASS’" -o "max(DP)" "min(DP)" "avg(DP)" "stdev(DP)" "lower_quartile(DP)" 
"upper_quartile(DP)" --header 

 
The output information of command above will be the same as the previous vtools output command, since all 
variants have passed quality filter. 

 
1.3 Data exploration 

 
Variant level summaries 
The command below will calculate: 

• total: Total number of genotypes (GT) for a variant 
• num: Total number of alternative alleles across all samples 
• het: Total number of heterozygote genotypes 1/0 
• hom: Total number of homozygote genotypes 1/1 
• other: Total number of double-homozygotes 1/2 
• min/max/meanDP: Summaries for depth of coverage and genotype quality across samples 
• maf: Minor allele frequency 
• Add calculated variant level statistics to fields, which can be shown by commands vtools show fields and 
vtools show table variant 

OUTPUT 
Counting variants: 100% 
[============================================================================================ 
============] 202 22.9/s in 00:00:08 
INFO: Adding variant info field num with type INT 
INFO: Adding variant info field hom with type INT 
INFO: Adding variant info field het with type INT 
INFO: Adding variant info field other with type INT 
INFO: Adding variant info field total with type INT 
INFO: Adding variant info field maf with type FLOAT 
INFO: Adding variant info field minDP with type INT 
INFO: Adding variant info field maxDP with type INT 
INFO: Adding variant info field meanDP with type FLOAT 
Updating variant: 100% [============================================================================================= 
=========] 6,987 22.0K/s in 00:00:00 
INFO: 6987 records are updated 

 

 

 

Command vtools update updates variant info fields (and to a lesser extend genotype info fields) by adding more 
fields or updating values at existing fields. It does not add any new variants or genotypes, and does not change existing 
variants, samples, or genotypes. Using three parameters --from file, --from stat, and --set, variant 
information fields could be updated from external file, sample genotypes, and existing fields. More details about vtools 
update command can be found at 
http://varianttools.sourceforge.net/Vtools/Update 

 
Summaries for different genotype depth (GD) and genotype quality (GQ) filters 
The --genotypes CONDITION option restricts calculation to genotypes satisfying a given condition. Later we will remove 
individual genotypes by DP geno filters. The command below will calculate summary statistics genotypes of all samples per variant 
site. It can assist us in determining filtering criteria for genotype call quality. 
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vtools show fields 
vtools show table variant 

vtools output variant chr pos maf mafGD10 --header --limit 20 

vtools phenotype --set "RACE=0" --samples "filename like ’YRI%’" 
vtools phenotype --set "RACE=1" -- samples "filename like ’CEU%’" 

vtools show samples --limit 10 

 
 

OUTPUT 
 

Counting variants: 100% [============================================================================================ 
============] 202 71.5/s in 00:00:02 
INFO: Adding variant info field numGD10 with type INT 
INFO: Adding variant info field homGD10 with type INT 
INFO: Adding variant info field hetGD10 with type INT 
INFO: Adding variant info field otherGD10 with type INT 
INFO: Adding variant info field totalGD10 with type INT 
INFO: Adding variant info field mafGD10 with type FLOAT 
Updating variant: 100% [============================================================================================= 
=========] 6,976 25.2K/s in 00:00:00 
INFO: 6976 records are updated 

 

 

 

You will notice the change in genotype counts when applying the filter on genotype depth of coverage and only retaining 
those genotypes with a read depth greater than 10X. There are now 6976 variant sites after filtering on DP geno>10. 
Note that some variant sites will become monomorphic after removing genotypes due to low read depth. 

 
Minor allele frequencies (MAFs) 
In previous steps, we calculated MAFs for each variant site before and after filtering on genotype read depth. Below is a 
summary of the results: 

 

 
  OUTPUT 

chr pos Maf mafGD10 
1 1105366 0.0350877192982 0.0512820512821 
1 1105411 0.00943396226415 0.0128205128205 
1 1108138 0.192307692308 0.18023255814 
1 1110240 0.00561797752809 0.0 
1 1110294 0.228125 0.242307692308 
1 3537996 0.12012987013 0.152173913043 
1 3538692 0.0410256410256 0.0432098765432 
1 3541597 0.00561797752809 0.00617283950617 
1 3541652 0.0444444444444 0.0533333333333 
1 3545211 0.00561797752809 0.00581395348837 
...    

Adding “> filename.txt” at the end of the above command will write the output to a file. 
Next, we examine population specific MAFs. Our data is imported from two files, a CEU dataset (90 samples) and an 
YRI dataset (112 samples). To calculate allele frequency for each population, let us first assign an additional RACE 
phenotype (0 for YRI samples and 1 for CEU samples): 

 

 

   

sample_name filename panel SEX BMI RACE 
NA06984 CEU.exon...notypes.vcf.gz ILLUMINA 1 36.353 1 
NA06985 CEU.exon...notypes.vcf.gz . 2 21.415 1 
NA06986 CEU.exon...notypes.vcf.gz ABI_SOLID+ILLUMINA 1 26.898 1 
NA06989 CEU.exon...notypes.vcf.gz ILLUMINA 2 25.015 1 
NA06994 CEU.exon...notypes.vcf.gz ABI_SOLID+ILLUMINA 1 23.858 1 
NA07000 CEU.exon...notypes.vcf.gz ABI_SOLID+ILLUMINA 2 36.226 1 
NA07037 CEU.exon...notypes.vcf.gz ILLUMINA 1 32.513 1 
NA07051 CEU.exon...notypes.vcf.gz ILLUMINA 
NA07346 CEU.exon...notypes.vcf.gz . 2 30.978 1 (192 records omitted) 

1 37.142 1 

 

vtools update variant --from_stat ’totalGD10=#(GT)’ ’numGD10=#(alt)’ ’hetGD10=#(het)’ 
’homGD10=#(hom)’ ’otherGD10=#(other)’ ’mafGD10=maf()’ --genotypes "DP_geno > 10" 

OUTPUT 
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vtools update variant --from_stat ’CEU_mafGD10=maf()’ --genotypes ’DP_geno>10’ --samples "RACE=1" 
vtools update variant --from_stat ’YRI_mafGD10=maf()’ --genotypes ’DP_geno>10’ --samples "RACE=0" 
vtools output variant chr pos mafGD10 CEU_mafGD10 YRI_mafGD10 --header --limit 10 

vtools phenotype --from_stat ’CEU_totalGD10=#(GT)’ ’CEU_numGD10=#(alt)’ --genotypes ’DP_geno>10’ --samples "RACE=1" 

vtools phenotype --from_stat ’YRI_totalGD10=#(GT)’ ’YRI_numGD10=#(alt)’ --genotypes ’DP_geno>10’ --samples "RACE=0" 

…………… …… OUTPUT 

 
 

vtools phenotype --output  sample nameCEU totalGD10CEU numGD10YRI totalGD10YRI numGD10 --header 

Population specific MAF calculations will be performed using those genotypes that passed the read depth filter (DP 
geno>10) 

 
   OUTPUT    
chr Pos mafGD10 CEU_mafGD10 YRI_mafGD10 
1 1105366 0.0512820512821 0.0512820512821 0.0 
1 1105411 0.0128205128205 0.0128205128205 0.0 
1 1108138 0.18023255814 0.0212765957447 0.371794871795 
1 1110240 0.0 0.0 0.0 
1 1110294 0.242307692308 0.025 0.428571428571 
1 3537996 0.152173913043 0.170454545455 0.135416666667 
1 3538692 0.0432098765432 0.0833333333333 0.00595238095238 
1 3541597 0.00617283950617 0.00617283950617 0.0 
1 3541652 0.0533333333333 0.0533333333333 0.0 
1 3545211 0.00581395348837 0.00581395348837 0.0 

 

You will observe zero values because some variant sites are monomorphic or they are population specific. 
 

Sample level genotype summaries 
Similar operations could be performed on a sample level instead of on a variant level. More details about obtaining 
genotype level summary information using vtools phenotype --from stat can be found at 
http://varianttools.sourceforge.net/Vtools/Phenotype 

 

180 values of 2 phenotypes (2 new, 0 existing) of 90 samples are updated. 
224 values of 2 phenotypes (2 new, 0 existing) of 112 samples are updated. 

 
 

   

sample_name CEU_totalGD10 CEU_numGD10 
   

YRI_totalGD10 YRI_numGD10 
NA06984 2774 849 NA NA 
NA06985 1944 570 NA NA 
NA06986 3386 1029 NA NA 
NA06989 2659 819 NA NA 
NA06994 1730 486 NA NA 
...     

NA19257 NA NA 4969 1229 
NA19259 NA NA 4182 1005 
NA19260 NA NA 4404 1076 
NA19262 NA NA 4308 1044 
NA19266 NA NA 4878 1211 

 

1.4 Variant Annotation 
 

For rare variant aggregated association tests, we want to focus on analyzing aggregating variants having potential 
functional contribution to a phenotype. Thus, each variant site needs to be annotated for its functionality. Annotation is 
performed using variant annotation tools [7] which implements an ANNOVAR pipeline for variant function 
annotation [9]. More details about the ANNOVAR pipeline can be found at 
http://varianttools.sourceforge.net/Pipeline/Annovar 

OUTPUT 
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vtools output variant chr pos ref alt mut_type --limit 20 --header 

vtools_report trans_ratio variant -n num 

 
 

….. OUTPUT 

INFO: Running vtools update variant --from_file cache/annovar_input.variant_function --format ANNOVAR_variant_functio 
n --var_info region_type, region_name 
... 
Running vtools update variant --from_file cache/annovar_input.exonic_variant_function --format 
ANNOVAR_exonic_variant _function --var_info mut_type, function 
... 
INFO: Fields mut_type, function of 6,929 variants are updated 

 

 
The following command will output the annotated variant sites to the screen. 

 

 
 

   OUTPUT    

chr 
1 

pos 
1105366 

ref 
T 

alt 
C 

mut_type 
nonsynonymous SNV 

 

1 1105411 G A nonsynonymous SNV  
1 1108138 C T synonymous SNV  

1 1110240 T A nonsynonymous SNV  
1 1110294 G A nonsynonymous SNV  
1 3537996 T C synonymous SNV  
...      

 
Many more annotation sources are available which are not covered in this tutorial. Please read 
http://varianttools.sourceforge.net/Annotation for annotation databases, and http://varianttools.sourceforge.net/Pipeline for 
annotation pipelines. 

 
1.5 Data Quality Control (QC) and Variant Selection 

 
Ti/Tv ratio evaluations 
Before performing any data QC we examine the transition/transversion (Ti/Tv) ratio for all variant sites. Note that here we are 
obtaining Ti/Tv ratios for the entire sample, Ti/Tv ratios can also be obtained for each sample. 

 
 

 

num of transition num of transversion ratio   
161,637 44,641  3.62082 

The command above counts the number of transition and transversion variants and calculates its ratio. More details about 
vtools report trans ratio command can be found at 
http://varianttools.sourceforge.net/VtoolsReport/TransRatio 

If only genotype calls having depth of coverage greater than 10 are considered: 

num of transition num of transversion ratio   
140,392 38,710  3.62676 

We can see that Ti/Tv ratio has increase slightly if low depth of coverage calls are removed. There is only a small change 
in the Ti/Tv ratio since only a few variant sites become monomorphic and are no longer included in the calculation. In 
practice Ti/Tv ratios can be used to evaluate which threshold should be used in data QC. 

vtools execute ANNOVAR geneanno 

vtools_report trans_ratio variant -n numGD10 
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remove those with a total read depth {$\(\le\)$} 15. 
vtools select variant "DP<15" -t to_remove 
vtools show tables 
vtools remove variants to_remove -v0 
vtools show tables 

vtools remove genotypes "DP_geno<10" -v0 

vtools show samples --limit 5 

Removal of low quality variant sites 
We should not need to remove any variant site based on read depth because all variants passed the quality filter. To 
demonstrate removal of variant sites, let us 

 

 

We can see that one variant site has been removed from master variant table. The vtools remove command can 
remove various items from the current project. More details about vtools remove command can be found at 
http://varianttools.sourceforge.net/Vtools/Remove. Using a combination of select/remove 
subcommands low quality variant sites can be easily filtered out. The vtools show fields, vtools show 

tables, and vtools show table variant commands will allow you to see the new/updated fields and tables you 
have added/changed to the project. 

 
Filter genotype calls by quality 
We have calculated various summary statistics using the command --genotypes ‘CONDITION’ but we have not yet 
removed genotypes having genotype read depth of coverage lower than 10X. The command below removes these 
genotypes. 

 

 
Select variants by annotated functionality 
To select potentially functional variants for association mapping: 

 
vtools select variant "mut_type like ’non%’ or mut_type like ’stop%’ or region_type=’splicing’" 
-t v_funct 
vtools show tables 

 
 

The command above selects variant sites that are either nonsynonymous (by condition "mut type like ’non%’) or 
stop-gain/stop-loss (by condition mut type like ’stop%’) or alternative splicing (by condition region- 
type=’splicing’) 

3367 functional variant sites are selected 
 

2 Association Tests for Quantitative Traits - Part II 
 

2.1 View phenotype data 
 

 
 

   OUTPUT    
sample_name filename panel SEX BMI ... 
NA06984 CEU.exon...notypes.vcf.gz ILLUMINA 1 36.353 ... 
NA06985 CEU.exon...notypes.vcf.gz . 2 21.415 ... 
NA06986 CEU.exon...notypes.vcf.gz ABI_SOLID+ILLUMINA 1 26.898 ... 
NA06989 CEU.exon...notypes.vcf.gz ILLUMINA 2 25.015 ... 
NA06994 CEU.exon...notypes.vcf.gz ABI_SOLID+ILLUMINA 1 23.858 ... 
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vtools select variant --samples "RACE=1" -t CEU 
mkdir -p ceu 
cd ceu 
vtools init ceu --parent ../ --variants CEU --samples "RACE=1" -- build 
hg19 
vtools show project 

vtools select variant "CEU_mafGD10>=0.05" -t common_ceu 
vtools select v_funct "CEU_mafGD10<0.01" -t rare_ceu 

vtools use refGene 

OUTPUT 

vtools show annotation refGene 

2.2 Create sub-projects for association analysis with CEU samples 
 

We want to carry out the association analysis for CEU and YRI separately. It is recommended that we create two projects 
containing variants and samples for each population. This will greatly improve the computational efficiency. Note that we 
need to create empty folders to hold each of the projects: 

 

The above vtools init --parent command can create a project from a parent project. More details can be found at 
http://varianttools.sourceforge.net/Vtools/Init 

From now on we will only demonstrate analysis of CEU samples (and all the following commands in this chapter will 
be executed for this project), although the same commands will be applicable for YRI samples. After completing the 
analysis of CEU samples please use the same commands to analyze the YRI data set. You should not analyze the data 
from different populations together, once you have the p-values from each analysis, you may perform a meta-analysis. 

 
2.3 Subset data by MAFs 

 
To carry out association tests we need to treat common and rare variants separately. The dataset for our tutorial has very 
small sample size, but with large sample size it is reasonable to define rare variants as having observed MAF<0.01, and 
common variants as variants having observed MAF0.05. First, we create variant tables based on calculated alternative 
allele frequencies for both populations 

 

 
 

Notice that for selection of rare variants we only keep those that are annotated as functional (chosen from v funct 
table). There are 1450 and 604 variant sites selected for MAF0.05 and MAF<0.01, respectively. 

 
2.4 Annotate variants to genes 

 
For gene based rare variant analysis we need annotations that tell us the boundaries of genes. We use the refGene 
annotation database for this purpose. 

 

 

INFO: Downloading annotation database annoDB/refGene-hg19_20130904.ann 
INFO: Downloading annotation database from annoDB/refGene-hg19_20130904.DB.gz refGene-hg19_20130904.DB.gz: 100% 
[================================================================================== ==] 8,056,345.0 411.6K/s in 
00:00:19 
INFO: Using annotation DB refGene as refGene in project ceu. 
INFO: Known human protein-coding and non-protein-coding genes taken from the NCBI RNA reference sequences 
collection (RefSeq). 
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OUTPUT 

vtools associate -h 
vtools show tests 
vtools show test LinRegBurden 

vtools associate common_ceu BMI --covariate SEX -m "LinRegBurden --alternative 2" 
-j1 --to_db EA_CV > EA_CV.asso.res 

OUTPUT 

      

Annotation database refGene (version hg19_20130904) 
Description: Known human protein-coding and non-protein-coding genes taken from the NCBI RNA reference seq 
uences collection (RefSeq). 
Database type: range 
Reference genome hg19: chr, txStart, txEnd 
name (char) Gene name 
chr (char) 
strand (char) which DNA strand contains the observed alleles 
txStart (int) Transcription start position (1-based) 
txEnd (int) Transcription end position 
cdsStart (int) Coding region start (1-based) 
cdsEnd (int) Coding region end 
exonCount (int) Number of exons 
exonStarts (char) Starting point of exons (adjusted to 1-based positions) 
exonEnds (char) Ending point of exons 
score (int) Score 
name2 (char) Alternative name 
cdsStartStat (char) cds start stat, can be 'non', 'unk', 'incompl', and 'cmp1' 
cdsEndStat (char) cds end stat, can be 'non', 'unk', 'incompl', and 'cmp1' 

 

 

The names of genes are contained in the refGene.name2 field. The vtools use command, attaches an annotation 
database to the project, effectively incorporating one or more attributes available to variants in the project. More details 
about vtools use command can be found at http://varianttools.sourceforge.net/Vtools/Use 

 
2.5 Association testing of common/rare variants 

 
The association test program VAT is currently under development and is temporarily implemented as the vtools 
associate subcommand. To list available association test options 

 

Note that we use the quantitative trait BMI as the phenotype, and we will account for “SEX” as a covariate in the 
regression framework. More details about vtools  associate  command can be found at http: 
//varianttools.sourceforge.net/Vtools/Associate 

 
Analysis of common variants 
By default, the program will perform single variant tests using a simple linear model, and the Wald test statistic will be 
evaluated for p-values: 

 

 

INFO: 90 samples are found 
INFO: 1450 groups are found 
Loading genotypes: 100% [==================================================================] 90 56.7/s in 00:00:01 

Testing for association: 100% [======================================================] 1,450/5 684.5/s in 00:00:02 

INFO: Association tests on 1450 groups have completed. 5 failed. 
INFO: Using annotation DB EA_CV as EA_CV in project ceu. 
INFO: Annotation database used to record results of association tests. Created on Fri, 25 Mar 2016 17:45:52 
INFO: 1450 out of 3484 variant.chr, variant.pos are annotated through annotation database EA_CV 
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sort -g -k7 EA_CV.asso.res | head 

grep -i error *.log 

You may view the summary using the less command 
less EA_CV.asso.res 

Note 
Option -j1 specifies that 1 CPU core be used for association testing. You may use larger number of jobs for real 
world data analysis, e.g., use -j16 if your computational resources has 16 CPU cores available. Linux command 
cat /proc/cpuinfo shows the number of cores and other information related to the CPU on your computer. 

 
Association tests on 1450 groups have completed. 5 failed. 

 
The following command displays error messages about the failed tests. In each case, the sample size was too small to 
perform the regression analysis. 

 

 

OUTPUT 

2016-03-25 12:45:57,373: DEBUG: An ERROR has occurred in process 0 while processing '6:30018583': Sample size 
too small (2) to be analyzed for '6:30018583'. 
2016-03-25 12:45:57,378: DEBUG: An ERROR has occurred in process 0 while processing '6:30018721': Sample size 
too small (2) to be analyzed for '6:30018721'. 
2016-03-25 12:45:57,574: DEBUG: An ERROR has occurred in process 0 while processing '7:148552665': Sample size 
too small (2) to be analyzed for '7:148552665'. 
2016-03-25 12:45:57,662: DEBUG: An ERROR has occurred in process 0 while processing '8:145718728': Sample size 
too small (4) to be analyzed for '8:145718728'. 
2016-03-25 12:45:57,669: DEBUG: An ERROR has occurred in process 0 while processing '9:205057': Sample size too 
small(4) to be analyzed for '9:205057'. 

 

 

A summary from the association test is written to the file EA CV.asso.res. The first column indicates the variant 
chromosome and base pair position so that you may follow up on the top signals using various annotation sources that we 
will not introduce in this tutorial. The result will be automatically built into annotation database if --to db option is 
specified. 

 

 

To sort the results by p-value and output the first 10 lines of the file use the command: 
 

If you obtain significant p-values be sure to also observe the accompanying sample size. Significant p-values from too 
small of a sample size may not be results you can trust. 

Also, depending on your phenotype you may have to add additional covariates to your analysis. VAT allows you to 
test many different models for the various phenotypes and covariates. P-values for covariates are also reported. 

Similar to using an annotation database, you can use the results from the association test to annotate the project and 
follow up variants of interest, for example: 

vtools show fields 
association analysis result columns 

Field name Description 
EA_CV.variant_chr 
EA_CV.variant_pos 
EA_CV.sample_size_LinRegBurden 
EA_CV.beta_x_LinRegBurden 
EA_CV.pvalue_LinRegBurden 
EA_CV.wald_x_LinRegBurden 
EA_CV.beta_2_LinRegBurden 
EA_CV.beta_2_pvalue_LinRegBurden 
EA_CV.wald_2_LinRegBurden 
variant_chr 
variant_pos 
sample size 
test statistic. In the context of regression, this is estimate of effect size for x p-value 
Wald statistic for x (beta_x/SE(beta_x)) 
estimate of beta for covariate 2 
p-value for covariate 2 
Wald statistic for covariate 2 
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OUTPUT 

grep -i error *.log | tail -10 

less EA_RV.asso.res 

sort -g -k6 EA_RV.asso.res | head 

You see additional annotation fields starting with EA CV, the name of the annotation database you just created from 
association test (if you used the --to db option mentioned above). You can use them to easily select/output variants of 
interest.  More  details  about  outputting  annotation  fields  for  significant  findings  can  be  found  at  http: 
//varianttools.sourceforge.net/Vtools/Output 

 
Burden test for rare variants (BRV) 
BRV method uses the count of rare variants in given genetic region for association analysis, regardless of the region 
length. 

We use the -g option and use the ‘refGene.name2’ field to define the boundaries of a gene. By default, the test is a 
linear regression using aggregated counts of variants in a gene region as the regressor. 

 
vtools associate rare_ceu BMI --covariate SEX -m "LinRegBurden --alternative 2" -g refGene.name2 -j1 --to_db 
EA_RV > EA_RV.asso.res 

 

INFO: 90 samples are found 
INFO: 254 groups are found 
Loading genotypes: 100% [==================================================================] 90 48.6/s in 00:00:01 

Testing for association: 100% [=======================================================] 254/20 685.4/s in 00:00:00 

INFO: Association tests on 254 groups have completed. 20 failed. 
INFO: Using annotation DB EA_RV as EA_RV in project ceu. 
INFO: Annotation database used to record results of association tests. Created on Fri, 25 Mar 2016 17:47:26 
INFO: 254 out of 25360 refGene.refGene.name2 are annotated through annotation database EA_RV 

 

 
Association tests on 254groups have completed. 20 failed. To view failed tests: 

 

 

OUTPUT 
2016-03-25 12:49:49,553: DEBUG: An ERROR has occurred in process 0 while processing 'ABCC1': No variant found in 
geno type data for 'ABCC1'. 
2016-03-25 12:49:49,620: DEBUG: An ERROR has occurred in process 0 while processing 'ANO9': No variant found in 
genot ype data for 'ANO9'. 
2016-03-25 12:49:49,781: DEBUG: An ERROR has occurred in process 0 while processing 'C10orf71': No variant found 
in g enotype data for 'C10orf71'. 
2016-03-25 12:49:49,875: DEBUG: An ERROR has occurred in process 0 while processing 'CCDC127': No variant found 
in ge notype data for 'CCDC127'. 
2016-03-25 12:49:50,313: DEBUG: An ERROR has occurred in process 0 while processing 'FBXL13': No variant found 
in genotype data for 'FBXL13'. 
... 

 

 

The output file is EA RV.asso.res. The first column is the gene name, with corresponding p-values in the sixth 
column for the entire gene. 

 

 

You can also sort these results by p-value using command: 

 

Variable thresholds test for rare variants (VT) 
The variable thresholds (VT) method will carry out multiple testing in the same gene region using groups of variants 
based on observed variant allele frequencies. This test will maximize over statistics thus obtain a final test statistic, and 
calculate the empirical p-value so that multiple comparisons are adjusted for correctly. 

We will use adaptive permutation to obtain empirical p-values. Therefore, to avoid performing too large number of 
permutations we use a cutoff to limit the number of permutations when the p-value is greater than 0.0005, e.g. not all 
100,000 permutations are performed. Generally, even more permutations are used but we limit it to 100,000 to save time 
for this exercise. 
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vtools associate rare_ceu BMI --covariate SEX -m "VariableThresholdsQt --alternative 2 -p 
100000 \ --adaptive 0.0005" -g refGene.name2 -j1 --to_db EA_RV > EA_RV_VT.asso.res 

less EA_RV_VT.asso.res 

sort -g -k6 EA_RV_VT.asso.res | head 

vtools select rare_ceu "refGene.name2=’ABCC1’" -o chr pos ref alt CEU_mafGD10 numGD10 mut_type --header 

The command using variable thresholds method on our data is: 
 

To view test that failed, 
 

 

To view results, 

 

Note 
The p values you obtained for VT might be slightly different for each run. This is due to the randomness in 
permutation tests. 

 
Sort and output the lowest p-values using the command: 

 

 
Why do some tests fail? 
Notice that vtools associate command will fail on some association test units. Instances of failure are printed to 
terminal in red and are recorded in the project log file. Most failures occur due to an association test unit having too few 
samples or number of variants (for gene based analysis). You should view these error messages after each association 
scan is complete, e.g., using the Linux command grep -i error *.log and make sure you are informed of why 
failures occur. 

In the variable thresholds analysis above, gene ABCC1 failed the association test. If we look at this gene more closely 
we can see which variants are being analyzed by our test: 

 

 
 

 chr Pos ref alt CEU mafGD10 numGD10 mut type  
  16 16178858 T C 0.0 243 nonsynonymous SNV  

 
After applying our QC filters we are left with one variant within the ABCC1 gene to analyze. Because the MAF for this 
variant is 0.0 there are no variants in the gene to analyze so that this gene is ignored. Note that all individuals are 
homozygous for the alternative allele for this variant site. 

 
2.6 Association analysis of YRI samples 
Procedures for YRI sample association analysis is the same as for CEU samples as previously has been 
described, thus is left as an extra exercise for you to work on your own. Commands to perform analysis for YRI 
are found below: 

BASH 
cd .. 
vtools select variant --samples "RACE=0" -t YRI 
mkdir -p yri; cd yri 
vtools init yri --parent ../ --variants YRI --samples "RACE=0" -- 
build hg19 
vtools select variant "YRI_mafGD10>=0.05" -t common_yri vtools 
select v_funct "YRI_mafGD10<0.01" -t rare_yri 
vtools use refGene 
vtools associate common_yri BMI --covariate SEX -m "LinRegBurden --alternative 2" -j1 --to_db YA_CV > YA_CV.asso.res 
vtools associate rare_yri BMI --covariate SEX -m "LinRegBurden --alternative 2" -g refGene.name2 -j1 --to_db YA_RV 
> YA_RV.asso.res 
vtools associate rare_yri BMI --covariate SEX -m "VariableThresholdsQt --alternative 2 -p 100000 \ 

--adaptive 0.0005" -g refGene.name2 -j1 --to_db YA_RV > 
YA_RV_VT.asso.res 

cd .. 
 

grep -i error *.log | tail -10 
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2.7 Meta-analysis 
 

Here we demonstrate the application of meta-analysis to combine association results from the two populations 
via vtools report meta analysis. More details about vtools report meta analysis 
command can be found at 
http://varianttools.sourceforge.net/VtoolsReport/MetaAnalysis 

The input to this command are the association results files generated from previous steps, for example: 
 
 

To view the results, 
cut -f1,3 META_RV_VT.asso.res | head 

 
 

refgene name2 pvalue meta 
CASP7 4.751E-01 
POLR2J2 3.110E-01 
GNAO1 6.875E-02 
C18orf25 9.456E-01 
GBP7 3.498E-01 
MSH5 5.905E-01 
OR51B5 5.521E-01 
MAPK14 3.063E-01 
BAZ2B 7.941E-01  

 
 

Note that for genes that only appears in one study but not the other, or only have a valid p-value in one study but not the 
other, will be ignored from meta-analysis. 

 
2.8 Summary 

 
Analyzing variants with VAT is much like any other analysis software with a general workflow of: 

• Variant level cleaning 
• Sample genotype cleaning 
• Variant annotation and phenotype information processing 
• Sample/variant selection 
• Association analysis 
• Interpreting the findings 

The data cleaning and filtering conditions within this exercise should be considered as general guidelines. Your data may 
allow you to be laxer with certain criteria or force you to be more stringent with others. 

 
References 
[1] Wang, G.T., Peng, B., and Leal, S.M. (2014). Variant Association Tools for Quality Control and Analysis of Large-Scale Sequence and Genotyping Array Data. 
Am. J. Hum. Genet. 94, 770783 
[2] Li B, Leal SM. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet 2008 
83:311-21 
[3] Auer PL, Wang G, Leal SM. Testing for rare variant associations in the presence of missing data. Genet Epidemiol 2013 37:529-38 
[4] Liu DJ, Leal SM. A novel adaptive method for the analysis of next-generation sequencing data to detect com-plex trait associations with rare variants due to gene 
main effects and interactions. PLoS Genet 2010 6:e1001156 
[5] Madsen BE, Browning SR. A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet 2009 5:e1000384 
[6] Price AL, Kryukov GV, de Bakker PI, Purcell SM, Staples J, Wei LJ, Sunyaev SR. Pooled association tests for rare variants in exon-resequencing studies. Am J 
Hum Genet 20010 86:832-8 
[7] Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 
2011 89:82-93 
[8] Lucas FAS, Wang G, Scheet P, Peng B. Integrated annotation and analysis of genetic variants from next-generation sequencing studies with variant tools. 
Bioinformatics 2012 28:421-2 
[9] Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 2010 38:e164 
[10] Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust relationship inference in genome-wide association studies. Bioinformatics 2010 
26(22):2867-2873 
[11] Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ & Sham PC. PLINK: a toolset for whole- 
genome association and population-based linkage analysis. Am J Hum Genet, 2007 81:559-75 

vtools_report meta_analysis ceu/EA_RV_VT.asso.res yri/YA_RV_VT.asso.res --beta 5 --pval 6 --se 7 -n 2 
--link 1 > ME\ TA_RV_VT.asso.res 

29

http://varianttools.sourceforge.net/VtoolsReport/MetaAnalysis


Questions 

Question 1 List the four lowest p-values and associated variants or gene regions for the EA CV.asso.res, EA RV.asso.res, 
and EA RV VT.asso.res test outputs, which are results from single variant Wald test, rare variant BRV and VT tests, 
respectively, using the European American (CEU) population. Also, list the results using Yoruba African (YRI) 
population from YA CV.asso.res, YA RV.asso.res and YA RV VT.asso.res 

EA CV.asso.res - single variant tests using CEU 

1) ; 2) 

3) ; 4) 

EA RV.asso.res - BRV tests using CEU 

1) ; 2) 

3) ; 4) 

EA RV VT.asso.res - VT tests using CEU  

1)_______________; 2) _________________ 

3)                              ; 4)                                    

YA CV.asso.res - single variant tests using YRI 

1) ; 2)

3) ; 4)

YA RV.asso.res - BRV tests using YRI 

1) ; 2) 

3) ; 4) 

YA RV VT.asso.res - VT tests using YRI 

1) ; 2) 

3) ; 4) 

Question 2 List any gene regions that show up in the lowest eight p-values for both the BRV and the VT tests. Why might 
the p-values for the VT tests be higher than the p-values for the BRV tests? Are any of the top p-value hits significant? 
Why or why not? 

30



Answers 
 

Question 1 
 
EA CV.asso.res 
 
107888886 0.000105185 
1) 15869257 0.00038548 
2) 56293401 0.000386273 
3) 15869388 0.00279873 

 
EA RV.asso.res 
 
1) CIDEA 0.00504822 
2) UGT1A10 0.00549521 
3) UGT1A5 0.00549521 
4) UGT1A6 0.00549521 

 
EA RV VT.asso.res 
 
1) UGT1A9 0.007996 
2)CPED1 0.00999001 
3) UGT1A10 0.00999001 
4) UGT1A6 0.011988 

 
YA CV.asso.res 
 
1) 107888886 0.00000974 
2) 6003506 0.000211457 
3) 25901623 0.001329 
4) 3392651 0.00194995 

 
YA RV.asso.res 

 
1) EMILIN2 0.00262487 
2) ASIC2 0.0551664 
3) MDN1 0.0593085 
4) BAZ2B 0.0607625 

 
YA RV VT.asso.res 

 
1) EMILIN2 0.00533156 
2) MDN1 0.013986 
3) VLDLR 0.01998 
4) LRRC9 0.025974 

 
Question 2: The p-values do not achieve significance based on the corrected p values above (Bonferroni correction for 
multiple tests). Since the BMI values were randomly generated for each individual it is unlikely that any of the p-values 
for the single variant and aggregation tests would have achieved significance. Also, because of the multiple testing, the p- 
values for the VT tests might be higher than the p-values for the BRV tests. 
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Association Analysis of Sequence Data using PLINK/SEQ (PSEQ) 

Copyright (c) 2023 Stanley Hooker, Biao Li, Di Zhang and Suzanne M. Leal 

Purpose 

PLINK/SEQ (PSEQ) is an open-source C/C++ library for working with human genetic variation data. The 
specific focus is to provide a platform for analytic tool development for variation data from large-scale 
resequencing and genotyping projects, particularly whole-exome and whole-genome studies. PSEQ is 
independent of, but designed to be complementary to, the existing PLINK (Purcell et al., 2007) package. 
Here we give an overview of analysis of exome sequence data using PSEQ. 

Software Resource 

This tutorial was completed with PSEQ 0.10, (released on 14-Jul-2014) available from 
https://atgu.mgh.harvard.edu/plinkseq/download.shtml. Links to PSEQ documentation can also be found on 
the webpage. Below is an outline of what PSEQ documentation offers: 

• Basic Syntax and Conventions
• Project Management
• Data Input
• Attaching Auxiliary Data
• Viewing Data
• Data Output
• Summary Statistics
• Association Analysis
• Locus Database Operations
• Reference Database Operations
• Miscellaneous commands

Exercise Genotype Data 

Autosomal exome genotype data was downloaded from the 1000 Genomes pilot data July 2010 release for 
both the CEU (Utah residents with Northern and Western European ancestry) and YRI (Yoruba in Ibadan, 
Nigeria) populations. The data sets (CEU.exon.201003.genotypes.vcf.gz and 
YRI.exon.201003.genotypes.vcf.gz) are available from: 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/release/2010_07/exon/snps 

The genomic co-ordinate for this data set is hg18 based. To use the PSEQ annotation data source which is 
hg19 based, you will lift over this data set to use hg19 co-ordinate. Since PSEQ does not provide a liftover 
feature therefore the data has already been lifted over for you using Variant Association Tools. The resulting 
data files, CEU.exon.201003.genotypes.hg19.vcf.gz and YRI.exon.201003.genotypes.hg19.vcf.gz, will be 
used for this exercise. One data set contains exome data for European-Americans (CEU) from 1000 
Genomes while the other for Yoruba (YRI). The liftover feature may also have to be used with your data set 
as new hg coordinates become available. For additional information see 
http://varianttools.sourceforge.net/Vtools/Liftover 

Phenotype Data 

To demonstrate performing an association analysis, we simulated a quantitative trait phenotype (BMI). 
Please note that these phenotypes are NOT from the 1000 genomes project. The phenotype data for the 
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exercise can be found in the text file phenotype.phe. This phenotype file contains data for 202 individuals 
from both the CEU and YRI populations. 

 
Computation Resources 

 
The following tutorial uses a small data set so that the association analysis can be completed in a short 
period-of-time. Large next-generation sequenced data sets require a reasonably powerful machine with a 
high-speed internet connection. 

 
Data Cleaning and Variant/Sample Selection 

 
Getting Started 

 
To get a list of PSEQ subcommands use: 

 

pseq help 
 

Or, 
 

pseq help all 
 

Create a new project 
 

pseq myproj new-project --resources hg19 
Creating new project specification file [ myproj.pseq ] 

 

The “--resources” flag tells pseq where your supporting databases are located. For this exercise the 
necessary databases have already been created and are within your exercise directory. Instructions on how to 
create these databases is located at: 

 
http://atgu.mgh.harvard.edu/plinkseq/resources.shtml. 

 

Load variant data 
 

Import all vcf files under the current directory: 
 

pseq myproj load-vcf --vcf CEU.exon.2010_03.genotypes.hg19.vcf.gz YRI.exon.2010_03.genotypes.hg19.vcf.gz 
loading : /home/gmc01/data/pseq/CEU.exon.2010_03.genotypes.hg19.vcf.gz ( 90 individuals ) 
parsed 3000 rows 
loading : /home/gmc01/data/pseq/YRI.exon.2010_03.genotypes.hg19.vcf.gz ( 112 individuals ) 
parsed 5000 rows 
/home/gmc01/data/pseq/CEU.exon.2010_03.genotypes.hg19.vcf.gz : inserted 3489 variants 
/home/gmc01/data/pseq/YRI.exon.2010_03.genotypes.hg19.vcf.gz : inserted 5175 variants 

 
Note CEU are European-Americans and YRI are Yoruba from Nigeria. 

Load phenotype data 
 

pseq myproj load-pheno --file phenotype.phe 
Processed 202 rows 

 
The “phenotype.phe” file contains phenotypes for SEX, BMI and RACE (BMI is body mass index, males 
are denoted by a 1 and females by 2). Instruction on formatting .phe file can be found at 
https://atgu.mgh.harvard.edu/plinkseq/input.shtml#phe. 
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View variants and samples 

To view variant sites info: 
 

pseq myproj v-view | head 
 
chr1:1115461 . C/T . 1 PASS 
chr1:1115503 . T/C . 1 SBFilter 
chr1:1115510 . C/T . 1 PASS 
chr1:1115548 . G/A . 1 PASS 
chr1:1115604 . C/A . 1 PASS 
chr1:1118275 rs61733845 C/T . 2 PASS 
chr1:1119399 . C/T . 1 PASS 
chr1:1119434 . C/A . 1 PASS 
chr1:1120370 . C/G . 1 PASS 
chr1:1120377 . T/A . 1 PASS 

 
v-view command outputs a per-variant level view of a project, with the above fields: chromosome (base- 
position); variant-ID (or ‘.’ If novel); ref/alt alleles; a sample/file identifier (or ‘.’ If consensus variant); # of 
samples the variant observed in; filter values for samples (here ‘PASS’ means that the variant site passes all 
filter and ‘SBFilter’ means that the variant site fails to pass the strand bias (SB) filter). More details about v- 
view command can be found at https://atgu.mgh.harvard.edu/plinkseq/view.shtml#var 

 

To view samples and phenotypes: 
 

i-view command writes to standard output to view individuals’ phenotype information 
 

pseq myproj i-view | head 
 
#BMI (Float) "BMI" 
#RACE (String) "RACE" 
#SEX (Integer) "SEX" 
#PHE . 
#STRATA . 
#ID FID 
NA06984 . 
NA06985 . 
NA06986 . 
NA06989 . 

 

There are 3 fields, BMI, RACE and SEX contained in the input phenotype file, phenotype.phe. The headers 
are #ID – main unique individual ID; FID – optional family ID; IID: optional individual ID; MISS – a flag 
to indicate missing data; SEX – sex; PAT – paternal ID; MAT – maternal ID; META – meta information of 
fields from input phenotype file. More details about i-view command outputs can be found at 
https://atgu.mgh.harvard.edu/plinkseq/view.shtml#ind. 

 

Summary 

To view a summary of the complete project 
 

pseq myproj summary 
 

Command above will generate a long list of output. To view summaries of portions of the project, i.e., 
variant data, phenotype data, locus data, reference data, sequence data, input files and meta data: 

 

pseq myproj var-summary 
-‐-‐-‐Variant DB summary-‐-‐-‐ 

 
6987 unique variants 
File tag : 1 (3489 variants, 90 individuals) 
File tag : 2 (5175 variants, 112 individuals) 

IID MISS SEX PAT MAT META 
. 0 0 . . BMI=36.353;RACE=CEU;SEX=1 
. 0 0 . . BMI=21.415;RACE=CEU;SEX=2 
. 0 0 . . BMI=26.898;RACE=CEU;SEX=1 
. 0 0 . . BMI=25.015;RACE=CEU;SEX=2 
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pseq myproj ind-summary 
-‐-‐-‐Individual DB summary-‐-‐-‐ 

 
202 unique individuals 
Phenotype : BMI (Float) "BMI" 
Phenotype : RACE (String) "RACE" 
Phenotype : SEX (Integer) "SEX" 

 

pseq myproj loc-summary 
 

pseq myproj ref-summary 
 

pseq myproj seq-summary 
 

pseq myproj file-summary 
 

pseq myproj meta-summary 
 

More details about viewing summary information for project databases can be found at 
https://atgu.mgh.harvard.edu/plinkseq/proj.shtml#summ 

 

Based on the “pseq myproj var-summary” command there are 6987 unique variant sites for CEU and YRI, 
with the CEU sample having 3489 variant sites and the YRI sample 5175 variant sites. . 

 
For an overview of variant summary statistics: 

 

pseq myproj v-stats 
NVAR 6987 
RATE 0.568384 
MAC 19.8557 
MAF 0.0691347 
SING 2064 
MONO 30 
TITV 3.57264 
TITV_S 3.77778 
DP 8426.74 
QUAL NA 
PASS 0.999857 
FILTER|PASS 0.999857 
FILTER|SBFilter 0.000143123 
PASS_S 1 

v-stats command obtains summary statistics across variants. Output statistics are NVAR – total number of 
variants; RATE – average call rate; MAC – mean minor allele count; MAF – mean minor allele frequency; 
SING – number of singletons; MONO – number of monomorphic sites; TITV – transition/transversion 
(Ti/Tv) ratio; TITV_S – Ti/Tv ratio for singletons; DP – mean variant read depth; QUAL – mean QUAL 
score from VCF; PASS – proportion of variants that PASS all FILTERS; FILTER|PASS – proportion of 
variants that pass all filters; FILTER|SBFilter – proportion of variants that fail to pass SB filter. More details 
about v-stats command outputs can be found at https://atgu.mgh.harvard.edu/plinkseq/stats.shtml#var 

For individual level summary statistics: 

pseq myproj i-stats | head 
 

ID NALT NMIN NHET NVAR RATE SING TITV PASS PASS_S QUAL DP 
NA06984 719 568 480 3162 0.452555 8 3.61789 568 8 NA 13489 
NA06985 655 531 420 3144 0.449979 10 3.5 531 10 NA 13530.3 
NA06986 773 643 503 3437 0.491914 22 3.69343 643 22 NA 12535.8 
NA06989 699 532 469 3130 0.447975 8 3.22222 532 8 NA 13549.7 
NA06994 591 464 377 3002 0.429655 3 3.59406 464 3 NA 13923.8 
NA07000 802 613 517 3388 0.484901 10 3.67939 613 10 NA 12292.6 
NA07037 800 631 512 3374 0.482897 4 3.60584 631 4 NA 12357.4 
NA07048 817 675 607 3373 0.482754 15 3.29936 675 15 NA 12909.5 
NA07051 825 637 507 3451 0.493917 13 3.05732 637 13 NA 11929 

 
i- stats command obtains a matrix of summary statistics for every individual in a project. Output statistics are 
ID – individual ID; NALT – number of non-reference genotypes; NMIN – number of genotypes with a 
minor allele; NHET – number of heterozygous genotypes for individual; NVAR – total number of called 
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variants for individual; RATE – genotyping rate for individual; SING – number of singletons individuals has; 
TITV – mean Ti/Tv for variants for which individual has a nonreference genotype; PASS – number of 
variants passing for which individual has a nonreference genotype; PASS_S - number of singletons passing 
for which individual has a (singleton) nonreference genotype; QUAL - mean QUAL for variants for which 
individual has a nonreference genotype; DP - mean variant DP for variants for which individual has a 
nonreference genotype. More details about i-stats command output can be found at 
https://atgu.mgh.harvard.edu/plinkseq/stats.shtml#ind 

The file tags (listed at the top of the “pseq myproj var-summary” results as “1” for the CEU imported VCF 
file and “2” for YRI imported VCF file) can be changed to more identifiable names using the commands: 

pseq myproj tag-file --id 1 --name CEU 

pseq myproj tag-file --id 2 --name YRI 

To view changes use the command: 

pseq myproj var-summary 
-‐-‐-‐Variant DB summary-‐-‐-‐

6987 unique variants 
File tag : CEU (3489 variants, 90 individuals) 
File tag : YRI (5175 variants, 112 individuals) 

This will help us later for viewing population specific data as well as filtering and analyzing data based on 
population. 

Variant statistics 

Variant statistics such as Hardy-Weinberg equilibrium, minor allele count, and minor allele frequency can be 
output using the “v-freq” command: 

pseq myproj v-freq | head 
VAR CHR 
chr1:1115461 1 
chr1:1115503 1 
chr1:1115510 1 
chr1:1115548 1 
chr1:1115604 1 
chr1:1118275 1 
chr1:1119399 1 
chr1:1119434 1 
chr1:1120370 1 

Please note that it is not valid to filter for deviation from HWE using the entire project since there are two 
populations, instead the HWE much be examined for each individual project. 
For population specific variant statistics use the “--mask” flag with the “file” option: 

pseq myproj v-freq --mask file=CEU | head 
VAR CHR POS REF ALT FILTER QUAL TI GENO MAC MAF REFMIN HWE HET NSNP 
chr1:1115503 1 1115503 T C SBFilter 0 1 0.633333 4 0.0350877 0 1 0.0701754 1 
chr1:1115548 1 1115548 G A PASS 0 1 0.588889 1 0.00943396 0 1 0.0188679 0 
chr1:1118275 1 1118275 C T PASS 0 1 0.677778 3 0.0245902 0 1 0.0491803 0 
chr1:1120377 1 1120377 T A PASS 0 0 0.988889 1 0.00561798 0 1 0.011236 1 
chr1:1120431 1 1120431 G A PASS 0 1 0.855556 6 0.038961 0 1 0.0779221 0 
chr1:3548136 1 3548136 T C PASS 0 1 0.811111 18 0.123288 1 1 0.219178 0 
chr1:3548832 1 3548832 G C PASS 0 0 0.988889 13 0.0730337 0 1 0.146067 0 
chr1:3551737 1 3551737 C T PASS 0 1 0.988889 1 0.00561798 0 1 0.011236 1 
chr1:3551792 1 3551792 G A PASS 0 1 1 8 0.0444444 0 1 0.0888889 0 

pseq myproj v-freq --mask file=YRI | head 
VAR CHR POS REF ALT FILTER QUAL TI GENO MAC MAF REFMIN HWE HET NSNP 
chr1:1115461 1 1115461 C T PASS 0 1 0.5625 4 0.031746 0 1 0.0634921 1 
chr1:1115510 1 1115510 C T PASS 0 1 0.598214 2 0.0149254 0 1 0.0298507 1 
chr1:1115604 1 1115604 C A PASS 0 0 0.517857 3 0.0258621 0 1 0.0517241 0 
chr1:1118275 1 1118275 C T PASS 0 1 0.5 42 0.375 0 0.395585 0.535714 0 
chr1:1119399 1 1119399 C T PASS 0 1 0.892857 3 0.015 0 1 0.03 1 
chr1:1119434 1 1119434 C A PASS 0 0 0.892857 1 0.005 0 1 0.01 0 
chr1:1120370 1 1120370 C G PASS 0 0 0.892857 16 0.08 0 0.478564 0.14 1 
chr1:1120431 1 1120431 G A PASS 0 1 0.741071 67 0.403614 0 0.360868 0.542169 4 
chr1:1120488 1 1120488 A C PASS 0 0 0.857143 10 0.0520833 0 1 0.104167 3 

As you see, the “--mask” flag is used to set conditions for the viewing or filtering variants or individuals. 
More details about “v-freq” command can be found at 
https://atgu.mgh.harvard.edu/plinkseq/tutorial.shtml 

POS REF ALT FILTER QUAL TI GENO MAC MAF REFMIN HWE HET NSNP 
1115461 C T PASS . 1 0.311881 4 0.031746 0 1 0.0634921 3 
1115503 T C SBFilter . 1 0.282178 4 0.0350877 0 1 0.0701754 2 
1115510 C T PASS . 1 0.331683 2 0.0149254 0 1 0.0298507 2 
1115548 G A PASS . 1 0.262376 1 0.00943396 0 1 0.0188679 1 
1115604 C A PASS . 0 0.287129 3 0.0258621 0 1 0.0517241 0 
1118275 C T PASS . 1 0.579208 45 0.192308 0 0.367544 0.282051 0 
1119399 C T PASS . 1 0.49505 3 0.015 0 1 0.03 1 
1119434 C A PASS . 0 0.49505 1 0.005 0 1 0.01 0 
1120370 C G PASS . 0 0.49505 16 0.08 0 0.478564 0.14 2 
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Data Cleaning 
 

Removal of low quality variants 
 

To view the number of variants that passed all quality filters: 
 

pseq myproj v-view --mask any.filter.ex | head 
 
chr1:1115461 . C/T . 1 PASS 
chr1:1115510 . C/T . 1 PASS 
chr1:1115548 . G/A . 1 PASS 
chr1:1115604 . C/A . 1 PASS 
chr1:1118275 rs61733845 C/T . 2 PASS 
chr1:1119399 . C/T . 1 PASS 
chr1:1119434 . C/A . 1 PASS 
chr1:1120370 . C/G . 1 PASS 
chr1:1120377 . T/A . 1 PASS 
chr1:1120431 rs1320571 G/A . 2 PASS 

 
pseq myproj v-view --mask any.filter.ex | wc -l 

 
There are 6986 unique variant sites that have passed the quality filters. The “--mask” flag gives the 
condition(s) that must be met for the variant to be listed. Here “any.filter.ex” tells pseq to remove any 
variants that failed 1 or more quality filters. Only variants that have a ‘PASS’ value in the FILTER field of 
the vcf file will be selected. More details about filtering variants on FILTER field can be found at 
https://atgu.mgh.harvard.edu/plinkseq/masks.shtml#filter 

 

To view the number of variants that failed any quality filter: 
 

pseq myproj v-view --mask any.filter | wc -l 
 

One variant failed the filter. To select only variants that passed all quality filters: 
 

pseq myproj var-set --group pass --mask any.filter.ex 
 

pseq myproj var-summary 

-‐-‐-‐Variant DB summary-‐-‐-‐ 

6987 unique variants 
File tag : CEU (3489 variants, 90 individuals) 
File tag : YRI (5175 variants, 112 individuals) 

 
Set pass containing 8663 variants 

 
The “var-set” option tells pseq that we will be creating a new set of variants, the input following the “-- 
group” flag gives the name of the new variant set, and the input following the “--mask” flag gives the 
condition(s) that must be met for the variant to be included in the new variant set. 

If we consider variant sites with a read depth < 15 as low quality variant sites and we want to remove 
variants that did not meet this threshold. Note that ‘DP’, which denotes total read depth of a variant site, is 
contained in the INFO field of vcf file. 

 

pseq myproj var-set --group pass_DP15 --mask include="DP>14" var=pass 
 

pseq myproj var-summary 

-‐-‐-‐Variant DB summary-‐-‐-‐ 

6987 unique variants 
File tag : CEU (3489 variants, 90 individuals) 
File tag : YRI (5175 variants, 112 individuals) 

 
Set pass containing 8663 variants 
Set pass_DP15 containing 8662 variants 
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Only one variant site is removed. The “var=allpass” option allows us to use a previously defined variant set 
as a reference for additional filtering of a previously filtered variant set. By using various “--mask” 
commands you can filter out variants that are not useful for your particular study. 

 
Filter data by genotype read depth 10 

 

pseq myproj var-set --group pass_DP15_DPgeno10 --mask geno=DP:ge:11 var=pass_DP15 
 

pseq myproj var-summary 
-‐-‐-‐Variant DB summary-‐-‐-‐ 

 
6987 unique variants 
File tag : CEU (3489 variants, 90 individuals) 
File tag : YRI (5175 variants, 112 individuals) 

 
Set pass containing 8663 variants 
Set pass_DP15 containing 8662 variants 
Set pass_DP15_DPgeno10 containing 8662 variants 

 

This command sets all genotypes with a sequencing depth (DP) < 11 to null using the option 
“geno=DP:ge:11”. In the vcf file, genotype level DP information is contained in the genotype columns, 
present under each individual ID and is specific to every individual’s genotype. Available genotype level 
information is denoted by FORMAT column in the vcf file. 

 
Association Tests for a Quantitative Trait 

 
NOTE: From this step forward the association tests will be performed for the CEU population only. The 
“file=YRI” tag can be used to perform the same tests on the YRI data. 

 
Select CEU variant sites 

 
pseq myproj var-set --group pass_DP15_DPgeno10_CEU --mask file=CEU var=pass_DP15_DPgeno10 

 

pseq myproj var-summary 
 

-‐-‐-‐Variant DB summary-‐-‐-‐ 
… 
Set pass_DP15_DPgeno10_CEU containing 3488 variants 

 

There are 3488 variant sites that can be found in CEU population dataset after QC. 
 

Exclude variant sites with HWE p-value < 5.7e-7 
 

pseq myproj var-set --group pass_DP15_DPgeno10_CEU_HWE --mask hwe=5.7e-7:1 var=pass_DP15_DPgeno10_CEU 
 

pseq myproj var-summary 
 

-‐-‐-‐Variant DB summary-‐-‐-‐ 
… 
Set pass_DP15_DPgeno10_CEU containing 3479 variants 

 
There are 3479 variant sites that are in HWE (Hardy-Weinberg equilibrium) in CEU population. Details 
about tests for deviation from HWE can be found at http://en.wikipedia.org/wiki/Hardy–Weinberg_principle. 
Here we use a p-value cutoff of 5.7e-7 to exclude variant sites, for more details see reference 
http://www.nature.com/nature/journal/v447/n7145/full/nature05911.html 

 

Filter variants by minor allele frequency (MAF) 
 

We wish to analyze variant sites with different allele frequencies. In order to obtain the different data sets the 
following commands are used. 
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There are 1429 variant sites in the CEU data set that pass QC with a MAF ≥ 0.05. These variant sites 
are saved to the variant table; pass_DP15_DPgeno10_CEU_HWE_MAFgt05.  
 
To extract variant sites with MAF ≤ 0.01: 
 
pseq myproj var-set --group pass_DP15_DPgeno10_CEU_HWE_MAFlt01 --mask "mac=1 maf=0.01" 
var=pass_DP15_DPgeno10_CEU_HWE 
 
pseq myproj var-summary 
 
---Variant DB summary--- 
Set pass_DP15_DPgeno10_CEU_HWE_MAFlt01 containing 1083 variants 
 
There are 1083 variant sites in the CEU dataset which pass QC with a MAF ≤ 0.01. The variant sites 
are saved to the variant table; pass_DP15_DPgeno10_CEU_HWE_MAFlt01. Note that condition 
“mac=1” excludes monomorphic sites.  
 

More details about --mask options on filtering variants on sample polymorphism can be found at 
https://atgu.mgh.harvard.edu/plinkseq/masks.shtml#maf 
 

 
Analysis of common variants (MAF ≥ 0.05) 
 
To run a linear or logistic regression on each single variant, use the glm command. The type of test 
will depend on the phenotype (quantitative trait or dichotomous disease trait).  
 
To detect single variant association between quantitative phenotype BMI, controlling for sex and a 
group of variants, contained in variant table pass_DP15_DPgeno10_CEU_HWE_MAFgt05, filtered 
using each of the previous filtering conditions: 
 
pseq myproj glm --phenotype BMI --covar SEX --mask var=pass_DP15_DPgeno10_CEU_HWE_MAFgt05 > 
SNV_CEU.result  
 
head SNV_CEU.result 
VAR  REF ALT N F  BETA  SE STAT  P 
chr1:3548136 T C 73 0.876712  -1.53374  1.85033 -0.828897  0.40998 
chr1:3548832 G C 89 0.0730337  1.13049  2.26738 0.49859  0.619341 
chr1:6524501 T C 86 0.0697674  0.433904  2.49357 0.174009  0.862282 
chr1:6524688 T C 88 0.0511364  -1.86795  2.70494 -0.690568  0.491718 
chr1:11710561 T G 47 0.117021  -0.347495  1.92692 -0.180337  0.857716 
chr1:17914057 G A 86 0.0755814  -1.59486  2.34734 -0.679432  0.498754 
chr1:17914122 G A 85 0.0823529  2.61561  2.1748 1.20269  0.232558 
chr1:17961345 C T 68 0.110294  2.99054  2.00047 1.49492  0.139775 
chr1:17981184 A C 80 0.15  -1.83108  1.63531 -1.11972  0.266315  

 
The output statistics are VAR – variant identifier; REF – reference allele; ALT – alternate allele(s); N 
– number of individuals included in analysis; F – frequency of the alternate allele(s); BETA – 
regression coefficient; SE – standard error of estimate; STAT – test statistic; P – asymptotic p-value. 
More details about linear and logistic regression models can be found at 
https://atgu.mgh.harvard.edu/plinkseq/assoc.shtml#glm  
 
To view the results sorted by p-value: 
 
cat SNV_CEU.result | awk '{if(FNR==1) print $0; if(NR>1) print $0 | "sort -k9"}' | grep -v "NA\s\+NA\s\+NA" | head 
VAR  REF ALT N F  BETA  SE STAT  P 
chr11:108383676 A G 90 0.138889  6.36308  1.60942 3.95365  0.000156342 
chr19:16008388 A C 53 0.122642  6.88317  1.73915 3.95778  0.000239339 
chr19:16006413 G A 80 0.1  6.31788  1.78167 3.54604  0.000669193 
chr14:39901157 C A 36 0.0555556  10.8531  3.12283 3.47542  0.00144933 
chr16:57735900 G C 80 0.29375  -4.18114  1.43663 -2.91039  0.004718 
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chr2:49189921 C T 90 0.588889  -3.345  1.17772 -2.84025  0.0056123 
chr7:156742501 C G 9 0.277778  -12.1592  2.89402 -4.20149  0.00567644 
chr2:49191041 C T 89 0.58427  -3.36254  1.19515 -2.81348  0.00607226 
chr15:25926204 C G 83 0.0783133  5.79532  2.13611 2.71302  0.00816109 
 
 
Analysis of rare variants (MAF <0.01) 
 
PSEQ has a collection of gene-based tests, see 
https://atgu.mgh.harvard.edu/plinkseq/assoc.shtml#genic for details.  
 
However, Currently only the SKAT and SKAT-O can be used to analyze quantitative traits so the 
SKAT test will be used in the following rare variant burden analysis (if we choose to use other tests, 
e.g. WSS – frequency-weighted test, VT – variable threshold test, etc., the following error will be 
returned. 
 
pseq myproj assoc --tests fw vt --phenotype BMI  
pseq error : only SKAT/SKAT-O can handle quantitative traits 

 
To perform SKAT, where rare variants aggregated across a gene region, a group-by mask is required. 
Here we use loc.group=refseq, where refseq denotes NCBI Reference Sequence Database. More 
details about grouping variants can be found at 
https://atgu.mgh.harvard.edu/plinkseq/masks.shtml#groups. More details about refseq can be found 
at http://www.ncbi.nlm.nih.gov/refseq/ 
 
When performing single variant analysis data QC can be performed and then variant table containing 
selected variants can be analyzed.  If a rare variant aggregate association test is being performed it 
is not possible using PSEQ to specify the name of the variant table, instead all of the QC parameters 
must be included in the command line in addition to the association test parameters.  
 
Running the SKAT test using the variant table results in an error:  
 
pseq myproj assoc --tests skat --phenotype BMI --covar SEX --mask var=pass_DP15_DPgeno10_CEU_HWE_MAFlt01 
loc.group=refseq > SKAT_CEU.result 
 
pseq error : you cannot specify other includes in the mask with loc.group 

 
Additional details can be found at https://atgu.mgh.harvard.edu/plinkseq/whatisnew.shtml),  
 
Although we use the most recent version pseq-0.10 in this exercise (for which there is no updated 
documentation), the error still remains unresolved. Therefore, we have to redo cleaning on original 
data by re-specifying each filtering condition and run SKAT using one command as below: 
 
pseq myproj assoc --tests skat --phenotype BMI --covar SEX --mask include="DP>14" geno=DP:ge:11 file=CEU 
hwe=5.7e-7:1 "mac=1 maf=0.01" loc.group=refseq > SKAT_CEU.result 
 
head -20 SKAT_CEU.result 
LOCUS  POS    ALIAS NVAR TEST P  I DESC 
NM_000055 chr3:165548187   G/A W=1 0:0 
NM_000055 chr3:165548187..165548187 BCHE 1 SKAT 0.237374  . . 
NM_000112 chr5:149359938   C/G W=1 0:0 
NM_000112 chr5:149360143   T/C W=1 0:0 
NM_000112 chr5:149360212   A/G W=1 0:0 
NM_000112 chr5:149360215   T/C W=1 0:0 
NM_000112 chr5:149361245   G/A W=1 0:0 
NM_000112 chr5:149359938..149361245 SLC26A2 5 SKAT 0.293096  . . 
NM_000119 chr15:43498537   C/T W=1 0:0 
NM_000119 chr15:43499436   G/A W=1 0:0 
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NM_000119 chr15:43500478  C/T W=1 0:0 
NM_000119 chr15:43498537..43500478  EPB42 3 SKAT 0.422114  . . 
NM_000122 chr2:128016983  C/T W=1 0:0 
NM_000122 chr2:128038204  T/C W=1 0:0 
NM_000122 chr2:128016983..128038204 ERCC3 2 SKAT 0.386466  . . 
NM_000124 chr10:50732644  G/C W=1 0:0 
NM_000124 chr10:50738781  T/C W=1 0:0 
NM_000124 chr10:50740844  G/A W=1 0:0 
NM_000124 chr10:50740861  C/T W=1 0:0 

For each gene region the list of the variants within the gene are listed, followed by gene-based 
association results. The I field is only available for case control data and provides the smallest 
possible empirical p-value which can be obtained for the variant sites and the DESC field which is 
also only available for case control data and it provides the number of case and control alternative 
alleles. Since we are analyzing quantitative trait data these fields are blank.  Detailed explanation 
about each output field can be found at https://atgu.mgh.harvard.edu/plinkseq/assoc.shtml#genic 

To view the smallest p-values for each SKAT test: 
cat SKAT_CEU.result | grep SKAT | grep -v "P=NA" | sort -k6 | head -15 
NM_024837 chr15:50152449..50264848  ATP8B4 5 SKAT 0.00405073 . . 
NM_001055 chr16:28617413..28617413  SULT1A1 1 SKAT 0.00418122 . . 
NM_177529 chr16:28617413..28617413  . 1 SKAT 0.00418122 . . 
NM_177530 chr16:28617413..28617413  . 1 SKAT 0.00418122 . . 
NM_177534 chr16:28617413..28617413  . 1 SKAT 0.00418122 . . 
NM_177536 chr16:28617413..28617413  . 1 SKAT 0.00418122 . . 
NM_001137559 chr12:121746337..121764935 ANAPC5 3 SKAT 0.00621198 . . 
NM_016237 chr12:121746337..121764935 . 3 SKAT 0.00621198 . . 
NM_006371 chr3:33174163..33174163  CRTAP 1 SKAT 0.00748816 . . 
NM_006944 chr2:234959642..234967570 SPP2 3 SKAT 0.00753125 . . 
NM_018328 chr2:149221327..149241000 MBD5 4 SKAT 0.00755692 . . 
NM_000782 chr20:52779338..52779338  CYP24A1 1 SKAT 0.00794735 . . 
NM_001128915 chr20:52779338..52779338  . 1 SKAT 0.00794735 . . 
NM_001018088 chr15:62204043..62302757  . 3 SKAT 0.0221564 . . 
NM_017684 chr15:62204043..62302757  VPS13C 3 SKAT 0.0221564 . . 

Note that each test has been performed on each alternative transcript (NM_*) of each gene, e.g. 
transcripts NM_001055, NM_177529, NM_177530, NM_177534 and NM_177536 all belong to 
gene SULT1A1.  

Questions 

Repeat the above analysis but using the data from the Yoruba (YRI) population and answer the 
following questions.   

Question 1 

List the four smallest p-values for the single variant tests for the common variants i.e. MAF >0.05: 

1.) ________________________ 

2.) ________________________ 

3.) ________________________ 

4.) ________________________ 
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List the four smallest p-values for the SKAT rare variant test: 
 
1.) ________________________ 
 
2.) ________________________ 
 
3.) ________________________ 
 
4.) ________________________ 
 
 
Answers 
 
Question 1 
 
Single variant test 
 
1.) ___ chr21:26979752_______ 0.00084882______________ 
 
2.) ___ chr17:3445901 ________0.000956475______________ 
 
3.) ___ chr17:9729445________ 0.0010022_____________ 
 
4.) ___ chr19:15303225________0.0011692______________ 
 
SKAT aggregate burden test 
 
1.) ___ NM_207317________ 0.0210752__________ 
 
2.) ___ NM_032048________ 0.0238947_________ 
 
3.) ___ NM_002738_________0.0255961________ 
 
4.) ___ NM_212535_________0.0255961_________ 
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Computer Practical Exercise on Family-based
Association using FaST-LMM, PLINK and R

Overview

Purpose

In this exercise you will be carrying out association analysis of data from a mini
genome-wide association study. The data comes from families (related
individuals) measured for a quantitative trait of interest. The purpose is detect
which (if any) of the loci are associated with the quantitative trait.

Methodology

We will use the linear mixed model approach implemented in FaST-LMM and (for
comparison) standard linear regression in PLINK.

Program documentation

PLINK documentation:

PLINK has an extensive set of docmentation including a pdf manual, a web-based
tutorial and web-based documentation: 

Original PLINK (1.07) (which has arguably clearer documentation):
http://zzz.bwh.harvard.edu/plink/ 

New PLINK (1.90) (which includes documentation on new additional features):
https://www.cog-genomics.org/plink2 

R documentation:

The R website is at http://www.r-project.org/ 

From within R, one can obtain help on any command xxxx by typing `help(xxxx)' 

FaST-LMM documentation:

Documentation can be downloaded together with the FaST-LMM program from 

http://research.microsoft.com/en-us/downloads/aa90ccfb-b2a8-4872-ba00-
32419913ca14/ 
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Data overview

We will be using family data consisting of 498 individuals typed at 134,946 SNPs.
All individuals have measurements of a quantitative trait of interest. You can
assume that appropriate quality control (QC) checks on SNPs and individuals
have been carried out prior to the current analysis i.e. the data set is already QC-
ed.

Appropriate data

Appropriate data for this exercise is genome-wide genotype data for related
and/or apparently unrelated individuals. Genome-wide data is required in order to
estimate relationships between people and allow for relatedness in the analysis.
The individuals should be phenotyped for either a dichotomous trait or a
quantitative trait of interest.

Instructions

Data files

The data is in PLINK binary-file format. Check you have the required files by
typing: 

ls -l 

You should find 3 PLINK binary-format files in your directory: quantfamdata.bed,
quantfamdata.bim and quantfamdata.fam. The file quantfamdata.bed is the binary
genotype file which will not be human readable. The file quantfamdata.bim is a map
file. You can take a look at this (e.g. by typing more quantfamdata.bim). The file
quantfamdata.fam gives the pedigree structure in a format that is compatible with
the binary genotype file. You can take a look at this (e.g. by typing more
quantfamdata.fam). Note this file is the same as the first six columns of a standard
pedigree file, with the last column giving each individual's quantitative trait value. 

Step-by-step instructions

1. Analysis in PLINK

To start with, we will use PLINK to perform a test equivalent to linear regression
analysis, without worrying about the relatedness between individuals:

plink --bfile quantfamdata --assoc --out plinkresults

A copy of the screen output is saved in the file plinkresults.log. The association
results are output to a file plinkresults.qassoc. Take a look at this file. Each line
corresponds to the results for a particular SNP. Each line contains the following
columns:
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     CHR      Chromosome number 
     SNP      SNP identifier 
     BP       Physical position (base-pair) 
     NMISS    Number of non-missing genotypes 
     BETA     Regression coefficient 
     SE       Standard error 
     R2       Regression r-squared 
     T        Wald test (based on t-distribtion) 
     P        Wald test asymptotic p-value 

The most useful columns are T (the test statistic) and its p value (P). 

To visualise these results properly we will use R. Open up a new terminal window,
move to the directory where you performed this analysis, and start R (by typing R).

Now (within R) read in the data by typing: 

res1<-read.table("plinkresults.qassoc", header=T) 

This reads the results into a dataframe named "res1". To see the top few lines of
this dataframe, type: 

head(res1) 

The data frame has 134,946 lines, one for each SNP. It would be very laborious to
go through and look at each line by eye. Instead we will plot the results for all
chromosomes, colouring each chromosome differently. To do this we need to first
read in from an external file some special functions for creating such ``Manhattan''
plots: 

source("qqmanHJCupdated.R") 

Then we use the following command to actually make the plot, and save it in the
file "mh1.png": 

png("mh1.png") 
manhattan(res1, pch=20, suggestiveline=F, genomewideline=F, ymin=2,
cex.x.axis=0.65, colors=c("black","dodgerblue"), cex=0.5) 
dev.off() 

Be warned, this may take some time to plot. 
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Visually it looks like there may be significant results on chromosomes 6 and 12,
and possibly on chromosome 5 as well. One way to assess the significance of the
results, in light of the large number of tests performed, is to use a Q-Q plot. To
plot a Q-Q plot for these P values, and save it in the file "qq1.png", type: 

png("qq1.png") 
qq(res1$P) 
dev.off() 
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What one would hope to see is most of the values lying along the straight line with
gradient 1, indicating that most results are consistent with the null hypothesis of
no association. However, one would also hope to see a few high values at the top
that depart from the straight line, which are hopefully true associations. 

Our results seem fairly consistent with this expectation, but there may be a little
bit of inflation (i.e. a slope slightly bigger than 1) due to relatedness between
individuals. To calculate the genomic control inflation factor, we first convert the P
values to chi-squared test statistics on 1df, and then use the formula from Devlin
and Roeder (1999): 

chi<-(qchisq(1-res1$P,1)) 
lambda=median(chi)/0.456 
lambda 

You should find a slightly inflated value (lambda=1.10) 

2. Analysis in FaST-LMM

Now we will try re-running the analysis using FaST-LMM, which estimates and
accounts for the relatedness between individuals. Go back to the window where
you ran PLINK and run FaST-LMM as follows: 

fastlmmc -bfile quantfamdata -pheno quantfamdata.fam -mpheno 4 -bfileSim
quantfamdata -ML -out FLMMresults 

Here we use the -bfile quantfamdata command to tell the program the name
(stem) of the files with the input genotype data containing the SNPs to be tested
for association, and the -bfileSim quantfamdata command to tell the program the
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name of the files containing the SNPs to be used for estimating relatedness. Here
we just use the same files both times, but FaST-LMM would allow us to use
different files for these two operations if we prefer. 

The command -pheno quantfamdata.fam -mpheno 4 tells FaST-LMM to read the
phenotype data in from the file quantfamdata.fam , using the 4th phenotype column
(not including the two first columns which give the family and person IDs). The -ML
command tells FaST-LMM to use maximium likelihood estimation (in case you
prefer this as opposed to the default restricted maximium likelihood (REML)). The
command -out FLMMresults tells FaST-LMM the name to use for the output file. 

Take a look at the results file. FaST-LMM automatically orders the results by
significance. 

Now go back to your R window and read the results into R: 

res2<-read.table("FLMMresults", header=T) 

Check the column names by typing: 

head(res2) 

The P value is in a column called ``Pvalue''. Remember FaST-LMM has
automatically ordered the results by significance, so these top few rows will show
the most significant results. 

First let us check the genomic control inflation factor. We convert the P values to
chi-squared test statistics on 1df, and then use the formula from Devlin and
Roeder (1999): 

chi<-(qchisq(1-res2$Pvalue,1)) 
lambda=median(chi)/0.456 
lambda 

You should find a less inflated value (lambda=0.99) than we found previously with
PLINK. 

To plot Manhattan and Q-Q plots you can use similar commands to before, but the
columns need to be named appropriately. The easiest thing is to make a new
smaller dataframe containing the required data: 

new<-data.frame(res2$SNP, res2$Chromosome, res2$Position, res2$Pvalue) 
names(new)<-c("SNP", "CHR", "BP", "P") 
head(new) 

Now you can plot the Q-Q plot: 

png("qq2.png") 
qq(new$P) 
dev.off() 

48



 

And the Manhattan plot: 

png("mh2.png") 
manhattan(new, pch=20, suggestiveline=F, genomewideline=F, ymin=2,
cex.x.axis=0.65, colors=c("black","dodgerblue"), cex=0.5) 
dev.off() 
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The significant effects on chromosomes 6 and 12 are still easily visible. In fact,
this is simulated data, and these signals do correspond correctly to the positions
of the underlying causal variants. 

Answers

How to interpret the output

Interpretation of the output is described in the step-by-step instructions. In
general, the output will consist of a likelihood-ratio or chi-squared test for
whatever you are test you are performing, and regression coefficients or odds
ratio estimates for the predictor variables in the current model. Please ask if you
need help in understanding the output for any specific test.

Comments
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Advantages/disadvantages

PLINK is useful for data management and analysis of genome-wide association
data. FaST-LMM is more appropriate for analysis of related individuals, or for
correcting for population stratification in apparently unrelated individuals.

Other packages

Other packages that can implement a similar analysis to FaST-LMM include
EMMAX, GEMMA, MMM, GenABEL, Mendel.

References

Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RI, Heckerman D (2011) FaST
linear mixed models for genome-wide association studies Nat Methods 8(10):833-
835. 
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genome association and population-based linkage analysis. American Journal of
Human Genetics, 81:559-575. 
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Computer Practical Exercise using GCTA (with R)

Overview

Purpose

This exercise repeats the linear mixed model analysis from the previous
exercise using the program GCTA instead of FaST-LMM. In addition, we use
GCTA to estimate the heritability accounted for by all genotyped SNPs, and by
various subsets of SNPs.

Methodology

We will use the linear mixed model approach implemented in GCTA.

Program documentation

GCTA documentation:

Documentation can obtained together with the GCTA program from: 

http://cnsgenomics.com/software/gcta/ 

Data overview

As a reminder, we are using family data consisting of 498 individuals typed at
134,946 SNPs. All individuals have measurements of a quantitative trait of
interest.

Appropriate data

Appropriate data for this exercise is genome-wide genotype data for individuals
who are phenotyped for either a dichotomous trait or a quantitative trait of
interest. GCTA is really designed for the analysis of apparently unrelated
individuals, but in this case we will apply it to a set of related individuals, in
order to compare the results with those we obtained previously for these
individuals.
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Instructions

Data files

We will use the same PLINK binary-file format files quantfamdata.bed,
quantfamdata.bim and quantfamdata.fam used previously. We will also use R to
create an additional phenotype file required by GCTA.

Step-by-step instructions

1. Create phenotype file in R

To start with, we will use R to create the phenotype file required by GCTA. Start
R (by typing R) and create a new phenotype file from the .fam file by typing the
following commands: 

fam<-read.table("quantfamdata.fam", header=F) 
pheno=data.frame(fam[,1:2],fam[,6]) 
write.table(pheno,file="phenos.txt",col.names=F,row.names=F,quote=F) 

Take a look at the file phenos.txt that you just created, to check you
understand it. 

2. GCTA Analysis

To use GCTA to perform association analysis while allowing for relatedness
between individuals, type: 

gcta64 --mlma --bfile quantfamdata --pheno phenos.txt --out GCTAresults 

Here we use the --mlma option to tell GCTA to perform association analysis, we
use the --bfile and --pheno options to tell GCTA which files to read in the
genotype and phenotype data from, and we use GCTAresults as the stem name
for the output files. 

To calculate the genomic control inflation factor, and to produce QQ and
Manhattan plots from the above analysis, you can use the following sequence
of commands within R. (Make sure that you understand the commands - if not
please ask an instructor). 

source("qqmanHJCupdated.R") 

res3<-read.table("GCTAresults.mlma", header=T) 
head(res3) 

chi<-(qchisq(1-res3$p,1)) 
lambda=median(chi)/0.456 
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new3<-data.frame(res3$SNP, res3$Chr, res3$bp, res3$p) 
names(new3)<-c("SNP", "CHR", "BP", "P") 
head(new3) 

png("qq3.png") 
qq(new3$P) 
dev.off() 

 

png("mh3.png") 
manhattan(new3, pch=20, suggestiveline=F, genomewideline=F, ymin=2,
cex.x.axis=0.65, colors=c("black","dodgerblue"), cex=0.5) 
dev.off() 
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You should find that the genomic control factor is close to 1.0, and the QQ and
Manhattan plots are similar to those you obtained from FaST-LMM. 

To compare the results (res3) with our previous FaST-LMM results (res2), use
the following sequence of commands within R: 

res2<-read.table("FLMMresults", header=T) 
new2<-data.frame(res2$SNP, res2$Chromosome, res2$Position, res2$Pvalue) 
names(new2)<-c("SNP", "CHR", "BP", "P") 
merged=merge(new3,new2, by="SNP", sort=F) 

head(res2) 
head(new2) 
head(new3) 
head(merged) 

png("compareGCTAFLMM.png") 
plot(-log10(merged$P.x),-log10(merged$P.y)) 
abline(0,1) 
dev.off() 
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You should find that the GCTA results (on the x axis) are very similar to the
FaST-LMM results (on the y axis), although the -log10 P-values from FaST-
LMM are consistently just a little bit higher than those from GCTA. 

To use GCTA to estimate the heritability accounted for by all autosomal
genome-wide SNPs, you need to first estimate the GRM, and then use the
GRM to estimate the (SNP) heritability. This can be achieved using the
following commands: 

gcta64 --bfile quantfamdata --autosome --make-grm-bin --out GCTAgrm 
gcta64 --reml --grm-bin GCTAgrm --pheno phenos.txt --out GCTAherit 

The screen output estimates the SNP heritability V(G)/Vp to be 0.480590 or
around 48%. 

To estimate the heritabilty accounted for by SNPs on chromosomes 1, 2, 6 and
12 (for example), use the following commands: 

gcta64 --bfile quantfamdata --chr 1 --make-grm-bin --out GCTAgrmchr1 
gcta64 --reml --grm-bin GCTAgrmchr1 --pheno phenos.txt \ 
--out GCTAheritchr1 

gcta64 --bfile quantfamdata --chr 2 --make-grm-bin --out GCTAgrmchr2 
gcta64 --reml --grm-bin GCTAgrmchr2 --pheno phenos.txt \ 
--out GCTAheritchr2 

gcta64 --bfile quantfamdata --chr 6 --make-grm-bin --out GCTAgrmchr6 
gcta64 --reml --grm-bin GCTAgrmchr6 --pheno phenos.txt \ 
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--out GCTAheritchr6 

gcta64 --bfile quantfamdata --chr 12 --make-grm-bin --out GCTAgrmchr12 
gcta64 --reml --grm-bin GCTAgrmchr12 --pheno phenos.txt \ 
--out GCTAheritchr12 

You should find that the SNP heritabilities on chromosomes 1 and 2 do not look
particularly significant (given the estimated standard errors), but the SNP
heritabilities on chromosomes 6 and 12 are significant (as might be expected
from the strong effects seen on these chromosomes). 

The sum of the SNP heritabilities on these 4 chromosomes
(0.206479+0.111512+0.368184+0.286570) adds up to more then the overall
SNP heritability of 0.480589. This is due to the phenomenon that, in the
presence of population substructure or close relatedness, chromosome-
specific heritability estimates can be confounded by shared non-genetic effects
(for examples shared environment) or corrrelations between SNPs on different
chromosomes, leading to an over-estimate of the chromosome-specific
heritability. 

To correctly partition the overall heritability between the 22 autosomes, we
need to first estimate chromosome-specific GRMs and then include them all
simultaneously in the model. 

We first calculate the GRMs for all additional chromosomes: 

gcta64 --bfile quantfamdata --chr 3 --make-grm-bin --out GCTAgrmchr3 
gcta64 --bfile quantfamdata --chr 4 --make-grm-bin --out GCTAgrmchr4 
gcta64 --bfile quantfamdata --chr 5 --make-grm-bin --out GCTAgrmchr5 
gcta64 --bfile quantfamdata --chr 7 --make-grm-bin --out GCTAgrmchr7 
gcta64 --bfile quantfamdata --chr 8 --make-grm-bin --out GCTAgrmchr8 
gcta64 --bfile quantfamdata --chr 9 --make-grm-bin --out GCTAgrmchr9 
gcta64 --bfile quantfamdata --chr 10 --make-grm-bin --out GCTAgrmchr10 
gcta64 --bfile quantfamdata --chr 11 --make-grm-bin --out GCTAgrmchr11 
gcta64 --bfile quantfamdata --chr 13 --make-grm-bin --out GCTAgrmchr13 
gcta64 --bfile quantfamdata --chr 14 --make-grm-bin --out GCTAgrmchr14 
gcta64 --bfile quantfamdata --chr 15 --make-grm-bin --out GCTAgrmchr15 
gcta64 --bfile quantfamdata --chr 16 --make-grm-bin --out GCTAgrmchr16 
gcta64 --bfile quantfamdata --chr 17 --make-grm-bin --out GCTAgrmchr17 
gcta64 --bfile quantfamdata --chr 18 --make-grm-bin --out GCTAgrmchr18 
gcta64 --bfile quantfamdata --chr 19 --make-grm-bin --out GCTAgrmchr19 
gcta64 --bfile quantfamdata --chr 20 --make-grm-bin --out GCTAgrmchr20 
gcta64 --bfile quantfamdata --chr 21 --make-grm-bin --out GCTAgrmchr21 
gcta64 --bfile quantfamdata --chr 22 --make-grm-bin --out GCTAgrmchr22 

We then run the analysis: 

gcta64 --reml --mgrm-bin multipleGRMs.txt --pheno phenos.txt \ 
--out GCTAherit22GRMs 

Note this command makes use of a file multipleGRMs.txt which we created for
you in advance, listing the stem names of the individual GRM files.
Unfortunately, in this example the analysis fails to converge, probably because
this type of analysis ideally requires a larger number of less closely related
individuals. 

To instead partition the heritability among two sets of SNPs, chromosome 6
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and all other autosomes, we first join together the GRMs for all non-
chromosome 6 chromosomes: 

gcta64 --mgrm-bin multipleGRMsnot6.txt --make-grm --out GCTAgrmnot6 

Note this command makes use of another file multipleGRMsnot6.txt which we
created for you in advance, listing the stem names of the individual GRM files
(excluding the one for chromosome 6). 

We will run the analysis making use of another file multipleGRMs6andnot6.txt
which we created for you in advance. Take a look at this file and check you
understand it. 

To run the analysis type: 

gcta64 --reml --mgrm-bin multipleGRMs6andnot6.txt --pheno phenos.txt \ 
--out GCTAherit6andnot6 

The results suggest that a total SNP heritability of 0.469171 can be partitioned
as 0.294445 accounted for by chromosome 6, and 0.174726 accounted for by
the other autosomes. 

3. GCTA fastGWA Analysis

GCTA has an alternative method for performing mixed linear model (MLM)-
based GWAS analysis that is partcularly designed for large biobank-scale
datasets such as the UK Biobank. Here we will apply it to the (much smaller
scale) dataset that we have already analysed. 

First we have to make a sparse genetic relationship matrix (GRM) from the full-
dense GRM e.g. using a cutoff value of 0.05 (so entries less than 0.05 are set
to 0): 

gcta64 --grm GCTAgrm --make-bK-sparse 0.05 --out GCTAsparsegrm 

This creates a file GCTAsparsegrm.grm.sp containing the pairs of individuals
whose entries in the GRM are greater than 0.05. 

For real biobank-scale data, creating the full-dense GRM in the first place can
be computationally challenging, and it can be advantageous to partition the
GRM into m parts (by row), and compute the parts separately (before joining
them back together). To compute i-th part in the current run, we use the syntax
--make-grm-part m i . For example, use the following commands to re-
calculate the full-dense GRM by partitioning the calculation into 3 parts (while
also using 5 threads): 

gcta64 --bfile quantfamdata --make-grm-part 3 1 --thread-num 5 \ 
--out test 
gcta64 --bfile quantfamdata --make-grm-part 3 2 --thread-num 5 \ 
--out test 
gcta64 --bfile quantfamdata --make-grm-part 3 3 --thread-num 5 \ 
--out test 

Merge all the parts together: 
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cat test.part_3_*.grm.id > test.grm.id 
cat test.part_3_*.grm.bin > test.grm.bin 
cat test.part_3_*.grm.N.bin > test.grm.N.bin 

Now we can create a sparse GRM from this re-calculated version of the full-
dense GRM: 

gcta64 --grm test --make-bK-sparse 0.05 --out newsparsegrm 

Check that the top few lines of newsparsegrm.grm.sp seem to match
GCTAsparsegrm.grm.sp: 

head *.sp 

To perform the association analysis, we would normally use the sparse GRM to
model close relationships as random effects, while additionally including
principal components as fixed effects. So let us first use GCTA to calculate the
first 5 principal components: 

gcta64 --grm-bin GCTAgrm --pca 5 --out pcs 

To use original GCTAsparsegrm.grm.sp in a fastGWA analysis, type: 

gcta64 --bfile quantfamdata --grm-sparse GCTAsparsegrm \ 
--fastGWA-mlm --pheno phenos.txt --qcovar pcs.eigenvec \ 
--out sparse_assoc 

To use newsparsegrm.grm.sp in a fastGWA analysis, type: 

gcta64 --bfile quantfamdata --grm-sparse newsparsegrm \ 
--fastGWA-mlm --pheno phenos.txt --qcovar pcs.eigenvec \ 
--out newsparse_assoc 

Once we have included the principal components, it seems that the estimate of
Vg is not statistically significant, and so fastGWA has automatically moved to
using linear regression rather than a linear mixed model. This is not really what
we wanted! Let us not include principal components - we would then expect the
estimate of Vg to be significant, and so in this way we force fastGWA to use a
linear mixed model: 

gcta64 --bfile quantfamdata --grm-sparse GCTAsparsegrm \ 
--fastGWA-mlm --pheno phenos.txt --out LMMsparse_assoc 

gcta64 --bfile quantfamdata --grm-sparse newsparsegrm \ 
--fastGWA-mlm --pheno phenos.txt --out LMMnewsparse_assoc 

Let us now use R to check the QQ plots, Manhattan plots and Genomic control
factors for these 4 sets of results. Start up R and use the following commands: 

res4<-read.table("sparse_assoc.fastGWA", header=T) 
res5<-read.table("newsparse_assoc.fastGWA", header=T) 
res6<-read.table("LMMsparse_assoc.fastGWA", header=T) 
res7<-read.table("LMMnewsparse_assoc.fastGWA", header=T) 

head(res4) 
head(res5) 
head(res6) 
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head(res7) 

chi<-(qchisq(1-res4$P,1)) 
lambda=median(chi)/0.456 
lambda 

chi<-(qchisq(1-res5$P,1)) 
lambda=median(chi)/0.456 
lambda 

chi<-(qchisq(1-res6$P,1)) 
lambda=median(chi)/0.456 
lambda 

chi<-(qchisq(1-res7$P,1)) 
lambda=median(chi)/0.456 
lambda 

You should see that the linear mixed model (with a sparse GRM) does a better
job at controlling for relatedness (giving lambda closer to 1.0) than just
including 5 principal components. 

Now continue in R to make the plots for these 4 analyses (which will be very
similar to those you made previously): 

source("qqmanHJCupdated.R") 

new4<-data.frame(res4$SNP, res4$CHR, res4$POS, res4$P) 
names(new4)<-c("SNP", "CHR", "BP", "P") 

png("qq4.png") 
qq(new4$P) 
dev.off() 
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png("mh4.png") 
manhattan(new4, pch=20, suggestiveline=F, genomewideline=F, ymin=2,
cex.x.axis=0.65, colors=c("black","dodgerblue"), cex=0.5) 
dev.off() 
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new5<-data.frame(res5$SNP, res5$CHR, res5$POS, res5$P) 
names(new5)<-c("SNP", "CHR", "BP", "P") 

png("qq5.png") 
qq(new5$P) 
dev.off() 

62



 

png("mh5.png") 
manhattan(new5, pch=20, suggestiveline=F, genomewideline=F, ymin=2,
cex.x.axis=0.65, colors=c("black","dodgerblue"), cex=0.5) 
dev.off() 

63



 

new6<-data.frame(res6$SNP, res6$CHR, res6$POS, res6$P) 
names(new6)<-c("SNP", "CHR", "BP", "P") 

png("qq6.png") 
qq(new6$P) 
dev.off() 

64



 

png("mh6.png") 
manhattan(new6, pch=20, suggestiveline=F, genomewideline=F, ymin=2,
cex.x.axis=0.65, colors=c("black","dodgerblue"), cex=0.5) 
dev.off() 
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new7<-data.frame(res7$SNP, res7$CHR, res7$POS, res7$P) 
names(new7)<-c("SNP", "CHR", "BP", "P") 

png("qq7.png") 
qq(new7$P) 
dev.off() 
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png("mh7.png") 
manhattan(new7, pch=20, suggestiveline=F, genomewideline=F, ymin=2,
cex.x.axis=0.65, colors=c("black","dodgerblue"), cex=0.5) 
dev.off() 
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Finally we will check how the results from the linear mixed model (with a sparse
GRM) from fastGWA compares to the original GCTA --mlma results: 

res3<-read.table("GCTAresults.mlma", header=T) 
res7<-read.table("LMMnewsparse_assoc.fastGWA", header=T) 
head(res3) 
head(res7) 

png("compareGCTAfastGWA.png") 
plot(-log10(res3$p),-log10(res7$P)) 
abline(0,1) 
dev.off() 
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As you can see, the results are extremely similar. 

Answers

How to interpret the output

Interpretation of the output is described in the step-by-step instructions. Please
ask if you need help in understanding the output.

Comments

Other packages

Another package that can implement a similar analysis to GCTA is DISSECT
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Interaction analysis using PLINK and CASSI

Overview

Purpose

In this exercise you will be performing association analysis and testing for
interaction effects using case/control data.

Methodology

The methodology used includes logistic regression in PLINK and CASSI, as well
as some related alternative approaches.

Program documentation

PLINK documentation:

PLINK has an extensive set of docmentation including a pdf manual, a web-based
tutorial and web-based documentation: 

Original PLINK (1.07) (which has arguably clearer documentation):
http://zzz.bwh.harvard.edu/plink/ 

New PLINK (1.90) (which includes documentation on new additional features):
https://www.cog-genomics.org/plink2 

CASSI documentation:

CASSI documentation is available from: 

http://www.staff.ncl.ac.uk/richard.howey/cassi/downloads.html 

Exercise

Data overview

The data consists of simulated genotype data at 100 SNP loci, typed in 2000
cases and 2000 controls. The data has been simulated in such a way that the first
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five SNPs have some relationship with disease, whereas the remaining 95 SNPs
have no effect on disease outcome. 

The complication with these data is that SNPs 1 and 2 have been simulated in
such a way that they show no marginal association with the disease: their
association will only be visible when you look at both SNPs in combination. SNPs
3-5 have been simulated to only have an effect on disease when an individual is
homozygous at all three of these loci. Although potentially this could lead to
marginal effects at the loci, formally this corresponds to a model of pure
interaction, with no main effects, at these 3 SNPs.

Appropriate data

Appropriate data for this exercise is genotype data for a set of linked or unlinked
loci typed in a group of unrelated affected individuals (cases) and in a group of
unaffected or randomly chosen individuals from the same population (controls). 

All the programs will deal with much larger numbers of loci than the 100 SNPs
considered here. PLINK, in particular, was specifically designed for the analysis of
large numbers of loci e.g. generated as part of a genome-wide association study.

Instructions

Data format

The data for the 100 SNPs simcasecon.ped is in standard linkage pedigree file
format, with columns corresponding to family id, subject id (within family), father's
id, mother's id, sex (1=m, 2=f), affection status (1=unaffected, 2=affected) and
one column for each allele for each locus genotype. Note that since this is
case/control rather than family data, there is only one individual per family and
everyone's parents are coded as unknown. 

PLINK requires an additional map file simcasecon.map describing the markers (in
order) in the pedigree file. The PLINK-format map file contains exactly 4 columns:

     chromosome (1-22, X, Y or 0 if unplaced)  
     rs number or snp identifier  
     Genetic distance (morgans) (not often used - so can be set to 0) 
     Base-pair position (bp units)  

Take a look at the data files, and check that you understand how the data is
coded. Then (if necessary) save the files as .txt files to the appropriate directory
(folder) on your computer.

Step-by-step instructions

1. Analysis in PLINK

Move to the directory where you have saved the data files. 
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To carry out a basic association analysis in PLINK, type 

plink --ped simcasecon.ped --map simcasecon.map --assoc 

Here the --ped xxxx command tells PLINK that the name of the pedigree file is
xxxx and the --map yyyy command tells PLINK that the name of the map file is
yyyy. The --assoc command tells PLINK to perform a basic allele-based
chisquared association test. 

PLINK outputs some useful messages (you should always read these to make
sure they match up with what you expect!) and outputs the results to a file
plink.assoc . 

Take a look at the file plink.assoc (e.g. by typing more plink.assoc ). For each
SNP the following columns of results are reported:

     CHR     Chromosome 
     SNP     SNP ID 
     BP      Physical position (base-pair) 
     A1      Minor allele name (based on whole sample) 
     F_A     Frequency of this allele in cases 
     F_U     Frequency of this allele in controls 
     A2      Major allele name 
     CHISQ   Basic allelic test chi-square (1df) 
     P       Asymptotic p-value for this test 
     OR      Estimated odds ratio (for A1, i.e. A2 is reference) 

Does there appear to be evidence of association at any of the five "true" loci?
What about the 95 null loci? 

Try performing a genotype-based (rather than an allele-based) analysis in PLINK
and take a look at the results by typing the following 3 commands: 

plink --ped simcasecon.ped --map simcasecon.map --model 
head -1 plink.model 
grep GENO plink.model 

Again, does there appear to be evidence of association at any of the five "true"
loci? What about the 95 null loci? 

To test for pairwise epistasis in PLINK, the fastest option is to use the --fast-
epistasis command: 

plink --ped simcasecon.ped --map simcasecon.map --fast-epistasis 

Formally, this tests whether the OR for association between two SNPs differs
between cases and controls, which can be shown to appriximate a logistic
regression based test of interaction between the SNPs. Results can be found in
the file plink.epi.cc. Only pairwise interaction tests with p <= 0.0001 are reported
(otherwise, for genome-wide studies, there would be too many results to report,
given the large number of pairwise tests performed). 

Take a look at the file plink.epi.cc. You should find a very significant interaction
between SNPs 1 and 2, and a less significant iteraction between SNPs 15 and 77.
Since this is simulated data, we know that this less significant result is a false
positive. 

A more powerful test for SNPs that are not in LD with one another (i.e. that are
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not too close to one another, in terms of their genomic location) is to additionally
use the --case-only option: 

plink --ped simcasecon.ped --map simcasecon.map --fast-epistasis --case-only 

Results can be found in the file plink.epi.co . Again only pairwise interaction tests
with p <= 0.0001 are reported. You should again find a very significant interaction
between SNPs 1 and 2 (even more significant than previously, owing to the
increased power with a case-only test). 

A problem with the --fast-epistasis test is that it can be affected by LD between
the SNPs (although only the case-only test is seriously affected). A more accurate
test is to carry out logistic regresion by using the slower --epistasis command: 

plink --ped simcasecon.ped --map simcasecon.map --epistasis 

Results can again be found in the file plink.epi.cc (which will now have been
overwritten). You can see that again the interaction between SNPs 1 and 2
remains highly significant (p=1.22E-63), together with just one other (false
positive) interaction between SNPs 15 and 77. 

Since the --epistasis option is slower, but most accurate, for genome-wide
studies it might be sensible to first to screen for interactions using the --fast-
epistasis command, but then confirm any findings using the --epistasis
command on the smaller set of detected SNPs. 

2. Analysis in CASSI

We will also compare our PLINK results with those obtained using the CASSI
program, which implements a variety of tests including linear and logistic
regression, and an improved Joint Effects (JE) test of pairwise interaction as
described in Ueki and Cordell (2012). First we need to convert our data to PLINK
binary format: 

plink --ped simcasecon.ped --map simcasecon.map --make-bed --out simbinary 

This should create PLINK binary format files simbinary.bed, simbinary.bim and
simbinary.fam. Then we use the CASSI program with the input file simbinary.bed to
perform pairwise interaction tests at all pairs of loci. (By default, only those pairs
of SNPs showing interaction with a p-value < 0.0001 are output, though this can
be changed if desired). 

We start by using logistic regression. The logistic regression test in CASSI is
essentially the same as the --epistasis test in PLINK, except that CASSI uses a
likelihood ratio test rather than the asymptotically equivalent Wald (?) test used by
PLINK. CASSI also has the advantage of allowing covariates into the analysis, if
desired. 

cassi -lr -i simbinary.bed 

Take a look at the output file cassi.out The most important columns are the first 4
columns (listing the SNP numbers/names) and the last 4 columns listing the log
odds ratio, its standard error, the likelihood ratio chi-squared test statistic and its
p-value. It can be quite hard to work out which column is which, so we suggest
you start up R by typing 
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R 

and then read in and look at the results by typing 

results<-read.table("cassi.out", header=T) 
results 

You can see that SNPs 1 and 2 show a very strong pairwise interaction (p=5.94E-
72), which is actually a bit more significant than the result from PLINK (p=1.22E-
63). We also still detect the false positive interaction between SNPs 15 and 77. 

Now try using the Joint Effects (JE) test, telling CASSI to use the output filename
cassiJE.out 

cassi -je -o cassiJE.out -i simbinary.bed 

Take a look at the output file cassiJE.out. The most important columns are the first
4 columns (listing the SNP numbers/names) and the last 4 columns listing the
case/control and case-only interaction test chi-squareds and p-values. Again it
can be quite hard to work out which column is which, so we suggest you read in
and look at the results in R: 

resultsJE<-read.table("cassiJE.out", header=T) 
resultsJE 

You can see that SNPs 1 and 2 show a very strong pairwise interaction (Case-
Con test p-value JE_CC_P=1.67e-129; Case-Only test p-value JE_CO_P=1.71e-
274). Interestingly we also detect, albeit at lower significance levels, the (true)
pairwise interactions between SNPs 3 and 4 and between SNPs 4 and 5. We also
detect two false positive interactions, between SNPs 15 and 77, and between
SNPs 31 and 100. 

Answers

Interpretation of output

Answers and interpretation of the output are described in the step-by-step
instructions. Please ask if you need help in understanding the output for any
specific test.

Comments

Advantages/disadvantages

PLINK and CASSI are designed for genome-wide studies, allowing the inclusion
of many thousands of markers. Analysis in a standard statistical package does not
generally allow so many markers, but may have some advantage of allowing a lot
of extra flexibility with regards to the models and analyses performed e.g. it easy75



to include additional predictor variables such as environmental factors, gene-
environment interactions etc. However, you are required to know or learn how to
use the package in order to gain that extra flexibility, and to produce reliable
results.

Study design issues

With case/control data it is relatively easy to obtain large enough sample sizes to
detect small genetic effects. However, detection of interactions generally requires
much larger sample sizes.

Other packages

Logistic regression analysis for detection of interactions can be performed in most
statistical packages such as R, Stata, SAS, SPSS. Alternative Bayesian Epistasis
mapping approaches are available in the BEAM (Zhang et al. 2007; Zhang 2011)
or BIA software packages. 

Several packages are available for implementing different data-mining and
machine-learning approaches for detecting interactions or detecting association
allowing for interaction. See Cordell (2009) and other references below for more
details.
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Sample Size Calculations - Cochran-Armitage Test for Trend 
Copyrighted Ó 2023 Suzanne M. Leal 

Webpage for the exercises: 
http://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/index.html 
http://ihg.helmholtz-muenchen.de/cgi-bin/hw/power2.pl 
http://zzz.bwh.harvard.edu/gpc/cc2.html 

Question 1 
For a complex disease study, you plan to collect 35,000 cases and 70,000 controls and wish to know if this is a 
sufficient sample size to detect associations with disease susceptibility loci. The disease has a population 
prevalence of 5%. You wish to estimate the power for a genotypic relative risk of 1.2 and a disease allele 
frequency of 0.02. What is the power for α=5x10-8 under a under a multiplicative model ( ) 
a.)_________and dominant model ( ) b.) _____________? 

Question 2 
For your study, you hypothesize that you will try to replicate associations for 100 variants that are in linkage 
equilibrium and you want to reject the null hypothesis using a p-value of 0.05. What is the Bonferroni 
correction you should use a.)__________. Determine what your power would be if you used a Bonferroni 
correction to control for the Family Wise Error Rate (FWER) for testing 100 variants.  Using the parameters 
provided in question 1 but for a sample size of 20,000 cases and 20,000 controls what is the power under the 
multiplicative model b.)_______________ and under a dominant model c.)___________________? 

Question 3 
You determine that you can ascertain 50,000 cases and 50,000 controls what is the power using the same 
parameters as described in question 1 for the multiplicative model _______________ and dominant 
model______________________? 

Question 4 
The power of the Cochran-Armitage test for trend is dependent on the underlying genetic model. Using the 
parameters from question 1 which of the following underlying genetic models: multiplicative ( ), 
additive( ), dominant ( ) or  recessive ( ) would you predict to be the most powerful 
a.)______________ and least powerful  b.)____________________? 

Question 5 
For study design with equal numbers of cases and controls a genotype relative risk of 1.5 under a recessive 
model for a disease with a population prevalence of 0.05 and disease allele frequency of 0.1.  How many cases 
a.)______ and controls b.) ________should you ascertain for α=5.0 x 10-8 and 1-β=0.80? *Use power2 or 
Genetic Power Calculator, GAS power cannot calculate for more than 100,000 cases. 

Question 6  
You are performing a rare variant association study and you assume that that cumulative frequency of the causal 
variants in your gene region is 0.01 with every variant having an effect size of 1.4.  The disease you are 
studying has a prevalence of 5%.  For a study with 0.8 power and an α=2.5 x 10-6 under a dominant model for 
equal numbers of cases and controls what is the total sample size a.) __________ do you need to ascertain. 
What is the total sample size b.)_________you need to ascertain if the cumulative frequency of causal variants 
is only 0.005? 

2
12 gg =

12 gg =

2
12 gg =

12 12 -= gg 12 gg = 11 =g
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Question 7 
You are performing a study using the UK Biobank and for your phenotype of interest you have 50,000 cases 
and 100,000 controls.  For a disease with 10% prevalence, disease allele frequency of 0.01, where each variant 
has an effect size of 1.2 under a dominant model what would be the power for an aggregate test where the 
cumulative allele frequency is 0.01 _________and a single variant test ____________?  Clue use the 
appropriate alpha for each test.  

Question 8  
Using have a replication sample of 50,000 cases and 50,000 controls and you plan to try to replicate 15 genes 
and 100 variants. Using the same parameters as in question 7 what would be your power to replicate 
a.)________________?  Note for alpha use a Bonferroni correction. 

Question 9 
For the above power calculations, you have been using the relative risk which only approximates the odds ratio 
when a.) _______________________? You are performing a power calculation for a case control study for a 
disease/variant frequency of 0.01. You use a dominant model and a gamma of 1.2 for a disease with a 
prevalence for 0.2. What is the odds ratio for which the power calculations are being performed b.) 
_________________? *Use Genetic Power Calculator – information not provided by GAS or Power2. 

ANWSERS 
1. a.) 0.702 b.) 0.654
2. a.) 5.0x10-4  b.) 0.690 c.) 0.657
3. a.) 0.798 b.) 0.755
4. a.) multiplicative b.) recessive
5. a.) 170,910 b.) 170,910
6. a.) ~43,000 b.) ~84,300
7. a.) 0.73 b.) 0.45 Hint: use α=5x10-8 for single variant test and α=2.5x10-6 for the aggregate test
8. a.) 0.87 (Hint: use α=4.3x10-4)
9. a.) only for disease with low prevalence does the relative risk does not estimate the odds ratio b.) 1.26
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Advanced Gene Mapping Course: Mendelian Randomization 
Exercise 
 
Andrew DeWan, PhD, MPH 
 
This exercise is designed to give you practical experience conducting a two-sample 
Mendelian randomization study using the online version of MR-base 
(https://www.mrbase.org/).  
 
Part I:  
 
You will be conducting an analysis to investigate the causal relationship between low 
density lipoprotein (LDL) and coronary heart disease (CHD) based on summary 
statistics from previously published GWAS data.  
 
Exposure: Fasting LDL measurements from in 173,082 subjects and 2,437,752 genetic 
variants. Subjects are of European, East and South Asian and African ancestry. 
 
Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, Ganna A, et 
al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013 
Nov;45(11):1274-1283. doi: 10.1038/ng.2797. Epub 2013 Oct 6. PMID: 24097068; 
PMCID: PMC3838666. 
 
Outcome: CHD (e.g. myocardial infarction (MI), acute coronary syndrome, chronic 
stable angina, or coronary stenosis >50%) in 184,305 subjects (60,801 cases and 
123,504 controls) and 9,455,779 genetic variants. Subjects are of European, East 
and South Asian, Hispanic and African ancestry.  
 
Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, Saleheen D et al. A 
comprehensive 1,000 Genomes-based genome-wide association meta-analysis of 
coronary artery disease. Nat Genet. 2015 Oct;47(10):1121-1130. doi: 10.1038/ng.3396. 
Epub 2015 Sep 7. PMID: 26343387; PMCID: PMC4589895. 
 

1) Conduct an MR analysis of LDL and CAD. Studies can be search by PubmedID 
in MR-base (make sure PubmedID is checked), however, please note the 
following: 

 
A. For the exposure for this publication, use the larger set of subjects for this first 

analysis (N=173,082) 
B. For the exposure, use a p-value threshold of 5e10-8, LD Rsq = 0.001 and 

clumping distance of 1000kb. Also make sure “Perform Clumping” is checked. 
C. For the outcome for this publication, use the trait denoted “Coronary heart 

disease” 
D. When running the MR analysis you will want to allow LD proxies to be 

selected for the outcome using a minimum Rsq of 0.8 and also allow for 
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palindromic SNPs with a MAF threshold of 0.3. Make sure you set “Allele 
harmonization” to “Attempt to align strands for palindromic SNPs” 

E. Select the following methods: 
a. Inverse variance weighted (NOTE: this is a random effects model) 
b. MR Egger 
c. Weighted Median 

 
Questions: 

 
1. How many variants are included in your genetic instrument for the 

exposure and how many are included in the outcome analysis? Of 
these, how many are proxies? 
 
 
 
 
 
 

2. Based on the descriptions above, is the study used to define the IV 
appropriate for the outcome population? 
 
 
 
 
 
 

 
3. Is there evidence of an association between LDL and CHD? 

 
 
 
 
 

 
 

4. Is there evidence of heterogeneity in the genetic effects? 
 
 
 
 
 
 
 

5. Is there evidence of pleiotropy? 
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6. How would you interpret the results of the three analyses together (i.e.
IVW, MR Egger and Weighted Median)?

2) Re-run the analysis but for myocardial infarction (MI) using outcome data from
the same publication.

Questions: 

1. Is there evidence of an association between LDL and MI?

2. Can the association between LDL and CHD be explained by MI?

3) Feel free to explore associations with additional exposures such as HDL, BMI
(you can use the Yengo et al. SNPs) or other exposures/outcomes of interest to 
you.
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Part II: 
 
Let’s now see if we can validate the finding of an association between LDL and CHD by 
using different exposure data source and potentially dissect this signal to see if we 
pinpoint the features of LDL that might be driving this signal. We will use metabolomics 
data that was generated in a sample of 24,925 individuals.  
 
Kettunen, J., Demirkan, A., Würtz, P. et al. Genome-wide study for circulating 
metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat 
Commun 7, 11122 (2016). https://doi.org/10.1038/ncomms11122. 
 
Exposures: LDL.C, LDL.D, S.LDL.C, S.LDL.L, S.LDL.P, M.LDL.C, M.LDL.CE, M.LDL.L, 
M.LDL.P, M.LDL.PL, L.LDL.C, L.LDL.CE, L.LDL.FC, L.LDL.L, L.LDL.P, L.LDL.PL (16 
metabolites) 
 
Where S. = small, M. = medium and L. = large; .C = total cholesterol, .D = diameter, .L = 
total lipids, .P = concentration, .CE = cholesterol esters, .PL = phospholipids  
 
These can all be selected when you are on the “Choose Exposure” screen and 
selecting the “Metabolite level QTLs”. You can then type in “LDL” in the analyte window 
and select each of these in the window that pops up. The most efficient way is to select 
all of the metabolites you’re interested in and then run the MR analyses together. Before 
clicking off of this screen you will want to click on the “Select All” under Row Selection. 
This will allow you to run the analysis on all of the SNPs for each metabolite. 
 
Use the same CHD outcome as you did for Part I (Nikpay PMID: 26343387) using the 
full set of cases and controls (N=184,305).  
 

1) Conduct an MR analysis as you did previously. 
 

Questions: 
  

1. For LDL.C, does the association between LDL and CHD validate the 
previous findings? 
 
 
 
 
 

2. Considering all of the associations, do these results differentiate 
between the different characteristics of LDL (Please note: you will want 
to take into account the 16 association tests)? 
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3. What might be one explanation for the similarity between results for the 

different LDL characteristics? 
 
 
 
 
 
 
 

 
4. Are there any concerns about heterogeneity or pleiotropy? 
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Let’s now look at the associations with VLDL metabolites using the same exposure and 
outcome data sources.  
 
Exposures: 33 VLDL metabolites (Please note additional abbreviations: XS. = very 
small, XL. = very large, XXL. = extremely large; .TG = triglycerides) 
 

2) Conduct an MR analysis as you did previously. 
 

Question: 
  

5. Considering all of the associations, are there any obvious trends in the 
results (Please note: you will want to take into account the 33 
association tests)? 
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Advanced Gene Mapping Course: Mendelian Randomization 
Exercise - Answers

Andrew DeWan, PhD, MPH 

This exercise is designed to give you practical experience conducting a two-sample 
Mendelian randomization study using the online version of MR-base 
(https://www.mrbase.org/).  

Part I:  

You will be conducting an analysis to investigate the causal relationship between low 
density lipoprotein (LDL) and coronary heart disease (CHD) based on summary 
statistics from previously published GWAS data.  

Exposure: Fasting LDL measurements from in 173,082 subjects and 2,437,752 genetic 
variants. Subjects are of European, East and South Asian and African ancestry. 

Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, Ganna A, et 
al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013 
Nov;45(11):1274-1283. doi: 10.1038/ng.2797. Epub 2013 Oct 6. PMID: 24097068; 
PMCID: PMC3838666. 

Outcome: CHD (e.g. myocardial infarction (MI), acute coronary syndrome, chronic 
stable angina, or coronary stenosis >50%) in 184,305 subjects (60,801 cases and 
123,504 controls) and 9,455,779 genetic variants. Subjects are of European, East 
and South Asian, Hispanic and African ancestry.  

Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, Saleheen D et al. A 
comprehensive 1,000 Genomes-based genome-wide association meta-analysis of 
coronary artery disease. Nat Genet. 2015 Oct;47(10):1121-1130. doi: 10.1038/ng.3396. 
Epub 2015 Sep 7. PMID: 26343387; PMCID: PMC4589895. 

1) Conduct an MR analysis of LDL and CAD. Studies can be search by PubmedID
in MR-base (make sure PubmedID is checked), however, please note the
following:

A. For the exposure for this publication, use the larger set of subjects for this first
analysis (N=173,082)

B. For the exposure, use a p-value threshold of 5e10-8, LD Rsq = 0.001 and
clumping distance of 1000kb. Also make sure “Perform Clumping” is checked.

C. For the outcome for this publication, use the trait denoted “Coronary heart
disease”

D. When running the MR analysis you will want to allow LD proxies to be
selected for the outcome using a minimum Rsq of 0.8 and also allow for
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palindromic SNPs with a MAF threshold of 0.3. Make sure you set “Allele 
harmonization” to “Attempt to align strands for palindromic SNPs” 

E. Select the following methods: 
a. Inverse variance weighted (NOTE: this is a random effects model) 
b. MR Egger 
c. Weighted Median 

 
Questions: 

 
1. How many variants are included in your genetic instrument for the 

exposure and how many are included in the outcome analysis? Of 
these, how many are proxies? 
 
There are 79 variants that surpass the p<5e-8 threshold for LDL in the 
exposure GWAS. Of these 77 are identified in the CHD outcome 
GWAS, 1 of which is a proxy. 
 

2. Based on the descriptions above, is the study used to define the IV 
appropriate for the outcome population? 

 
They are fairly well matched in terms of the population ancestries in 
the two studies, however, the outcome GWAS has subjects of Hispanic 
ancestry which could be a minor issue. This would be something to 
mention in the Discussion section of a manuscript. There is a subset of 
only European subjects for LDL but not for CHD, however, if you had 
access to the original data you could subset the subjects by ancestry 
to better match the exposure and outcome groups. 

 
3. Is there evidence of an association between LDL and CHD? 

 
Yes, the IVW yields a beta = 0.4114 (p=1.626e-15) which corresponds 
to an OR of 1.51 (95% CI: 1.36 – 1.67) per SD increase in LDL.  
 

4. Is there evidence of heterogeneity in the genetic effects? 
 
Yes, there is significant heterogeneity across effects of each SNP on 
CHD (p=2.822e-40) indicating that the random effects model is 
appropriate. 
 

5. Is there evidence of pleiotropy? 
 

From the MR-Egger regression there is no significant evidence of 
pleiotropy as the regression intercept is not significantly different from 
zero (p=0.118).  
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6. How would you interpret the results of the three analyses together (i.e. 
IVW, MR Egger and Weighted Median)? 

 
The IVW method (OR = 1.51, 95% CI: 1.36 – 1.67, p=1.626e-16), MR-
Egger (OR = 1.66, 95% CI: 1.42 – 1.93, p=1.086e-8) and Weighed 
median (OR = 1.49, 95% CI: 1.36 – 1.63, p=1.962e-19) are relatively 
consistent meaning the causal effect estimate is likely to be between 
1.49 and 1.66. There is no evidence that this estimate is influence by 
horizontal pleiotropy as the MR-Egger intercept is not significant.  

 
2) Re-run the analysis but for myocardial infarction (MI) using outcome data from 

the same publication. 
 

Questions: 
 

1. Is there evidence of an association between LDL and MI?   
 
Yes, IVW method provides significant evidence of an association 
between LDL and MI (OR = 1.48, 95% CI: 1.33 – 1.66, p=1.42e-12). 
The other MR measures of association are consistent with this 
estimate and there is again no evidence of horizontal pleiotropy.   
 

2. Can the association between LDL and CHD be explained by MI?  
 

We would need to test the other traits included in the CHD definition 
to see if they were associated with LDL or not and test for 
heterogeneity of the effects. However it is reassuring that the effect 
estimates are consistent between the larger CHD group and the 
smaller subgroup of subjects with MI. 
 

 
3) Feel free to explore associations with additional exposures such as HDL, BMI 

(you can use the Yengo et al. SNPs) or other exposures/outcomes of interest to 
you.  

 
I’m more than happy to discuss additional results one-on-one or during the time 
we discuss the answers to this exercise. 
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Part II: 
 
Let’s now see if we can validate the finding of an association between LDL and CHD by 
using different exposure data source and potentially dissect this signal to see if we 
pinpoint the features of LDL that might be driving this signal. We will use metabolomics 
data that was generated in a sample of 24,925 individuals.  
 
Kettunen, J., Demirkan, A., Würtz, P. et al. Genome-wide study for circulating 
metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat 
Commun 7, 11122 (2016). https://doi.org/10.1038/ncomms11122. 
 
Exposures: LDL.C, LDL.D, S.LDL.C, S.LDL.L, S.LDL.P, M.LDL.C, M.LDL.CE, M.LDL.L, 
M.LDL.P, M.LDL.PL, L.LDL.C, L.LDL.CE, L.LDL.FC, L.LDL.L, L.LDL.P, L.LDL.PL (16 
metabolites) 
 
Where S. = small, M. = medium and L. = large; .C = total cholesterol, .D = diameter, .L = 
total lipids, .P = concentration, .CE = cholesterol esters, .PL = phospholipids  
 
These can all be selected when you are on the “Choose Exposure” screen and 
selecting the “Metabolite level QTLs”. You can then type in “LDL” in the analyte window 
and select each of these in the window that pops up. The most efficient way is to select 
all of the metabolites you’re interested in and then run the MR analyses together. Before 
clicking off of this screen you will want to click on the “Select All” under Row Selection. 
This will allow you to run the analysis on all of the SNPs for each metabolite. 
 
Use the same CHD outcome as you did for Part I (Nikpay PMID: 26343387) using the 
full set of cases and controls (N=184,305).  
 

1) Conduct an MR analysis as you did previously. 
 

Questions: 
  

1. For LDL.C, does the association between LDL and CHD validate the 
previous findings? 
 
Yes, although the magnitude of the effect is slightly attenuated. The 
IVW yields a beta = 0.3665 (p=1.19e-07) which corresponds to an OR 
of 1.44. The previous OR estimate was 1.51.  
 

2. Considering all of the associations, do these results differentiate 
between the different characteristics of LDL (Please note: you will want 
to take into account the 16 association tests)? 

 
All of the associations yield statistically significant results, except for 
LDL diameter which doesn’t meet the corrected significance threshold. 
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The remaining metabolites have statistically significant betas ranging 
from 0.3665 (LDL diameter) to 0.4709 (concentration of small LDL) 

 
3. What might be one explanation for the similarity between results for the 

different LDL characteristics? 
 

There is a high degree of overlap between the variants contained in 
the instrument variable for each of the metabolites. 

 
4. Are there any concerns about heterogeneity or pleiotropy? 

 
There is significant heterogeneity across all of the metabolites, except 
for the diameter of LDL. There is some evidence of pleiotropy among 
the large LDL metabolites, but not among any of the others. 
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Let’s now look at the associations with VLDL metabolites using the same exposure and 
outcome data sources.  
 
Exposures: 33 VLDL metabolites (Please note additional abbreviations: XS. = very 
small, XL. = very large, XXL. = extremely large; .TG = triglycerides) 
 

2) Conduct an MR analysis as you did previously. 
 

Question: 
  

5. Considering all of the associations, are there any obvious trends in the 
results (Please note: you will want to take into account the 33 
association tests)? 

 
The results tend to be significant (p<0.00015) for the small and very 
small VLDL metabolites (except for the small VLDL triglycerides, 
p=0.00019), whereas the large, very large and extremely large LDL 
metabolites are non-significant (except for the cholesterol esters in 
large VLDL).  
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Advanced Gene Mapping Course: Pleiotropy Exercise 
Andrew DeWan, PhD, MPH 
 
This exercise was designed to give you practical experience identifying cross phenotype 
associations using both univariate and multivariate methods and then dissecting these cross-
phenotype associations to determine if they show evidence of biological and/or mediated 
pleiotropy.  
 
A population-based dataset with 3000 subjects and two quantitative traits (Trait 1 and Trait 2) 
along with 2000 SNPs on one chromosome were simulated. Let’s assume that Trait 1 was 
measured 20 years prior to Trait 2 (i.e. Trait 1 will act as the mediator in our mediation analysis). 
The two quantitative traits are correlated and there are markers associated with one or both 
phenotypes as well as unassociated.  
 
The dataset has been QC’d. The files for the initial analyses are: 
 
pleiotropy_exercise.bed, .bim, .fam and pleiotropy_exercise_phenotypes.txt 
 
I have included a summary table that you will want to fill out as you are working through this 
exercise. This will help keep track of the SNPs you select for the mediation analysis as well as 
the interpretation of the results at the end of the exercise 
 
Univariate analyses 

 
a. Conduct a univariate analysis (using --linear) in PLINK for both datasets and both 

traits 
Note: You will need to use the --pheno/--pheno-name commands to specify the 
phenotype file and phenotype name.  
 
plink\ 
 --bfile pleiotropy_exercise\ 
 --pheno pleiotropy_exercise_phenotypes.txt\ 
 --pheno-name Trait1\ 
 --sex\ 
 --linear\ 
 --out Trait1 
 
For use in several downstream steps, let’s create files with only the header and 
SNP results for each of the univariate analyses: 
 

 grep 'TEST' Trait1.assoc.linear > Trait1_snp.assoc.linear 
 grep 'ADD' Trait1.assoc.linear >> Trait1_snp.assoc.linear 
 grep 'TEST' Trait2.assoc.linear > Trait2_snp.assoc.linear 
 grep 'ADD' Trait2.assoc.linear >> Trait2_snp.assoc.linear 
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b. Try visualizing the data by creating a Hudson plot in R. This will give you some 
sense of the overlapping signals between the two association analyses.

library(hudson)
dat1<-read.table("Trait1_snp.assoc.linear",header=T)
dat2<-read.table("Trait2_snp.assoc.linear",header=T)
names(dat1_snps)<-c("CHR", "SNP", "POS", "A1", "TEST", "NMISS", "BETA",
+"STAT", "pvalue")
names(dat2_snps)<-(names(dat1_snps)
gmirror(top=dat1_snps, bottom=dat2_snps, tline=5e-08, bline=5e-08,

+ toptitle="Trait11", bottomtitle = "Trait2",
+ highlight_p = c(0.00000005,0.00000005), highlighter="green",
+ file = 'pleiotropy_hudson', res = 300, type = 'pdf')

c. Now Identify genome-wide significant SNPs (p<5x10-8) that overlap for both traits. This 
can be done using some simple R code:
Trait1 <- read.table(“Trait1_snp.assoc.linear”, header = T)
Trait2 <- read.table(“Trait2_snp.assoc.linear”, header = T)
SigTrait1 <- subset(Trait1, P<0.00000005)
SigTrait2 <- subset(Trait2, P<0.00000005)
intersect(SigTrait1$SNP, SigTrait2$SNP)

d. As you can see, there are some genome-wide significant SNPs that are adjacent or close 
to each other. To explore whether or not these are independent 
associations, let’s perform some simple LD clumping. You will want to carry 
through the index SNP identified for each clumped region. You will also want to 
carry through any SNPs from 1c above that were not part of a clumped region. plink\
--bfile pleiotropy_exercise\
--clump Trait1_snp.assoc.linear,Trait2_snp.assoc.linear\
--clump-kb 250\
--clump-p1 5e-8\
--clump-p2 5e-8\
--clump-r2 0.2\
--clump-replicate\
--clump-verbose\
--out Trait1_Trait2_clump

93



Multivariate analysis 
 

a. Before moving on to dissecting the cross-phenotype associations, let’s see if we 
can include a few additional SNPs/regions to explore by using multivariate 
analysis. But let’s only consider additional regions that are genome-wide 
suggestive for both phenotypes.  

 
First run a multivariate analysis on Traits 1 and 2.  
 

 plink.multivariate\ 
  --noweb\ 
  --bfile pleiotropy_exercise\ 
  --mult-pheno pleiotropy_exercise_phenotypes.txt\ 
  --sex\ 
  --mqfam\ 
  --out Trait1_Trait2 

  
Please note: You should use the --noweb flag due to this program being built on 
an old version of PLINK.  

 
b. Now let’s identify the intersection of SNPs that are genome-wide significant in the 

multivariate analysis and at least suggestive for each trait in the univariate 
analysis, i.e. we want to make sure that both traits are contributing to the 
multivariate signal. 

 
 Trait1<-read.table("Trait1_snp.assoc.linear", header=T) 
  Trait2<-read.table("Trait2_snp.assoc.linear", header=T) 
  multi<-read.table("Trait1_Trait2.mqfam.total", header=T) 
  sigMulti<-subset(multi, P<0.00000005) 
  suggTrait1<-subset(Trait1, P<0.000005) 
  suggTrait2<-subset(Trait2, P<0.000005) 
  Reduce(intersect, list(suggTrait1$SNP, suggTrait2$SNP, sigMulti$SNP)) 
 

Select the additional SNPs that are identified from the intersection of the 
multivariate analysis and genome-wide suggestive lists for both traits that were 
not in your original list.  

 
c. You may want to re-run the LD clumping with a suggestive threshold to see if 

these additional SNPs clump with your existing clumps or are new potential 
regions to explore. 

 
 plink\ 
  --bfile pleiotropy_exercise\ 
  --clump Trait1_snp.assoc.linear,Trait2_snp.assoc.linear\ 
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  --clump-p1 0.000005\ 
  --clump-p2 0.000005\ 
  --clump-r2 0.2\ 
  --clump-replicate\ 
  --clump-verbose\ 
  --out Trait1_Trait2_clump_suggestive 

  
Mediation analyses 
 

a. For each SNPs that you have identified as a cross phenotype association (evidence of 
overlapping association signals as well as incorporating results from LD clumping and 
multivariate association) you will need to extract this data from the original plink files 
and create a genotype file that is coded as 0|1|2 for the genotypes. This can be done 
in PLINK using the --recodeA command and the --extract command by providing a file 
with the list of snps. This will give you a .raw genotype file with only the snps that you 
will be using in the mediation analysis. 

 
b. Conduct a mediation analysis in R using the mediation R library. Sample code for this 

is below (Note: replace <SNP> with the variable name for the SNP you are 
investigating. You will need to repeat this for each SNP that you have selected): 

 
library(mediation) 
genotypes <- read.table("snps_for_mediation.raw", header=T) 
phenotypes<-read.table("pleiotropy_exercise_phenotypes.txt", header=T) 
combined<-merge(genotypes,phenotypes) 
med.fit<-lm(Trait1~rs125_0, data=combined) 
out.fit<-lm(Trait2~Trait1+rs125_0, data=combined) 
med.out<-mediate(med.fit,out.fit,treat="rs125_0", mediator="Trait1", boot=TRUE, 
+boot.ci.type="bca", sims=1000) 
summary(med.out) 
 
This will print out a summary of the mediation analysis.  

 
Please note: The more simulations (sims) you specific in the med.out step the more   
the CI and p-value estimates will be, however, this can also be time-consuming. If this 
step is taking a substantial amount of time (>20 minutes) you may want to reduce the 
number of simulations for the purposes of completing the exercise. 

 
 
 
 
 
 
 
 

95



Questions: 
 

1) Which of the SNPs have genome-wide significant (p<5x10-8) associations for both traits?  
 
 
 
 
 
 

 
2) Did the multivariate analyses result in additional SNPs that had genome-wide significant 

cross phenotype associations? Which SNP(s)?  
 
 
 
 
 
 
 

 
3) For each SNP analyzed in the mediation analysis, determine if there is a significant direct 

effect which is indicative of some level of biological pleiotropy. Do any of the SNPs 
exhibit complete mediation?  

 
 
 
 
 
 
 
 

 
4) Why do some of the SNPs have negative values for the proportion mediated? 
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Summary table of pleiotropy results 
 

SNP 
Beta 
(Trait 1) P (Trait 1) 

Beta 
(Trait 2) P (Trait 2) 

MV 
(P) 

MV 
Loading 
(Trait 1) 

MV 
Loading 
(Trait 2) ADE ADE (P) ACME  ACME (P) 

Total 
Effect 

Total 
Effect (P)  

Prop 
Mediated 

Prop 
Mediated 
(P) 
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Pleiotropy Exercise - Answers 
Andrew DeWan, PhD, MPH 

This exercise was designed to give you practical experience identifying cross phenotype 
associations using both univariate and multivariate methods and then dissecting these cross 
phenotype associations to determine if they show evidence of biological and/or mediated 
pleiotropy.  

A population-based dataset with 3000 subjects and two quantitative traits (Trait 1 and Trait 2) 
along with 2000 SNPs on one chromosome were simulated. Let’s assume that Trait 1 was 
measured 20 years prior to Trait 2 (i.e. Trait 1 will act as the mediator in our mediation analysis). 
The two quantitative traits are correlated and there are markers associated with one or both 
phenotypes as well as unassociated.  

The dataset has been QC’d. The files for the initial analyses are: 

pleiotropy_exercise.bed, .bim, .fam and pleiotropy_exercise_phenotypes.txt 

I have included a summary table that you will want to fill out as you are working through this 
exercise. This will help keep track of the SNPs you select for the mediation analysis as well as 
the interpretation of the results at the end of the exercise. 

Univariate analyses 

a. Conduct a univariate analysis (using --linear) in PLINK for both datasets and both
traits
Note: You will need to use the --pheno/--pheno-name commands to specify the
phenotype file and phenotype name.

plink\
--bfile pleiotropy_exercise\
--pheno pleiotropy_exercise_phenotypes.txt\
--pheno-name Trait1\
--sex\
--linear\
--out Trait1

For use in several downstream steps, let’s create files with only the header and
SNP results for each of the univariate analyses:

grep 'TEST' Trait1.assoc.linear > Trait1_snp.assoc.linear
grep 'ADD' Trait1.assoc.linear >> Trait1_snp.assoc.linear
grep 'TEST' Trait2.assoc.linear > Trait2_snp.assoc.linear
grep 'ADD' Trait2.assoc.linear >> Trait2_snp.assoc.linear
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b. Try visualizing the data by creating a Hudson plot in R. This will give you some 

sense of the overlapping signals between the two association analyses.  
 

  devtools::install_github('anastasia-lucas/hudson') 
 library(hudson) 
 dat1<-read.table("Trait1_snp.assoc.linear",header=T) 
 dat2<-read.table("Trait2_snp.assoc.linear",header=T) 

names(dat1_snps)<-c("CHR", "SNP", "POS", "A1", "TEST", "NMISS", "BETA", 
+"STAT", "pvalue") 

 names(dat2_snps)<-(names(dat1_snps) 
 gmirror(top=dat1_snps, bottom=dat2_snps, tline=5e-08, bline=5e-08, 
 + toptitle="Trait11", bottomtitle = "Trait2", 
 + highlight_p = c(0.00000005,0.00000005), highlighter="green", 
 + file = 'pleiotropy_hudson', res = 300, type = 'pdf') 

 
 

c. Now Identify genome-wide significant SNPs (p<5x10-8) that overlap for both traits. 
This can be done using some simple R code: 

 
 Trait1 <- read.table(“Trait1_snp.assoc.linear”, header = T) 
 Trait2 <- read.table(“Trait2_snp.assoc.linear”, header = T) 
 SigTrait1 <- subset(Trait1, P<0.00000005) 
 SigTrait2 <- subset(Trait2, P<0.00000005) 
 intersect(SigTrait1$SNP, SigTrait2$SNP) 
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 The overlapping genome-wide significant variants are: rs138, rs139, rs140, rs141,  
 rs296, rs299, rs1138, rs1448 

 
d. As you can see, there are some genome-wide significant SNPs that are adjacent or 

close to each other. To explore whether or not these are independent 
associations, let’s perform some simple LD clumping. You will want to carry 
through the index SNP identified for each clumped region. You will also want to 
carry through any SNPs from 1c above that were not part of a clumped region. 

 
 
 plink\ 
  --bfile pleiotropy_exercise\ 
  --clump Trait1_snp.assoc.linear,Trait2_snp.assoc.linear\ 
  --clump-kb 250\ 
  --clump-p1 5e-8\ 
  --clump-p2 5e-8\ 
  --clump-r2 0.2\ 
  --clump-replicate\ 
  --clump-verbose\ 
  --out Trait1_Trait2_clump 
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OUTPUT:  
CHR    F     SNP         BP          P    TOTAL   NSIG    S05    S01   
S001  S0001 
   1    2   rs139     139000   2.86e-28        9      0      0      0      
0      9  
 
                          KB      RSQ  ALLELES    F            P  
  (INDEX)   rs139          0    1.000        0    2     2.86e-28  
 
            rs137         -2    0.247    00/00    2     2.17e-17  
            rs138         -1    0.399    00/00    1     1.34e-09  
            rs138         -1    0.399    00/00    2     1.91e-18  
            rs139          0        1    00/00    1     2.77e-15  
            rs140          1    0.229    00/00    1     6.05e-12  
            rs140          1    0.229    00/00    2     1.85e-26  
            rs141          2    0.235    00/00    1      9.9e-09  
            rs141          2    0.235    00/00    2     2.98e-13  
 
          RANGE: chr1:137000..141000 
           SPAN: 4kb 
 
------------------------------------------------------------------ 
 
 
 CHR    F     SNP         BP          P    TOTAL   NSIG    S05    S01   
S001  S0001 
   1    1   rs296     296000   1.15e-10        5      0      0      0      
0      5  
 
                          KB      RSQ  ALLELES    F            P  
  (INDEX)   rs296          0    1.000        0    1     1.15e-10  
 
            rs295         -1    0.429    00/00    1     2.01e-08  
            rs296          0        1    00/00    2      2.6e-09  
            rs299          3    0.267    00/00    1     2.77e-09  
            rs299          3    0.267    00/00    2     7.29e-10  
 
          RANGE: chr1:295000..299000 
           SPAN: 4kb 
From clump 1, let’s choose rs139 (and not rs138, rs140 and rs141) and from clump 2 let’s 
choose rs296 (and not rs295 and rs299) to carry forward to our mediation analysis. We will also 
carry forward rs1138 and rs1448 since these two SNPs are not part of any other clumps but are 
genome-wide significant for both traits. 
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Multivariate analysis 
 

a. Before moving on to dissecting the cross phenotype associations, let’s see if we 
can include a few additional SNPs/regions to explore by using multivariate 
analysis. But let’s only consider additional regions that are genome-wide 
suggestive for both phenotypes.  

 
First run a multivariate analysis on Traits 1 and 2.  
 

 plink.multivariate\ 
  --noweb\ 
  --bfile pleiotropy_exercise\ 
  --mult-pheno pleiotropy_exercise_phenotypes.txt\ 
  --sex\ 
  --mqfam\ 
  --out Trait1_Trait2 

  
Please note: You should use the --noweb flag due to this program being built on an 
old version of PLINK.  
 
b. Now let’s identify the intersection of SNPs that are genome-wide significant in the 

multivariate analysis and at least suggestive for each trait in the univariate 
analysis, i.e. we want to make sure that both traits are contributing to the 
multivariate signal. 

 
 Trait1<-read.table("Trait1_snp.assoc.linear", header=T) 
  Trait2<-read.table("Trait2_snp.assoc.linear", header=T) 
  multi<-read.table("Trait1_Trait2.mqfam.total", header=T) 
  sigMulti<-subset(multi, P<0.00000005) 
  suggTrait1<-subset(Trait1, P<0.000005) 
  suggTrait2<-subset(Trait2, P<0.000005) 
  Reduce(intersect, list(suggTrait1$SNP, suggTrait2$SNP, sigMulti$SNP)) 
 

Select the additional SNPs that are identified from the intersection of the 
multivariate analysis and genome-wide suggestive lists for both traits that were 
not in your original list.  

 
We identify the following overlapping SNPs: rs125, rs135, rs137, rs138, rs139, 
rs140, rs141, rs295, rs296, rs298, rs299, rs300, rs920, rs921, rs923, rs1138, rs1166, 
rs1361, rs1448. Of course, this list includes the original set of 8 variants that were 
genome-wide significant for both Traits 1 and 2.  
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c. You may want to re-run the LD clumping with a suggestive threshold to see if these 
additional SNPs clump with your existing clumps or are new potential regions to 
explore. 

 
 plink\ 
  --bfile pleiotropy_exercise\ 
  --clump Trait1_snp.assoc.linear,Trait2_snp.assoc.linear\ 
  --clump-p1 0.000005\ 
  --clump-p2 0.000005\ 
  --clump-r2 0.2\ 
  --clump-replicate\ 
  --clump-verbose\ 
  --out Trait1_Trait2_clump_suggestive 
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OUTPUT:  
 CHR    F     SNP         BP          P    TOTAL   NSIG    S05    S01   
S001  S0001 
   1    2   rs139     139000   2.86e-28        9      0      0      0      
0      9  
 
                          KB      RSQ  ALLELES    F            P  
  (INDEX)   rs139          0    1.000        0    2     2.86e-28  
 
            rs137         -2    0.247    00/00    1     6.05e-08  
            rs137         -2    0.247    00/00    2     2.17e-17  
            rs138         -1    0.399    00/00    1     1.34e-09  
            rs138         -1    0.399    00/00    2     1.91e-18  
            rs139          0        1    00/00    1     2.77e-15  
            rs140          1    0.229    00/00    1     6.05e-12  
            rs140          1    0.229    00/00    2     1.85e-26  
            rs141          2    0.235    00/00    1      9.9e-09  
            rs141          2    0.235    00/00    2     2.98e-13  
 
          RANGE: chr1:137000..141000 
           SPAN: 4kb 
 
------------------------------------------------------------------ 
 
 
 CHR    F     SNP         BP          P    TOTAL   NSIG    S05    S01   
S001  S0001 
   1    1   rs921     921000   6.29e-23        5      0      0      0      
1      4  
 
                          KB      RSQ  ALLELES    F            P  
  (INDEX)   rs921          0    1.000        0    1     6.29e-23  
 
            rs920         -1    0.224    00/00    1     3.11e-08  
            rs920         -1    0.224    00/00    2     6.25e-08  
            rs921          0        1    00/00    2     1.94e-07  
            rs922          1    0.202    00/00    1     4.52e-07  
 
          RANGE: chr1:920000..922000 
           SPAN: 2kb 
 
------------------------------------------------------------------ 
 
 
 CHR    F     SNP         BP          P    TOTAL   NSIG    S05    S01   
S001  S0001 
   1    2   rs136     136000    1.3e-17        5      0      1      0      
0      4  
 
                          KB      RSQ  ALLELES    F            P  
  (INDEX)   rs136          0    1.000        0    2      1.3e-17  
 
            rs134         -2    0.229    00/00    2     3.97e-09  
            rs135         -1    0.379    00/00    1     1.41e-06  
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            rs135         -1    0.379    00/00    2     1.47e-09  
 
          RANGE: chr1:134000..136000 
           SPAN: 2kb 
 
------------------------------------------------------------------ 
 
 
 CHR    F     SNP         BP          P    TOTAL   NSIG    S05    S01   
S001  S0001 
   1    2  rs1361    1361000   1.68e-12        9      0      1      2      
1      5  
 
                          KB      RSQ  ALLELES    F            P  
  (INDEX)  rs1361          0    1.000        0    2     1.68e-12  
 
           rs1359         -2    0.238    00/00    2     5.98e-10  
           rs1360         -1    0.281    00/00    2      2.8e-11  
           rs1361          0        1    00/00    1     2.65e-07  
           rs1362          1    0.271    00/00    2     6.54e-10  
           rs1363          2    0.204    00/00    2     1.64e-07  
 
          RANGE: chr1:1359000..1363000 
           SPAN: 4kb 
 
------------------------------------------------------------------ 
 
 
 CHR    F     SNP         BP          P    TOTAL   NSIG    S05    S01   
S001  S0001 
   1    1   rs296     296000   1.15e-10        5      0      0      0      
0      5  
 
                          KB      RSQ  ALLELES    F            P  
  (INDEX)   rs296          0    1.000        0    1     1.15e-10  
 
            rs295         -1    0.429    00/00    1     2.01e-08  
            rs295         -1    0.429    00/00    2     8.62e-08  
            rs296          0        1    00/00    2      2.6e-09  
            rs299          3    0.267    00/00    1     2.77e-09  
            rs299          3    0.267    00/00    2     7.29e-10  
 
          RANGE: chr1:295000..299000 
           SPAN: 4kb 
 
------------------------------------------------------------------ 
 
 
 CHR    F     SNP         BP          P    TOTAL   NSIG    S05    S01   
S001  S0001 
   1    1  rs1138    1138000   9.58e-10        3      0      1      0      
0      2  
 
                          KB      RSQ  ALLELES    F            P  
  (INDEX)  rs1138          0    1.000        0    1     9.58e-10  
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           rs1137         -1    0.315    00/00    1     4.09e-07  
           rs1138          0        1    00/00    2      2.9e-09  
 
          RANGE: chr1:1137000..1138000 
           SPAN: 1kb 
 
------------------------------------------------------------------ 
 
 
 

 
Based on the multivariate analysis and additional clumping, you should add the 
following SNPs to your list of SNPs for mediation: rs125, rs135, rs300, rs921, rs923, 
rs1166, rs1361. 

 
The final list of SNPs that were selected to carry through to the mediation analysis are: 

 
rs125, rs135, rs139, rs296, rs300, rs921, rs923, rs1138, rs1166, rs1361, rs1448  
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 Mediation analyses 
 

a. For each SNPs that you have identified as a cross phenotype association (evidence of 
overlapping association signals as well as incorporating results from LD clumping and 
multivariate association) you will need to extract this data from the original plink files 
and create a genotype file that is coded as 0|1|2 for the genotypes. This can be done 
in PLINK using the --recodeA command and the --extract command by providing a file 
with the list of snps. This will give you a .raw genotype file with only the snps that you 
will be using in the mediation analysis. 

 
 

b. Conduct a mediation analysis in R using the mediation R library. Sample code for this 
is below (Note: replace <SNP> with the variable name for the SNP you are 
investigating. You will need to repeat this for each SNP that you have selected): 
 

 
library(mediation) 
genotypes <- read.table("snps_for_mediation.raw", header=T) 
phenotypes<-read.table("pleiotropy_exercise_phenotypes.txt", header=T) 
combined<-merge(genotypes,phenotypes) 
med.fit<-lm(Trait1~rs125_0, data=combined) 
out.fit<-lm(Trait2~Trait1+rs125_0, data=combined) 
med.out<-mediate(med.fit,out.fit,treat="rs125_0", mediator="Trait1", boot=TRUE, 
+boot.ci.type="bca", sims=1000) 
summary(med.out) 
 
This will print out a summary of the mediation analysis.  

 
Please note: The more simulations (sims) you specific in the med.out step the more   
the CI and p-value estimates will be, however, this can also be time-consuming. If this 
step is taking a substantial amount of time (>20 minutes) you may want to reduce the 
number of simulations for the purposes of completing the exercise. 
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Questions: 
 

1) Which of the SNPs have genome-wide significant (p<5x10-8) associations for both traits?  
 
rs138, rs139, rs140, rs141, rs296, rs299, rs1138, rs1448 
 

2) Did the multivariate analyses result in additional SNPs that had genome-wide significant 
cross phenotype associations but that also had genome-wide suggestive (p<5x10-6) 
univariate association for each trait? Which SNP(s)? 
 
rs125, rs135, rs137, rs295, rs298, rs300, rs920, rs921, rs923, rs1166, rs1361 
 
Instead of running mediation analysis on all 19 SNPs, I suggested that you perform LD 
clumping to reduce this number of SNPs and only focus on the index SNP for each clump 
(or if the index SNP was not associated with both traits to choose another SNP from 
among the clumped SNPs). This reduced the set of SNPs to 11.  
 

3) For each SNP analyzed in the mediation analysis, determine if there is a significant direct 
effect which is indicative of some level of biological pleiotropy. Do any of the SNPs 
exhibit complete mediation?  

 
All SNPs show a significant direct effect on Trait 2 indicating some level of biological 
pleiotropy. rs923 has an ADE p-value of 0.002 but this is still less than the Bonferroni 
corrected p-value of 0.0045, adjusting for the 11 SNPs. No SNP shows an association 
with Trait 2 that is completely mediated through its association with Trait 1, i.e. an 
ACME estimate that is equal to (or close to) the total effect. The strongest mediated 
effect is for rs921 in which the mediated effect accounts for ~40% of the total effect of 
the SNP on Trait 2.  
 

4) Why do some of the SNPs have negative values for the proportion mediated? 
 

The estimate of the proportion mediated is not the best way to interpret the mediation 
results, despite its seemingly obvious interpretability. In reality this proportion does not 
range from 0-1 but can rather be less than 0 and greater than 1. The negative 
proportion mediated values that we see for many of the SNPs we have analyzed is due 
to the fact that these SNPs have an effect estimate for the total effect and mediated 
effect that are in opposite directions, i.e. the effect of the SNPs on Trait 1 and Trait 2 is 
in opposite directions. Depending on your study question, you may want to limit your 
selection of SNPs to only those with effects on the two traits in the same direction. We 
did not see this among our SNPs, but a proportion mediated > 1 can happen when the 
strength of the association with the mediator (Trait 1) is much higher than the strength 
of the association with the outcome (Trait 2). This is often why it is recommended that 
the direct, indirect and total effects be used in the interpretation rather than the 
proportion mediated.   
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Summary table of pleiotropy results 

 
 
1Multivariate 

 

SNP 
Beta 
(Trait 1) P (Trait 1) 

Beta 
(Trait 2) P (Trait 2) MV1 P 

MV1 
Loading 
(Trait 1) 

MV1 
Loading 
(Trait 2) ADE ADE (P) ACME  ACME (P) 

Total 
Effect 

Total 
Effect (P)  

Prop 
Mediated 

Prop 
Mediated 
(P) 

rs125 0.072 1.08E-08 0.062 6.45E-07 1.80E-10 0.8397 0.7096 0.045 <2e-16 0.015 <2e-16 0.0596 <2e-16 0.2516 <2e-16 

rs135 -0.040 1.41E-06 0.050 1.47E-09 2.82E-17 -0.5457 0.7024 0.059 <2e-16 -0.008 <2e-16 0.0509 <2e-16 -0.3317 <2e-16 

rs139 -0.065 2.77E-15 0.090 2.86E-28 2.26E-50 -0.5249 0.7196 0.103 <2e-16 -0.014 <2e-16 0.0891 <2e-16 -0.1580 <2e-16 

rs296 -0.056 1.15E-10 -0.051 2.60E-09 1.78E-14 0.8100 0.7456 -0.039 <2e-16 -0.012 <2e-16 -0.0512 <2e-16 0.2306 <2e-16 

rs300 -0.046 1.85E-08 -0.039 2.09E-06 1.34E-10 -0.8386 -0.7110 -0.029 <2e-16 -0.010 <2e-16 -0.0392 <2e-16 0.2507 <2e-16 

rs921 0.109 6.29E-23 0.057 1.95E-07 1.16E-24 -0.9475 -0.5144 0.036 <2e-16 0.023 <2e-16 0.0595 <2e-16 0.3908 <2e-16 

rs923 0.041 1.48E-06 0.042 4.04E-07 2.35E-09 0.7615 0.7957 0.034 0.002 0.009 <2e-16 0.0421 <2e-16 0.2035 <2e-16 

rs1138 -0.050 9.58E-10 0.048 2.90E-09 2.44E-20 0.6511 -0.6027 0.058 <2e-16 -0.011 <2e-16 0.0468 <2e-16 -0.2319 <2e-16 

rs1166 -0.051 4.77E-10 0.041 6.30E-07 1.02E-17 -0.7175 0.5275 0.049 <2e-16 -0.011 <2e-16 0.0382 <2e-16 -0.2918 <2e-16 

rs1361 -0.056 2.65E-07 0.076 1.68E-12 3.52E-21 -0.5349 0.7114 0.087 <2e-16 -0.012 <2e-16 0.0751 <2e-16 -0.1614 <2e-16 

rs1448 -0.079 3.46E-08 0.092 1.51E-11 2.21E-20 -0.5847 0.6679 0.108 <2e-16 -0.017 <2e-16 0.0908 <2e-16 -0.1879 <2e-16 
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Variant Annotation and Functional Prediction 

Copyrighted © 2023 Isabelle Schrauwen and Suzanne M. Leal 

This exercise touches on several functionalities of the program ANNOVAR to annotate 
and interpret candidate genetic variants associated with disease, identified through next- 
generation sequencing methods, imputation or genotyping. When variants are identified to 
be associated with disease, a common strategy is to perform multiple in silico analyses to 
predict whether they potentially have an impact on gene function. 

More information and a detailed guide on installation of ANNOVAR can be found here: 
http://annovar.openbioinformatics.org/en/latest/. ANNOVAR has three main annotation 
types to help evaluate variants: 

[1] Gene-based annotation: This annotation annotates variants in respect to their effect
on genes (RefSeq genes, UCSC genes, ENSEMBL genes, GENCODE genes, AceView
genes) and also outputs the effect of the mutation on the protein in standard HGVS
nomenclature (if an effect is predicted).

[2] Region-based annotation: With this annotation you can identify variants in specific
genomic regions (i.e. conserved regions, predicted transcription factor binding sites,
segmental duplication regions, GWAS hits, database of genomic variants, DNAse I
hypersensitivity sites, ENCODE H3K4Me1/H3K4Me3/H3K27Ac/CTCF sites, ChIP-Seq
peaks, RNA-Seq peaks, or many other annotations on genomic intervals).

[3] Filter-based annotation: Identify variants that are documented in specific frequency
databases (dbSNP, Genome Aggregation Consortium, etc) or functional effect prediction
databases (PolyPhen, MutationTaster, FATHMM, etc). For example, find intergenic
variants with a CADD c-score >20.

In this exercise, we will evaluate APOC3 variants by annotating a .vcf file (APOC3.vcf). 
Variants in APOC3 are associated with apoC-III protein levels, triglycerides levels, and 
coronary heart disease. Previous studies suggested that lifelong deficiency of apoC-III has 
a cardioprotective effect. When rare variant association tests are performed, variants are 
often analyzed as a group; and when an association has been found which has been 
replicated it is not necessarily true that all tested variants are causal. However, for low 
variant frequencies it is often not possible to test individual variants for an association with 
a trait. Therefore, bioinformatics tools are often used to predict which variants are likely to 
be functional and therefore could be involved in trait etiology. For this exercise, six variants 
in APOC3 were selected for annotation as an example. 
First of all, once you are logged in into dockerhub go to the /shared directory where the 
datafiles for this exercise are located by typing: 

$ /home/shared/functional_annotation 
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The table_annovar.pl in ANNOVAR command accepts VCF files. Type in 
table_annovar.pl to learn about the annotation options (Tip: add Annovar to your PATH to 
be able to use this command in any directory). More info on VCF processing and left- 
normalization for indels can be found here: 
http://annovar.openbioinformatics.org/en/latest/articles/VCF/. Note, ANNOVAR can also 
accept compressed .vcf.gz files. 

$ table_annovar.pl 

A. Gene-based annotation: Using Ensembl, RefSeq and UCSC Genome Browser First, 
we will evaluate the location of these variants in APOC3. We will use the Gene-based 
annotation function, which annotates variants to coding and non-coding genes and 
indicates the amino acids that are affected. Users can flexibly use RefSeq, UCSC genome 
browser, ENSEMBL, GENCODE, AceView, or other gene definition databases.

Let us first annotate our variants with the standard refGene database (NCBI): 

$ table_annovar.pl APOC3.vcf humandb/ -buildver hg19 -out APOC3_Gene.vcf -remove 
-nastring . -protocol refGene -operation g -vcfinput

Each of the options in the command line is preceded with ‘-’ (again, more information can 
be found by typing table_annovar.pl). The -operation option defines the type of annotation, 
g=gene-based; f=filter-based and r=region-based. 

The annotated output file is written to APOC3_Gene.vcf.hg19_multianno.txt 
Results are also written in VCF format: APOC3_Gene.vcf.hg19_multianno.vcf 

Now look at the resulting table: 
$ cat APOC3_Gene.vcf.hg19_multianno.txt 

Question 1: Of the six APOC3 variants that were analyzed how many are exonic?

The output txt file is also easy to view in excel. Open the file in Excel and select "tab- 
delimited" when opening the file. To filter data, click the "data" tab at the menu bar, then 
click the "Filter" button. 
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Notice all variants are automatically reported following the HGVS nomenclature. 
Variants are categorized based on these groups: 

 
exonic variant overlaps a coding region 
splicing variant is within 2-bp of a splicing junction (use -splicing_threshold to change this) 
ncRNA variant overlaps a transcript without coding annotation in the gene definition 
UTR5 variant overlaps a 5' untranslated region 
UTR3 variant overlaps a 3' untranslated region 
intronic variant overlaps an intron 
upstream variant overlaps 1-kb region upstream of transcription start site 

downstream variant overlaps 1-kb region downtream of transcription end site (use -neargene to 
change this) 

intergenic variant is in intergenic region 
 

Next we will annotate using three main databases: Ensembl, RefSeq and UCSC Known 
Gene, and change boundaries of splice variants (default is 2 bp from splice site, let’s set 
this to 12 bp): 

 
$ table_annovar.pl APOC3.vcf humandb/ -buildver hg19 -out APOC3_Gene.vcf -remove 
-nastring . -protocol refGene,knownGene,ensGene -operation g,g,g -arg '-splicing 12 - 
exonicsplicing','-splicing 12 -exonicsplicing','-splicing 12 -exonicsplicing' -vcfinput 

 
This file has many columns, view select columns with awk (depending on which columns 
you are interested in seeing) using the below command or alternatively, you can open the 
file in excel: 

 
$ awk -F'\t' '{print $1,$2,$6,$7,$8,$9,$10}' APOC3_Gene.vcf.hg19_multianno.txt 

 
Question 2: What has changed compared to the initial annotation (hint: the splicing 
thresholds were changed) 
 
 
 
 
 
 

 
B. Region based annotation 
Another functionality of ANNOVAR is to annotate regions associated with variants: For 
example, DNAse I hypersensitivity sites, ENCODE regions, predicted transcription factor 
binding sites, GWAS hits, and phastCons 46-way alignments to annotate variants that fall 
within conserved genomic regions as shown here: 

 
$ table_annovar.pl APOC3.vcf humandb/ -buildver hg19 -out APOC3_Region.vcf - 
remove -nastring . -protocol phastConsElements46way -operation r -vcfinput 

 
Note $ cat resultingfile.txt here to view your results in the terminal or use awk to print 
certain columns of interest. Only conserved regions will display a score (maximum 1000) 
and a name. 
Question 3: Which of the APOC3 variants are within a conserved genomic region? 
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We can also identify variants that were previously reported to be associated with diseases                                                             
or traits in genome-wide association studies: 

 
$ table_annovar.pl APOC3.vcf humandb/ -buildver hg19 -out APOC3_Region.vcf - 
remove -nastring . -protocol gwasCatalog -operation r -vcfinput 

 
The gwasCatalog track in ANNOVAR is not fully comprehensive, but will point you 
towards major associations. 

 
 

Question 4. Which of these variants are reported in the ANNOVAR GWAS catalog, 
and what has it been associated with ? 
 
 
 
 
 
 
 

 
 

The region-based annotation can be used to evaluate pathogenicity of certain regions, 
especially non-coding regions. In addition to the examples above, here are some other 
useful databases in region-annotation: 

• wgRna: variants disrupting microRNAs and snoRNAs 
• targetScanS: Identify variants disrupting predicted microRNA binding sites 
• tfbsConsSites: Transcription factor binding sites 
• The Encyclopedia of DNA Elements (ENCODE): A comprehensive parts list of 

functional elements in the human genome, including elements that act at the protein 
and RNA levels, and regulatory elements that control cells and circumstances in 
which a gene is active. Several annotations are possible depending on your interests 
and can be found here: http://annovar.openbioinformatics.org/en/latest/user- 
guide/region/ 

 
C. Filter based annotation 
Filter based annotation includes annotation to certain databases, such as gnomAD, 
dbSNP, and prediction programs to evaluate pathogenicity. There are many options, but 
we selected these as particularly helpful for complex diseases: 

 
$ table_annovar.pl APOC3.vcf humandb/ -buildver hg19 -out APOC3_Filter.vcf -remove 
-nastring . -protocol 
gnomad_genome,gnomad_exome,popfreq_max_20150413,gme,avsnp150,dbnsfp33a,dbs 
csnv11,cadd13gt20,clinvar_20170905,gwava -operation f,f,f,f,f,f,f,f,f,f -vcfinput 
 
This command will annotate the following: 

• gnomAD genome 
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• gnomad_exome (includes ExAC) 
• popfreq_max_20150413: A database containing the maximum allele frequency 

from 1000G, ESP6500, ExAC and CG46 (use popfreq_all_20150413 to see all 
allele frequencies) 

• dbSNP150 
• gme: Great Middle East allele frequencies from the GME variome project 
• dbnsfp33a: whole-exome SIFT, PolyPhen2 HDIV, PolyPhen2 HVAR, LRT, 

MutationTaster, MutationAssessor, FATHMM, PROVEAN, MetaSVM, MetaLR 
VEST, M-CAP, CADD, GERP++, DANN, fathmm-MKL, Eigen, GenoCanyon, fitCons, 
PhyloP and SiPhy scores. 

• dbscSNV version 1.1: for splice site prediction by AdaBoost and Random Forest 
• Genome-wide CADD version 1.3 score>20 
• clinvar_20170905: CLINVAR database with Variants of Clinical Significance 
• gWAVA: Prioritization of noncoding variants by integrating various genomic and 

epigenomic annotations. 
 
Build your own filter annotations here: 
http://annovar.openbioinformatics.org/en/latest/user-guide/download/ 
 
We can split these annotations up into several categories what will help to evaluate 
pathogenicity: 
 
1.Allele frequency databases 
 
1.a Allele frequency in control populations 
Evaluating the frequency of a possible causal/associated variant in several control population 
is important in any disease/trait. The use of these databases might be different depending on 
the prevalence of your disease of interest, but these databases can provide valuable 
information on the rarity of variants and population-specific variants. If a variant is rare in 
your population, it is encouraged to check whether it might be more frequent in other 
populations, which might alter your conclusions on pathogenicity: 

i. gnomAD and ExAC databases: The Genome Aggregation Database 
(gnomAD) and the Exome Aggregation Consortium (ExAC) are a coalition 
of investigators seeking to aggregate and harmonize genome and exome 
sequencing data from a wide variety of large-scale sequencing projects. The 
ExAC dataset contains spans 60,706 unrelated individuals sequenced as part 
of various disease-specific and population genetic studies. gnomAD spans 
123,136 exome sequences and 15,496 whole-genome sequences from 
unrelated individuals and includes ExAC data. For both databases 
individuals known to be affected by severe pediatric disease are removed, as 
well as their first-degree relatives, so this data set should aid as a useful 
reference set of allele frequencies for severe disease studies - however, note 
that some individuals with severe disease may still be included in the data 
set. 

ii. BRAVO: Genome sequencing variants of 62,784 individuals sequenced for 
NHLBI's TOPMed program, to enhance the understanding of fundamental 
biological processes that underlie heart, lung, blood and sleep disorders. 
Currently not implemented in ANNOVAR yet, can be found here: 
https://bravo.sph.umich.edu/freeze5/hg38/. 
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iii. GME database: The Greater Middle East (GME) Variome Project
(http://igm.ucsd.edu/gme/) is aimed at generating a coding base reference for
the countries found in the Greater Middle East. This dataset is especially
useful when dealing with Mendelian families from the Middle East.
Although these individuals are not a random sample, they were ascertained
as a wide variety of distinct phenotypes such that cohort-specific effects are
not expected to bias patterns of variation. For the final filtered set, primarily
healthy individuals from families were selected, and wherever possible, removed 
from datasets the allele that brought the family to medical attention, leaving 1,111
high-quality unrelated individuals.

iv. 1000G database: The 1000 Genomes Project ran between 2008 and 2015,
creating a public catalogue of human variation and genotype data. Phase 3
includes 26 different populations, and might be useful when interested in
population specific variation.

v. ESP6500: The NHLBI GO Exome Sequencing Project (ESP) includes 6,503
samples drawn from multiple cohorts and represents all of the ESP exome
variant data. In general, ESP samples were selected to contain deeply
phenotyped individuals, the extremes of specific traits (LDL and blood
pressure), and specific diseases (early onset myocardial infarction and early
onset stroke), and lung diseases. This dataset contains a set of 2,203 African-
Americans and 4,300 European-Americans unrelated individuals, totaling
6,503 samples (13,006 chromosomes).

vi. CG46: CG46 database compiled from unrelated individuals sequenced by
the Complete Genomics platform.

1.b Allele frequencies in disease populations

vii. Clinvar: ClinVar is a freely accessible, public archive of reports of the
relationships among human variations and phenotypes hosted by the
National Center for Biotechnology Information (NCBI) and funded by
intramural National Institutes of Health (NIH) funding. Although this
database is mainly used for Mendelian disease variants, several rarer variants
with a decent effect size in more complex disorders can be found in here as
well, such as APOC3.

Let us examine if one of our variants we just annotated is in the Clinvar database: 
$ awk -F'\t' '{print $1,$2,$103,$104}' APOC3_Filter.vcf.hg19_multianno.txt 

Question 5: Is one of the variants reported as ‘pathogenic’ in Clinvar? If yes, which 
variants and which phenotype has been associated with these variants? 

115

http://igm.ucsd.edu/gme/)


Next, look at the gnomAD overall exome and genome frequencies in 123,136 individuals 
for our variants, and specific exome populations: 
$ awk -F'\t' '{print $1,$2,$6,$14}' APOC3_Filter.vcf.hg19_multianno.txt 
$ awk -F'\t' '{print $1,$2,$15,$16,$17,$18,$19,$20,$21,$22}' 
APOC3_Filter.vcf.hg19_multianno.txt 

Question 6: Are these variants common or rare, and are some more frequent in a 
specific population? 

1.c All variation
vii. dbSNP: The Single Nucleotide Polymorphism database (dbSNP) or Database of Short

Genetic Variations is a public-domain archive for a broad collection of simple genetic
polymorphisms.

2. Effect on gene function:

2.a Missense variants
Missense mutations are sometimes more difficult to evaluate compared to loss-of-function
mutations. If a variant occurs at a nucleotide or amino acid that is conserved through
evolution, it is usually assumed that the specific nucleotide or amino acid is important to
function. Whereas conservation scores such as PhyloP use evolution information to
measure deleteriousness, there are also tools which combine information on evolution,
biochemistry, structure and from public available databases etc., e.g. CADD, Eigen,
MutationTaster.

We highlighted a select useful scoring methods that will help evaluate 
pathogenicity of a missense mutation: 

• CADD*: Combined Annotation Dependent Depletion (CADD) is a framework that
integrates multiple annotations into one metric by contrasting variants that survived
natural selection with simulated mutations. A scaled C-score of >10 indicates that
the variant is predicted to be within 10% of most deleterious substitutions within
the human genome, a score of >20 indicates the variant is predicted to be within
1% of the most deleterious variants, and so on. In the annotation above, we added
all CADD scores in the exome + all CADD score in the genome >20 c-scores. This
score includes single nucleotide variants as well as insertion/deletions.

• Eigen and Eigen-PC*: Integrates different annotations into one measure of
functional importance, a single functional score that can be incorporated in fine- 
mapping studies. Results for Eigen and Eigen-PC are similar for coding variants,
but Eigen-PC has a considerable advantage over Eigen for noncoding variants. A
positive Eigen-PC score is considered more damaging than a negative score.

• SIFT: Sorting Tolerant from Intolerant predicts whether an amino acid substitution
affects protein function. SIFT prediction is based on the degree of conservation of
amino acid residues in sequence alignments derived from closely related sequences.
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It assumes that important positions in a protein sequence have been conserved 
throughout evolution and therefore substitutions at these positions may affect 
protein function. The SIFT score ranges from 0.0 (deleterious or “D”) to 1.0 
(tolerated or “T”). 

• PolyPhen2. Polymorphism Phenotyping v2. A tool which predicts possible impact
of an amino acid substitution on the structure and function of a human protein using
straightforward physical and comparative considerations. It obtains information
from multiple sources such as variant site (e.g. active, binding, transmembrane,
etc), multiple sequence alignment, secondary and 3D structure (if a known model
exists), accessible surface area, etc.

o PolyPhen2 HVAR: This metric is useful for diagnostics of Mendelian
diseases, which requires distinguishing mutations with drastic effects from
all the remaining human variation, including abundant mildly deleterious
alleles. The variant is considered probably damaging (D; score 0.909 and 1),
possibly damaging (P; 0.447 and 0.908), or benign (B; 0 and 0.446).

o PolyPhen2 HDIV: PolyPhen HDIV should be used when evaluating rare
variants involved in complex phenotypes and analysis of natural selection
from sequence data. Variants can be classified as following: Probably
damaging (D; 0.957 and 1), possibly damaging (P; 0.453 and 0.956), or
benign (B; 0 and 0.452).

• LRT: The Likelihood Ratio Test. Using a comparative genomics data set of protein- 
coding sequences from 32 vertebrate species, the LRT was used to compare the null
model that each codon is evolving neutrally, with the alternative model that the
codon has evolved under negative selection. LRT can accurately identify a subset
of deleterious mutations that disrupt highly conserved amino acids within protein- 
coding sequences, which are likely to be unconditionally deleterious. LRT
prediction ‘D’ stands for ‘deleterious’ and ‘N’ stands for ‘neutral’.

• MutationTaster*: Mutation taster performs a battery of in silico tests to estimate the
impact of the variant on the gene product / protein. Tests are made on both, protein
and DNA level. MutationTaster is not limited to substitutions of single amino acids
but can also handle synonymous or intronic variants. It has four types of prediction
outcomes: “disease_causing_automatic”, “disease_causing”, “polymorphism”, and
“polymorphism_automatic”, which are coded as “A”, “D”, “N”, and “P,”
respectively. Among them, “D” and “N” are determined by the prediction
algorithm, whereas “A” and “P” are determined by external information. “A” and
“D” can be regarded as prediction for deleteriousness.

• FATHMM and fathmm-MKL*: Functional Analysis Through Hidden Markov
Models can be used for the prediction of the functional consequences of both coding
variants and non-coding variants, using different algorithms. The more recent MKL
algorithm can be used for all variants, utilizes various genomic annotations, and
learns to weight the significance of each component annotation source. Variants are
classified as either “damaging” (“D”) or “tolerated” (“T”).

• GERP++*: Genomic Evolutionary Rate Profiling (GERP) is a method for
producing position-specific estimates of evolutionary constraint using maximum
likelihood evolutionary rate estimation. GERP++ uses a more rigorous set of
algorithms. Positive scores represent a substitution deficit (i.e., fewer substitutions
than the average neutral site) and thus indicate that a site may be under evolutionary
constraint. Negative scores indicate that a site is probably evolving neutrally. It was
suggested that a RS score threshold of 2 provides high sensitivity while still
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strongly enriching for truly constrained sites; in practice, the threshold depends on 
the user. 

• PhyloP*: (phylogenetic p-values) Evolutionary conservation at individual
alignment sites, based on multiple alignments of 100 vertebrate species (100-way)
or 20 mammals (20-way) under a null hypothesis of neutral evolution. Positive
PhyloP scores indicate conserved sites (slower evolution than expected under
neutral drift), the greater the score, the more conserved the site is; negative PhyloP
scores indicate fast-evolving site (faster evolution than expected under neutral
drift).

*available genome wide – that means they can be used to evaluate synonymous and non- 
coding variants as well (not all available genome-wide in ANNOVAR for annotation
though). These scores are all integrated in dbSNFP, and more information and references
can be found here: https://sites.google.com/site/jpopgen/dbNSFP

Let us evaluate some of these predictions above for our variants 
$ awk -F'\t' '{print $1,$2,$36,$86,$70}' APOC3_Filter.vcf.hg19_multianno.txt 
Note that these were loaded from a database here only including the exome. Individual 
datasets for some of these are available for annotation genome-wide as well. 

Question 7: Can you fill in the other cells, which of the 3 missense variants have a 
prediction to be likely damaging? 

Chr Position Ref 
Allele 

Alt 
Allele 

Variant 
Type Polyphen2_HDIV PhyloP_100way CADD_phred 

11 116701560 G A missense 1 4.302 23.6 
11 116703532 A G missense 
11 116703580 A G missense 

2.b Splice variants:
• AdaBoost and Random Forest: Adaptive boosting (ADA) and random forest (RF)

scores in dbscSNV. dbscSNV includes all potential human SNVs within splicing
consensus regions (−3 to +8 at the 5’ splice site and −12 to +2 at the 3’ splice site).
A score > 0.6 is considered damaging. Changing your splice boundaries to include
splice region in combination with these scores can be useful to identify additional
splice modifying variants.

• Regsnpintron: For all intronic SNPs including splice variants. See paragraph below.
Please note that the current version is not working but should be updated soon.

Using the following methods examine the scores for the splice variants that we found 
earlier in the exercise: 
$ awk -F'\t' '{print $1,$2,$99,$100}' APOC3_Filter.vcf.hg19_multianno.txt 
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Question 8: Can you fill in the ADA and RF scores below for the splice variants. Do 
these variants affect splicing? 

Chr Start dbscSNV_ADA_SCORE dbscSNV_RF_SCORE 
11 116701353 
11 116701613 

2.c Intronic & non-coding SNPs:
• gWAVA: Genome-wide annotation of variants (GWAVA) is a tool that supports

prioritization of noncoding variants by integrating various genomic and epigenomic
annotations. There are different scores based on 3 different versions of the classifier
and all are in the range 0-1 with higher scores indicating variants predicted as more
likely to be functional.

• Regsnpintron: prioritize the disease-causing probability of intronic SNVs (uses a
machine learning algorithm). The columns are "fpr (False positive rate), disease

Disease category (B: benign [FPR > 0.1]; PD: Possibly Damaging [0.05 < FPR <= 0.1]; D:
Damaging [FPR <= 0.05]), splicing_site Splicing site (on/off). Splicing sites are defined as
-3 to +7 for donor sites, -13 to +1 for acceptor sites.

Note: Most of the prediction scores in this filter-based annotation exercise were loaded 
through dbSNFP and therefore only exonic variants were annotated. Whole genome scores 
for the following are available in ANNOVAR as well as separate annotations: FATHMM, 
Eigen, CADD, GERP, gWAVA, regsnpintron, revel, mcap. 

D. Why not combine all annotations?

We can combine all the annotations above into one and single command: 

$ table_annovar.pl APOC3.vcf humandb/ -buildver hg19 -out APOC3_ANN.vcf -remove 
-nastring . -protocol
refGene,knownGene,ensGene,wgRna,targetScanS,phastConsElements46way,tfbsConsSit
es,gwasCatalog,gnomad_genome,gnomad_exome,popfreq_max_20150413,gme,avsnp15
0,dbnsfp33a,dbscsnv11,cadd13gt20,clinvar_20170905,gwava -operation
g,g,g,r,r,r,r,r,f,f,f,f,f,f,f,f,f,f -arg '-splicing 12 -exonicsplicing','-splicing 12 -
exonicsplicing','-splicing 12 -exonicsplicing',,,,,,,,,,,,,,, -vcfinput

This makes it easy for you to make your own, customized annotation table. 

Conclusion 

The first five variants we studied are all rare variants shown to be associated with low 
apoC-III protein and triglycerides levels in blood. rs76353203, rs140621530 and 
rs147210663 were described in the following paper: “Loss-of-function mutations in 
APOC3, triglycerides, and coronary disease” (PMID: 24941081); rs121918381 was 
described in “Molecular cloning of a human apoC-III variant: Thr 74-Ala 74 variant 
prevents O-glycosylation” (PMID: 3123586); rs121918382 was described in 
“Apolipoprotein C-III(Lys58Glu): Identification of an apolipoprotein C-III variant in a 
family with hyperalphalipoproteinemia” (PMID: 2022742). The last variant (rs4225) is 
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common, and was proposed as a candidate variant involved plasma triglycerides levels and 
coronary heart disease (PMID: 27624799). 

Question 9: Based on the bioinformatics tools predictions, what do you think about 
the impact of the six variants on the function of the apoC-III protein?  

E. Other useful annotations

   Mitochondrial annotations 

ANNOVAR has a database to annotate the impact of mitochondrial mutations: mitimpact24, 
use in the filter option 

Gene intolerance to mutations scores 
These scores can help evaluate whether a gene is tolerable or intolerable to damaging mutations: 

• ExAC constraint metrics (pLI and z-scores): can be found on the ExAC website
(Gene search).

o Synonymous and missense: A signed Z score for the deviation of observed
counts from the expected number was created. Positive Z scores imply
increased constraint (intolerance to variation; i.e. the gene had fewer
variants than expected). Negative Z scores indicated that the gene had more
variants than expected.

o LoF: For this metric, three classes of genes with respect to tolerance to LoF
variation are assumed: 1) null (where LoF variation is completely tolerated),
2) recessive (where heterozygous LoFs are tolerated), 3) haploinsufficient
(i.e. heterozygous LoFs are not tolerated). The observed and expected
variants counts were used to determine the probability that a given gene is
extremely intolerant of loss-of-function variation (falls into the third
category). The closer pLI is to 1, the more LoF intolerant. A pLI >= 0.9 is
considered as an extremely LoF intolerant set of genes.

• LoFtool score: gene loss-of-function score percentiles. The smaller the percentile,
the most intolerant is the gene to functional variation.

• RVIS-ESV score: RVIS score measures genetic intolerance of genes to functional
mutations.

• GDI score: the gene damage index (GDI) depicts the accumulated mutational
damage for each human gene in the general population. Highly mutated/damaged
genes are unlikely to be disease-causing. Yet these genes generate a big proportion
of false positive variants harbored in such genes. Removing high GDI genes is a
very effective way to remove confidently false positives from WES/WGS data.
Damage predictions (low/medium/high) are made for different disease types.
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These webtools are also very useful in annotating variants: 
WGS Annotator (WGSA) - an annotation pipeline for human genome re-sequencing 
studies: https://sites.google.com/site/jpopgen/wgsa/using-wgsa-via-aws 
Web Annovar: http://wannovar.wglab.org/ 
Seattleseq: http://snp.gs.washington.edu/SeattleSeqAnnotation138/ 
Ensembl variant predictor: http://www.ensembl.org/info/docs/tools/vep/index.html 
Snp-nexus: http://www.snp-nexus.org/ 

F. Useful online annotation tools 
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Question 1: Of the six APOC3 variants that were analyzed how many are exonic 
variants? 
4 variants are exonic (3 nonsynonymous and one stop gain), one splice site variant and 
one 3’UTR variant. 

Chr Position Ref Alt avsnp150 Func Gene ExonicFunc cDNA/AAchange 
11 116701353 C T rs76353203 Exonic APOC3 stopgain NM_000040:c.C55T:p.R19X 
11 116701560 G A rs147210663 Exonic APOC3 nonsynonymous NM_000040:c.G127A:p.A43T 

11 116701613 G T rs140621530 
Splicin 
g APOC3 . NM_000040:exon3:c.179+1G>T 

11 116703532 A G rs121918382 Exonic APOC3 nonsynonymous NM_000040:c.A232G:p.K78E 
11 116703580 A G rs121918381 Exonic APOC3 nonsynonymous NM_000040:c.A280G:p.T94A 
11 116703671 G T rs4225 UTR3 APOC3 . NM_000040:c.*71G>T 

Question 2: What has changed compared to the initial annotation (hint: splicing 
thresholds were changed)? 
The first variant at position 11:116701353 changed to exonic:splicing by changing our 
threshold to 12bp distance from the splice site. This variant is located at the -1 position 
of a 5’ donor splice site and could affect splicing as well. 

Question 3: Which the APOC3 variants are within conserved genomic region? 
The second and third variant. 

Question 4. Which of these variants is reported in the ANNOVAR GWAS catalog, 
and what has it been associated with? 
The first variant, rs76353203, is indicated to have been associated with Triglyceride levels 
and high density lipoprotein cholesterol levels. This variant was the first variant in APOC3 
to have been associated with apoC-III deficiency, lower serum triglycerides, and higher 
levels of HDL cholesterol, and lower levels of LDL cholesterol (Pollin et al, 2008; 
PubMed: 19074352) and reached genome-wide significance in several GWAS for lower 
plasma triglyceride levels studies afterwards (PubMed: 24941081; PMID:24343240) 

Question 5: Is one of the variants reported as ‘pathogenic’ in Clinvar? If yes, which 
variants and which phenotype has been associated with these variants? 
The first 5 variants are in Clinvar and reported as pathogenic, associated with coronary 
heart disease, Hyperalphalipoproteinemia, and Apolipoprotein_c-iii. 

Question 6: Are these variants common or rare, and are some more frequent in a 
specific population? 
The first five variants (exonic and splice) are rare, the last variant in the 3’UTR is common 
(44% overall prevalence in the genomes). The second variant has a higher frequency in 
the ASJ population (1.1%; Ashkenazi Jewish) compared to all other populations. 

Question 7: Can you fill in the other cells, which of the 3 missense variants have a 
prediction to be likely damaging? 

Chr Position Ref 
Allele 

Alt 
Allele 

Variant 
Type Polyphen2_HDIV PhyloP_100way CADD_phred 

11 116701560 G A missense 1 4.302 23.6 

Answers
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11 116703532 A G missense 0.611 0.719 15.56 
11 116703580 A G missense 0.123 0.194 0.175 

The first missense variant is very likely to be damaging. The second as well, though the 
last one is not predicted to be damaging by these 3 scoring methods, and more methods 
should be evaluated. 

Question 8: Can you fill in the ADA and RF scores below for the splice variants. Do 
these variants affect splicing? 

Chr Start Func.refGene Effect dbscSNV_ADA_SCORE dbscSNV_RF_SCORE 
11 116701353 exonic;splicing c.C55T:p.R19X 0.0001 0.16 
11 116701613 splicing c.179+1G>T 1.000 0.936 

The second variant is likely to affect splicing, as both scores are > 0.6. The first variant is 
located within exon (-1 position) of a 5’ donor site, but is unlikely to affect splicing. This 
variant creates a stop mutation instead. 

It is important to note that splice region variants (not standardly annotated unless you 
change boundaries) can still impact splicing, and annotation with these scores can help 
you evaluate their effect on splicing. 

Question 9: Based on the bioinformatics tools predictions, what do you think about 
the impact of the six variants on the function of the apoC-III protein? 
The first 3 variants, studied in a GWAS of 3734 participants and validated in 110,970 
persons (PMID: 24941081), are predicted to be the most impactful on gene function based 
on all annotations. 
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