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Genome-wide association studies (GWAS)

@5 Newcastle
University w,

Genome-wide association studies (GWAS) - Part 1 @ Popular (and highly successful) approach over past ~ 15 years

@ Enabled by advances in high-throughput (microarray-based)
genotyping technologies

Heather J. Cordell

o Idea is to measure the genotype at a set of single nucleotide
Population Health Sciences Institute polymorphisms (SNPs) across the genome, in a large set of unrelated

Faculty of Medical Sciences individuals

Newcastle University, UK
o Cases and controls
heather.cordell@ncl.ac.uk

e Or population cohort measured for relevant quantitative phenotypes
(height, weight, blood pressure etc)

o Or related individuals (family data) — but need to analyse differently
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Genome-wide association studies (GWAS) Association testing: case/control studies

Two individuals o Collect sample of affected individuals (cases) and unaffected
individuals (controls)
e Or a else a sample of random “population” controls

Person 1~ ACCTGTGTGCCCAATGGCGTCCCATACTATCGG
ACCTGTGCGCCCAATGGCGTCCCATACTATCGG

o Most of whom will not have the disease of interest
Person 2 ACCTGTGCGCCCAGTGGCGTCCCATACTATCGG

ACCTGTGCGCCCAGTGGCGTCCCATAGTATCGG @ Examine the association (correlation) between alleles present at a
genetic locus and presence/absence of disease
o Test each SNP for association/correlation with disease or quantitative o By comparing the distribution of genotypes in affected individuals
phenotype with that seen in controls
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Case/control studies Case/control studies
@ Each person can have one of 3 possible genotypes at a diallelic @ Each person can have one of 3 possible genotypes at a diallelic
genetic locus genetic locus
Genotype  Cases Controls Genotype  Cases Controls
2[2 500 (=a) 200 (= b) 2[2 500 (=a) 200 (= b)
12 1100 (=c) 820 (=d) 12 1100 (=c) 820 (=d)
1J1 400 (=e) 980 (= f) 11 400 (=e) 980 (= f)
Total 2000 2000 Total 2000 2000

@ Test for association (correlation) between genotype and presence/
absence of disease using standard y? test for independence on 2 df
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Case/control studies

@ Each person can have one of 3 possible genotypes at a diallelic
genetic locus

Genotype  Cases Controls
2|2 500 (=a) 200 (=b)
1|2 1100 (=c) 820 (=d)
1j1 400 (=e) 980 (=f)

Total 2000 2000

@ Test for association (correlatlon) between genotype and presence/
absence of disease using standard y? test for independence on 2 df

o Defined as 37, ¢ % where O; and E; are observed and expected
counts (calculated from the row and column totals) respectively

e Generates a p value indicating how significant the association/
correlation appears to be
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Odds ratios Odds ratios

@ Odds of disease are defined as P(diseased)/P(not diseased)

o Odds ratio OR (2|2 : 1|1) repesents the factor by which your odds of
disease must be multiplied, if you have genotype 2|2 as opposed to 1|1
o i.e. the ‘effect’ of genotype 2|2
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Odds ratios Genotype relative risks

@ Odds of disease are defined as P(diseased)/P(not diseased)
o Odds ratio OR(2|2 : 1|1) repesents the factor by which your odds of
disease must be multiplied, if you have genotype 2|2 as opposed to 1|1
e i.e. the ‘effect’ of genotype 2|2

o Similarly, we can define the OR for 1|2 vs 1|1

e As the factor by which your odds of disease must be multiplied, if you
have genotype 1|2 as opposed to 1|1

o i.e. the ‘effect’ of genotype 1|2

@ ORs are closely related (often &) genotype relative risks

e The factor by which your probability of disease must be multiplied, if
you have genotype 1|2 as opposed to 1|1 (say)

@ If your genotype has no effect on your probability (and therefore on
your odds) of disease, then the ORs=1.

e So the association test can be thought of as a test of the null
hypothess that the ORs=1
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Case/control studies

@ Each person can have one of 3 possible genotypes at a diallelic

genetic locus

Genotype  Cases Controls
2]2 500 (=a) 200 (=b)
112 1100 (=c) 820 (=d)
1j1 400 (=e) 980 (=f)
Total 2000 2000

@ Test for association (correlatlon) between genotype and presence/
absence of disease using standard y? test for independence on 2 df

o Defined as 37, ¢ @ where O; and E; are observed and expected
counts (calculated from the row and column totals) respectively

o Generates a p value indicating how significant the association/
correlation appears to be

@ Two odds ratios can be estimated
o OR(2)2:1]1) = £
o OR(12:1J1) =<

Heather Cordell (Newcastle)

GWAS (Part 1)

e Odds of disease are defined as P(diseased)/P(not diseased)

o Odds ratio OR (2|2 : 1|1) repesents the factor by which your odds of
disease must be multiplied, if you have genotype 2|2 as opposed to 1|1

o i.e. the ‘effect’ of genotype 2|2

e Similarly, we can define the OR for 1|2 vs 1|1

o As the factor by which your odds of disease must be multiplied, if you
have genotype 1|2 as opposed to 1|1

o i.e. the ‘effect’ of genotype 1|2

Heather Cordell (Newcastle)

GWAS (Part 1)

o If a disease is reasonably rare, the odds ratio approximates the
genotype relative risk (GRR, RR)

Genotype Penetrance GRR Odds OR
1/1 0.01 1.0 0.01/0.99 =0.0101 1.00
1/2 0.02 2.0 0.02/0.98 = 0.0204 2.02
2/2 0.05 5.0 0.05/0.95=0.0526 5.21

e If your genotype has no effect on your probability (and therefore your

RR) of disease, then both the ORs and the GRRs=1.

Heather Cordell (Newcastle)

GWAS (Part 1)



Dominant/recessive effects Counting alleles

Dominant:
Counts in
Genotype Cases  Controls Total Allele Cases Controls
2‘2 and 1|2 50041100 200-+820 | 70041920 2 2100 (:a) 1220 (:b) Allelic OR = ad/bc
11 400 980 1380 1 1900 (=c) 2780 (=d)
Total 2000 2000 4000 Total 4000 4000
Recessive:
o x? test statistic on 1 df = >0 — E,-)Z/E,- where O; and E; are the
Genotype Cases  Controls Total observed and expected values in cell i.
2|2 500 200 700 o Assumes HWE under null and multiplicative allelic effects under
12 and 1]1 | 1100+400 8204980 | 1920+1380 alternative: considers chromosomes as independent units
Total 2000 2000 4000 . .
o Better approach: use counts in previous genotype table to perform a
Cochran-Armitage trend test
@ Can also rearrange table to examine effects of alleles (1 df tests): o Even better approach: use linear or logistic regression

Heather Cordell (Newcastle) GWAS (Part 1) 8/ Heather Cordell (Newcastle) GWAS (Part 1)

Testing for association: quantitative traits Logistic regression

@ Linear regression provides a natural test for quantitative traits

o Testing the null hypothesis that the slope = 0
e Used in case/control studies

o Outcome is affected or unaffected

o Model probability (and thus odds) of disease p as function of variable x

160
|

< | § coding for genotype:
: i )
. H g E Inlfp:ﬁ(ﬁ_ﬂlx =c+ mx
. 8 i
: 5 8 ¢
7 g 8
2 | g e Use observed genotypes in cases and controls to estimate the values of
< 8 regression coefficients By and (1
= e And to test whether 5; =0
a o oo
-
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Logistic regression Testing for association

@ All methods produce a test statistic and a p value at each SNP,
indicating how significant the association/correlation observed
appears to be

e i.e. how likely it was to have occurred by chance
@ Main advantage is you can include more than one predictor in the o The threshold to declare ‘genome-wide significance’ is usually around

regression equation e.g. p=5x10"8
e To account for multiple testing of many SNPs across the genome

o Standard method used in standard epidemiological studies e.g. of risk
factors such as smoking in lung cancer

p

|
N

b Bo + B1x1 + Baxa + B3x3

where x1, x2, x3 code for
e genotypes at 3 loci
e measured environmental covariates (e.g. age, sex, smoking etc),
e genetic principal component scores (to adjust for population
substructure),
e interactions between loci etc. etc.

Heather Cordell (Newcastle) GWAS (Part 1) 12 / 40 Heather Cordell (Newcastle) GWAS (Part 1) 13 / 40



Testing for association Manhattan Plots

@ All methods produce a test statistic and a p value at each SNP,
indicating how significant the association/correlation observed "
appears to be

e i.e. how likely it was to have occurred by chance -

e The threshold to declare ‘genome-wide significance’ is usually around s
p=5x10"8

e To account for multiple testing of many SNPs across the genome

~log1o(p)

@ m®me ¢ omm o

.
B
g

@ Alternative (Bayesian) methods produce a Bayes Factor

o Indicates how likely the data is under the alternative hypothesis
(of association between genotype and phenotype)

e Compared to under the null hypothesis (of no association between p—
genotype and phenotype)
o Requires you to make some prior assumptions regarding the likely @ At any location showing ‘significant’ association, we expect to see
strength of associations (i.e. the value of the /3's) several SNPs in the same region showing association/correlation with
o Choosing a sensible threshold (e.g. logio BF> 4) requires you to make phenotype
some prior assumptions regarding what proportion of SNPs in the o Due to the correlation or linkage disequilibrium (LD) between
genome are likely to be associated with the phenotype neighbouring SNPs
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Close-up of hit region Historical Perspective: Complement Factor H in AMD
Protted SNP 11101 600000 RN 0 0 OB 0 AAAR A
5l 13771317 [~ 100
- 4 e First (?) GWAS was by Klein et al. (2005) Science 308:385-389
0.6 ~ 80
o A8 e ° e Typed 116,204 SNPs in 96 cases (with age-related macular
e degeneration, AMD) and 50 controls

~ 40

—logyo(p-value)

e Very small sample size — they were very lucky to find anything!
e Luck was due to the fact the polymorphism has a very large effect
(recessive OR=7.4)

QIN/ND) B)el UoNeUIqUIodSY

20 &

o Kilein et al. followed up on two SNPs passing threshold

&IY-KAR—' *MISTN <HIBCH MFSD6—> NA»EH—» 9#.8_:' < STAT4 MYO1B—> OBFC2A—> (p < 48 X 1077)
=QRGERE Gaorse > INFE1~ a1l o Plus a third SNP that just failed to pass significance threshold, but lay
< ORMDL1 < TMEM194B . . .
. w in same region as first SNP
PMS1—
T T T T
190.5 191 191.5 192

Position on chr2 (Mb)
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Complement Factor H in AMD GWAS

o GWAS really got going in around 2007

o Of the 3 SNPs followed up: o Visscher et al. (2012) AJHG 90:7-24 “Five Years of GWAS Discovery”

e Visscher et al. (2017) AJHG 101:5-22 “10 Years of GWAS Discovery:
Biology, Function and Translation”

o Abdellaoui et al. (2023) AJHG 110:179-194 “15 Years of GWAS Discovery:

o First and third SNP lie in intron of Complement Factor H (CFH) gene Realizing the promise”

o Lies in region previously implicated by family-based linkage studies

o One appeared to be due to genotyping errors: significance disappeared
on filling in some missing genotypes

@ 2007,/2008 saw a slew of high-profile GWAS publications
@ Resequencing of the region identified a polymorphism of plausible o Breast cancer (Easton et al. 2007)
functional effect o Rheumatoid Arthritis (Plenge et al. 2007)

o Type 1 and Type 2 diabetes (Todd et al. 2007; Zeggini et al. 2008)
@ Immunofluorescence experiments in the eyes of AMD patients

supported the involvement of CFH in disease pathogenesis. @ Arguably the most influential was the Wellcome Trust Case Control
Consortium (WTCCC) study of 7 different diseases

o http://www.wtccc.org.uk/
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WTCCC Manhattan plots for 7 diseases

Nature 447: 661-678 (2007) <233 2393% <933 3% <233 ¢g37 33

Considered 2000 cases for each of the following diseases:

o Bipolar disorder, coronary artery disease, Crohn's disease, hypertension,
rheumatoid arthritis, type 1 diabetes, type 2 diabetes

S S
o Compared each disease cohort to common control panel o o .
o 3000 population-based controls g g - 5 -« g z : 1
B : . 5 a g z E =%
o From 1958 birth cohort and National Blood Service g g 7 g ° s z 5 g
@ g ° g °“m = kS z &
oL oL e~ & g or
@ Highly successful s i i 3 E B
- = = 2 .
o WTCCC found 24 separate association signals o i o BB o[ o [k o i
. . .. . . . . i vl vi v -
e Including highly convincing signals in 5 out of the 7 diseases studied 3 b o gl ot
8 ) i . - oL oL oLB . oL oL
o All were replicated in subsequent independent follow-up studies 2 Lt L zt z
6L ] 61 6L 61 6L
oz oz oz oz oz
e Lz Le LS e
cec e aa ad cc
x x x x x
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Lessons from WTCCC (and others) Short break

@ Typically used rather standard statistical /epidemiological methods
(X2 tests, t tests, logistic regression etc.)

@ Success largely due to:
o An appreciation of the importance of large sample size (> 2000 cases,

similar or greater number of controls)

e Stringent quality control procedures for discarding low-quality SNPs
and/or samples

o Stringent significance thresholds (p=5x107%) to account for multiple
testing and/or low prior prob of true effect

e Importance of replication in an independent data set

Heather Cordell (Newcastle) GWAS (Part 1) Heather Cordell (Newcastle) GWAS (Part 1)

Quality Control QC: call rates and heterozygosity

@ Stringent QC checks are required for GWAS data

o Discard samples (people) deemed unreliable H

o Low genotype call rates, excess heterozygosity etc.
o X chromosomal markers useful for checking gender

[m—

e Males should ‘appear’ homozygous at all X markers H "o
o Genome-wide SNP data useful for checking relationships and ethnicity .

o Discard data from SNPs deemed unreliable e
e On basis of genotype call rates, Mendelian misinheritances,
Hardy-Weinberg disequilibrium
o Exclude SNPs with low minor allele frequency (MAF) @ 61 sample exclusions (low call-rate); 23 exclusions (heterozygosity)
@ SNP exclusions also made based on call-rates, MAF and
Hardy-Weinburg equilibrium (HWE)
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QC: ethnicity tests Multivariate Analysis

@ Several related multivariate analysis techniques have been proposed

: e R for detecting population structure in genome-wide association studies
o Principal components analysis (PCA)
w o, e Principal coordinates analysis (PCoA)
] a1 e Multidimensional scaling (MDS)

o Multidimensional scaling (with 210 HapMap individuals) identifies 33
samples with non-Caucasian ancestry

@ MDS or similar multivariate methods can also be used to model more
subtle population differences between samples...

Heather Cordell (Newcastle) GWAS (Part 1) Heather Cordell (Newcastle) GWAS (Part 1)

Multivariate Analysis Multivariate Analysis

@ Several related multivariate analysis techniques have been proposed @ Several related multivariate analysis techniques have been proposed

for detecting population structure in genome-wide association studies for detecting population structure in genome-wide association studies
o Principal components analysis (PCA) o Principal components analysis (PCA)
e Principal coordinates analysis (PCoA) o Principal coordinates analysis (PCoA)
o Multidimensional scaling (MDS) o Multidimensional scaling (MDS)

e If population differences can be detected (and adjusted for) in o If population differences can be detected (and adjusted for) in
association analysis, this offers a way to deal with the problem of association analysis, this offers a way to deal with the problem of
population stratification population stratification

e Population sampled actually consists of several ‘sub-populations’ that e Population sampled actually consists of several ‘sub-populations’ that
do not really intermix do not really intermix

o Can lead to spurious false positives (type 1 errors) in case/control o Can lead to spurious false positives (type 1 errors) in case/control
studies studies

@ These techniques can also be used in quality control (QC) procedures,
to check for (and discard) gross population outliers
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Principal components analysis (PCA) Principal Components Analysis

Getics MITTAT GEegraphy Wit EDTopE @ Price et al. (2006) Nature Genetics 38:904-909; Patterson et al.
(2006) PLoS Genetics 2(12):e190

o Based on popn genetics ideas from Cavalli-Sforza (1978)

o |dea is to form a large matrix M of SNP counts (0,1,2) corresponding
to the genotype at a L loci (=rows) for n individuals (=columns)

811 812 - 8in
821 822 - &n
M= | 83 82 - &n

8L1 812 - 8Ln

J Novembre et al. (2008) Nature 456(7218):98-101, doi:10.1038/nature07331
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Principal Components Analysis Multivariate Analysis

o Estimate covariance matrix ¥ = XX between all pairs of individuals,

@ Subtract row means and normalise by function of row allele frequency with entries v; defined as the covariance (summing over SNPs)
: . between column i and j of X
v/f(1 = 1)) to give matrix X

o Represents average genome-wide identity by descent (IBD) (estimated
from identity by state, IBS)

X111 X12 - Xin
X21 X2 . Xon
X31 X .oX
X = 31 X32 3n
X1 X2 - Xin

@ This matrix will be used as starting point for PCA

e In principal we could start with a different matrix — in particular not all
PCA approaches would normalise by +/f(1 — f;)
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Multivariate Analysis Multivariate Analysis
o Estimate covariance matrix W = X7 X between all pairs of individuals, e Estimate covariance matrix W = XX between all pairs of individuals,
with entries 1;; defined as the covariance (summing over SNPs) with entries 1;; defined as the covariance (summing over SNPs)
between column i and j of X between column i and j of X
e Represents average genome-wide identity by descent (IBD) (estimated o Represents average genome-wide identity by descent (IBD) (estimated
from identity by state, IBS) from identity by state, IBS)
o Compute the eigenvectors V; and eigenvalues A; of matrix W o Compute the eigenvectors V; and eigenvalues \; of matrix W
e Co-ordinate j of the kth eigenvector represents the ancestry of e Co-ordinate j of the kth eigenvector represents the ancestry of
individual j along ‘axis’ k individual j along ‘axis’ k

@ For technical details, see McVean (2009) PLoS Genetics 5;10:e1000686
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Multivariate Analysis Post GWAS QC:  Q-Q Plots (good)

o Estimate covariance matrix W = XX between all pairs of individuals, o . . )
with entries ;; defined as the covariance (summing over SNPs) @ Plot ordered test statistics (y axis) against their expected values under the
between column i and j of X null hypothesis (x axis)

o Represents average genome-wide identity by descent (IBD) (estimated
from identity by state, IBS)
o Compute the eigenvectors v; and eigenvalues \; of matrix W
o Co-ordinate j of the kth eigenvector represents the ancestry of .
individual j along ‘axis’ k % % o

@ For technical details, see McVean (2009) PLoS Genetics 5;10:e1000686 §

e Many genetics packages e.g. (PLINK) will allow you to calculate the
top 10 (or more) PCs

o Different geographic populations can often be well separated by just
the first two or three PCs

o Useful for outlier detection ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
o For more subtle differences, you may need to calculate more PCs | ’ T | ’ Y

@ And include them as covariates in the regression equation

o Post-GWAS QC can determine whether you have included ‘enough’
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Q-Q Plots (bad) Population stratification

e A QQ plot showing constant inflation (straight line with slope > 1)
can indicate population stratification/population substructure

e Simple solution: Genomic Control (Devlin and Roeder 1999)

5 e Use your observed test statistics to estimate the slope (=inflation

- factor A)

o Divide each test statistic by A to get an adjusted (deflated) test
statistic

@ More complicated solution: use PCA/MDS or similar

. ; H . : . ! . : . @ Even more complicated solution: use linear mixed models

ahpontontuendi, 1 apolscliale, )
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Relatedness Expected IBD sharing

@ Assuming no inbreeding, the IBD state probabilities are:

Number of alleles shared IBD

o With genome-wide data, can also infer relationships based on average Relationship 2 1 0
identity by descent (IBD) W = XTX or identity by state (IBS) MZ twins 1 0 0
o Using ‘thinned’ subset of markers with high minor allele frequency Paren‘t—.Ostprmg 0 1 0
(MAF) and in approximate linkage equilibrium Full siblings /4 1/2 174
Half siblings 0 1/2 1/2
o Simple relationships (PO, FS, MZ/duplicates) can identified with only Grandchild-grandparent 0 1/2 1/2
a few hundred markers Uncle/aunt-nephew/niece 0 1/2 1/2
o More complicated relationships require 10,000-50,000 SNPs First cousms_ 0 1/4 3/4
Second cousins 0 1/16 15/16
Double 1st cousins 1/16 6/16 9/16

@ Various software packages, including PLINK, KING and TRUFFLE

o A useful visualisation tool is to plot SE(IBD) vs mean(IBD)
(as estimated across the genome)
o Or kinship coefficient {3P(IBD=2)+1P(IBD=1)} against P(IBD=0)
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Full /half sibs and parent-offspring CHD GWAS results (low QC)

()
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CHD GWAS results (better QC) CHD GWAS results (final QC)

og10(p;
5
1
o
ogl0f
1
L

Chromosome Chromosome
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Genome-wide meta-analysis Genome-wide meta-analysis
o Puts together data (or results) from a number of different studies e Puts together data (or results) from a number of different studies
o Could analyse as one big study e Could analyse as one big study
e But preferable to analyse using meta-analytic techniques e But preferable to analyse using meta-analytic techniques
o At each SNP construct an overall test based on the results o At each SNP construct an overall test based on the results
(log ORs and standard errors) from the individual studies (log ORs and standard errors) from the individual studies

@ Meta-analysis is often made easier by using imputation
o Inferring (probabilistically) the genotypes at SNPs which have not
actually been genotyped
o On the basis of their known correlations with nearby SNPs that have
been genotyped
e Using a reference panel of people (e.g. 1000 Genomes) who have been
genotyped at all SNPs
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Genome-wide meta-analysis

@ Puts together data (or results) from a number of different studies
o Could analyse as one big study
o But preferable to analyse using meta-analytic techniques
e At each SNP construct an overall test based on the results
(log ORs and standard errors) from the individual studies

@ Meta-analysis is often made easier by using imputation
o Inferring (probabilistically) the genotypes at SNPs which have not
actually been genotyped
@ On the basis of their known correlations with nearby SNPs that have
been genotyped
o Using a reference panel of people (e.g. 1000 Genomes) who have been
genotyped at all SNPs
@ Enables meta-analysis of studies that used different genotyping
platforms
e By imputing to generate data at a common set of SNPs
o Ideally while accounting for the imputation uncertainty in the
downstream statistical analysis
e In practice often don't bother - use post-imputation QC to remove
poorly-imputed SNPS

9
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Data Quality Control
NGS and Genotype Array Data

Suzanne M. Leal, Ph.D.
Sergievsky Family Professor of Neurological Sciences
Director of the Center for Statistical Genetics
Columbia University
smi3@Columbia.edu

© 2023 Suzanne M. Leal

DNA Collection

¢ Blood samples

— For unlimited supply of DNA
* Transformed cell lines
— Is expensive
* Whole genome amplification
— Allows for the creation of large amounts of DNA from initial small DNA sample
» Perform WGA on each sample three or more times and use pooled samples
— Can experience lower call rates and higher genotyping error rates
— Not recommend for whole genome sequencing or copy number variant (CNV) analysis
¢ Buccal Swabs
* Small amounts of DNA
* DNA not stable

¢ Saliva (Origene collection kit)

Measurement of DNA Concentrations

¢ Nanodrop

e Picogreen

Effect of Genotyping Error — Same Error Rates for
Cases and Controls

o For family-based association studies - Trios
— Can increase both type I and Il error

* Population based studies
— Increases type Il error only

If genotyping error is not correlated with
trait values type Il errors will be
increased

Effects of Genotyping Error — Different Error
Rates for Cases and Controls
* Cases and controls are sequenced/genotyped
— At different times
— Different institutions

— Or one group, e.g., case or control, is predominately
sequenced/genotyped in the same batch

e Can lead to different genotyping error rates in cases and controls
— In this situation both type | and Il error can be increased

¢ If sequencing/genotyping cases and controls
— Randomize cases and controls so they are spread evenly across batches

If genotyping error is correlated with trait values, it will
also increase type | and Il errors, e.g., individuals with
elevated systolic blood pressure are genotyped in one
batch and those with systolic blood pressure within the
normotensive range in another batch

Genotype SNPs (~20-96) before Exome or Whole
Genome Sequencing

e Genotype markers which can be used as DNA fingerprint
o Allows for Assessment of DNA quality
e Aids in determining the the genetic sex of study subjects

— To aid in identification of potential sample swaps
e Detects cryptic duplicates
e For family data

— Aids in determining close familial relationships

* Non-paternity

* Sample swaps

* Cryptic relationships

Detecting Genotyping Errors

e Duplicate samples genotyped using arrays to detect
inconsistencies

— Can use duplicate samples that are inconsistent to adjust clusters to
improve allele calls

* Will not detect systematic errors
e Usually generated only for genotype array data

— Due to expense, duplicate samples are usually not generated for exome or
whole genome sequencing studies

10




Variant Calling Pipeline -Step 1 Preprocessing

FastQ or uBAM files

!

Map to Reference

!

Mark Duplicates

Burrows-Wheeler Aligner

Picard

Recalibrate Bases
Base quality score recalibration (BQSR}

GATK

Variant Calling Pipeline-Step 2 Variant Discovery

Recommend HaplotypeCaller

Call Variants
UnifiedGenotyper - outdated
gVCF
Merge Optional - Can be used
for large datasets
[o)V/ 0] IR
Joint Calling
VCF-

Flags variant
sites which are
likely to be false

Variant quality score recalibration (VQSR)

positives
8
A Short List of Additional Software to Detect
Variant Calling Pipeline - Step 3 Call Set Refinement Genetic Variation
¢ Exome data copy number variation
CalculateG R Posteri gg'g:;z?;it:gp?n‘;i”os: — CoNIFER (Copy Number Inference From Exome Reads)
alculateGeno erosteriors .
ypP variant MAFs. For families Krumm et al. 2012
uses info on each trio pair = XHMM
e within a family + Fromer et al. 2014
¢ WGS data structural variation
VariantFiltration Flags genotypes with GQ<20 - MetaSV
¢ Mohiyuddin et al. 2015
VCFormmrmmmmneesineeessesssse
| ible de novo events - tumeY
- Flags possi .

VariantAnnotator (trio data) Laver etal. 2014
LV ] =

Functional annotation Not performed by GATK

9 10

Variant Calling

* BAM files are large and take considerable resources
— Storage is expensive
— One 30x whole genome is ~80-90 gigabytes
— A small study of 1,000 samples will consume 80 terabytes of
disk space
¢ The cost of cloud computing to call variants
— (Souilmi et al. 2015)
— $5 per exome
— $50 per genome
* For 1,000 samples

- $5,000 exome
— $50,000 genome

Working with gVCF Files

¢ Instead of obtaining VCF files

e Can obtain gVCF files to perform joint calling and
complete the GATK pipeline

— A whole genome gVCF

* ~1 Gigabyte
- 1/100% the size of a BAM file for one individual

11
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Influences on Sequence Quality

¢ DNA quality

— Age of sample

— Extraction method

— Source of sample

* e.g., blood, skin punch, buccal

¢ Sequencing machines (read length)
Median sequencing depth
Alignment
Variant calling method used

— Single nucleotide variants and insertion/deletions
— Structural variants

NGS Data Quality Control

Extremely important to perform before data analysis

— Poor data quality can increase type | and Il errors

— Due to inclusion of false positive variant sites or incorrect
genotype calls

¢ Protocols for data QC are still in their infancy
— No set protocols for QC

* QCis data specific

— Dependent on read depth

— Batch effects

— Availability of duplicate samples

— etc.

13
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NGS Data Quality — Removal of Genotype Calls
and Samples

e Sequence depth of coverage
— DP_variant
* High DP could be an indication of copy number variants

— Which can introduce false positive variant calls
» Due to down sampling in GATK maximum DP is 250

— DP_genotype
* Concerned if depth is too low or too high
- Low insufficient reads to call a variant site
* Remove genotypes with low read depth, e.g., DP<8

¢ Genotype quality (GQ) score

— Removal of sites with low genotype quality core, e.g., GQ< 20

NGS Data Quality — Removal of Genotype Calls
and Samples
e Sequence depth of coverage

— DP_variant

* High DP could be an indication of copy number variants
— Which can introduce false positive variant calls
» Due to down sampling in GATK maximum DP is 250

— DP_genotype

¢ Concerned if depth is too low or too high
- Low insufficient reads to call a variant site

* Remove genotypes with low read depth, e.g., DP<8
¢ Genotype quality (GQ) score
— Removal genotypes with a low genotype quality core, e.g., GQ< 20

15
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VCF Example

NA00003
1/1:
0/0:41:

Variants with more than 2 Alleles
¢ Genetic analysis tools are usually developed to analyze
variant sites that are diallelic

¢ Some sites may have >2 alleles
The alleles at these sites need to be split

— New loci are made each multi-allelic site each with only 2
alleles

* bcftools

Multiallelic sites can have higher error rates compared
to diallelic sites

17
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NGS Data Quality — Removal of Genotype Calls
and Samples

e Removal of sites with missing data
— e.g., missing > 10% of genotypes

® Removal of “novel” variant sites which only occur in
one batch and the alternative allele is observed
multiple times or the minor allele frequency (MAF) is
high in overall sample

e Removal of sites that deviate from Hardy-Weinberg
Equilibrium (HWE)
— Must be performed by population, e.g., African American

and European American

— Related individuals should be removed from the sample
before testing for deviations from HWE

NGS Data Quality Control

e GATK - Variant Quality Score Recalibration (VQSR)
— Used to determine variant sites of bad quality
 Variant site is a false positive call
e However even after this step
— Concordance of duplicates (when available) and

— and Ti/Tv ratios are often low

¢ Additional QC steps needs to be performed

19
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NGS Data Quality Control

* Values which are used for DP (genotype), GQ, and
missing data cut offs are based upon
— Concordance rates
o If there are duplicate samples are available
— Ti/Tv ratios
¢ By individual
¢ By batch
¢ Entire data set
- Amount of data removed

¢ QC can remove substantial amounts of data which should be
avoided

— e.g., >15% of variant sites

Transition/Transversion (Ti/TV) Ratios

* Transition
* Purine
* Pyrimidine — > Pyrimidine
* Transversion
e Purine —>  Pyrimidine
*  Pyrimidine —> Purine

—> Purine A c

j C—

e
i

Transition
Transversion

21 22
Transition/Transversion (Ti/TV) Ratios Sequence Data QC Overview
¢ Variant and genotype call level
« Ti/Tv Ratios — Evaluation of batch effects

* Whole genome ~2.0
* Exome novel ~2.7
* Exome known ~3.5

A C

» Ti/Tv ratios can be calculated by T«
» Sample or
» Dataset

—_— Transition
— Transversion

* Ti/Tv ratios can be evaluated for subsets of data
* e.g., by batch

¢ Genotype call level — Removal of genotype calls
— Low or high depth of coverage DP< 8
— Low genotype quality score GQ< 20
e Removal of individual samples
— >20% missing data
* After taking the intersect of capture arrays

— Samples without phenotype information

23
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Sequence Data QC Overview

e Variant level — removal of variant sites

— Low call rate
* i.e., missing call rate > 10%
— “Novel” variant sites observed >2 only in a single batch
— Deviation from Hardy-Weinberg-Equilibrium
* Population specific
* Unrelated individuals
— e.g., p<5x10%¢, p<5x10*°

Data Clean — Assessing Sex Chromosomes

e When data is collected on study subjects they are
asked about their gender/sex and not their genetic sex
— Differences in gender/sex and genetic sex can be due to

* Sample swaps
¢ Study subjects who are not cisgender

¢ Some study subjects may have neither a XX nor XY
karyotype
— Turner syndrome X0
— Klinefelter syndrome XXY

25
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Data Clean — Assessing Chromosomal Sex

¢ Study subjects labeled as females with an excess of
homozygous genotypes on the X chromosome can
denote
— That their genetic sex is male
— Turner Syndrome

Data Clean — Assessing Chromosomal Sex

¢ Study subjects labeled as males with an excess of
heterozygous SNPs* on the X chromosome can
denote
— That their genetic sex is female
— Klinefelter syndrome

¢ Note: Individuals who are XY will also be
heterozygous for markers in the pseudoautosomal
regions

e Availability of Y chromosome data

— Can greatly aid in determining genetic sex and if an individual has
Turner or Klinefelter syndrome

*Both genetic males and females have two alleles for each locus on the X
chromosome in the datafile, although males are hemizygous

27
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Data Clean — Assessing Sex Chromosomes

¢ Individuals whose labeled gender/sex does not match
their genetic sex are removed from the analysis

¢ This observation may be due to a sample swap

— When samples are swapped
¢ Phenotype data will be incorrect
— e.g., may be a case when labeled as a control

Checking for Duplicate and Related Individuals

¢ Duplicate samples are sometimes included in a study as
part of quality control to detect inconsistencies
— Will not detect systematic errors

— Usually not included in exome and whole genome sequencing studies
— Intentional duplicates can easily be removed before data quality control

¢ Cryptic duplicates (unintentional)
— DNA sample aliquoted more than once

— Individual ascertained more than once for a study
* e.g. The same individual undergoes the same operation more than once and is

ascertained each time
¢ Individuals who are related to each other may

participate in the same study
— Unknown to the investigator
— Or be part of the study design

29
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Duplicate and Related Individuals Need to be
Identified

e For duplicate samples
— Only one can be retained
e For related individuals
— PCAis performed first with unrelated individuals and related individuals
are then projected onto the PCs of unrelated individuals
— Mixed-models need to be used to analyze the data if related individuals
are included*
* Case-Control
— Generalized linear mixed models (GLMM)
* Quantitative traits
— Linear mixed models (LMM)
— If not type | error rates can be increased

*If only a few related individuals in sample, may wish to remove them or use LMM/GLMM
to control type | errors. Must use LMM/GLMM if related individuals are included in the
dataset. If possible, opt for LMM/GLMM since it can help to control type I error due to
other types of structure in the data, even when no closely related individuals are included
in the analysis.

Identifying Duplicate and Related Individuals

¢ Duplicate and related individuals can be detected

— By examining Identity-by-State (IBS) adjusted for allele

frequencies (p-hat) between all pairs of individuals within a
sample

— Identify-by-descent (IBD) sharing can be estimated

31
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Identity by Descent (IBD)/Identity-by-State (IBS)

o0 o0

12 1/3 1/2 1/3 172 1/3

1/3 1/2 11 1/3 172 1/2
IBD=0 IBD=1 IBD=2
IBS=1 IBS=1 IBS=2

IBD Sharing Estimated Pairwise for all Individuals
in a Samples
e PLINK (Purcell et al. 2007)

Uses sequence (or genotype array) data to check IBD

— Prune markers to remove those in LD
e eg.,r0.1

P-hat is calculated using the “population” allele frequency
e Used to approximates IBD sharing

e IBD is the number of alleles of alleles which are shared between
a pair of individuals

— Can either share 0, 1, and 2 alleles

33
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Identifying Duplicate and Related Individuals

¢ Monozygote twins and duplicate samples will share
100% of their alleles IBD

— IBD=2is 1.0 (can be lower due to genotyping error)

¢ Siblings and child-parent pairs will share 50% of their
alleles IBD

— For parent-child IBD=1is 1.0 (IBD=0is 0 & IBD=2 is 0)

— For sibs IBD=1is ~0.50 (IBD=0 is ~0.25 & IBD=2 is ~0.25)
e For more distantly related individuals the IBD measure will be lower

Identifying Duplicate and Related Individuals

KING [Kinship-based INference for Gwas
(Manichaikul et al. 2010)] can also be used to identify
duplicate and related individuals
— KING is more robust to population substructure and
admixture
* Prune markers for LD (e.g., r2<0.1)
— Provides kinship coefficients
* Duplicate samples
— Kinship coefficient equals 0.5
o Siblings
— Kinship coefficient equals 0.25

35
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White European

African

Asian

UK Biobank Related Individuals > Kinship Coefficient 0.0625

i of Relatives # of relatives # of relatives [# of individuald [ of relatives] # of individuals)
1 86089 1 715 1 723
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Multiple Individuals observed that are distantly
“Related”

If individuals in sample come from different populations
- e.g., individuals from the same population within the sample will have
inflated p-hat values due to incorrect allele frequencies
* Incorrectly appear to be related to each other
“Relatedness” amongst many individuals can also be observed
when batches are combined if they have different error rates

Principal Components Analysis (PCA) /
Multidimensional Scaling (MDS)

Can be used to identify outliers
¢ Population substructure

— Individuals from different ancestry
* e.g., African American samples included in samples of European

- Individuals from the same batch appear to be related Americans
» DNA contamination can cause “relatedness” between multiple * Batch effects
individuals ¢ Use a subset of markers which have been LD pruned
— Only very low levels of LD between marker loci
e eg, r<0.1
— MAF cutoff dependent on sample size
* e.g MAF>0.01
— Can use lower MAF for large sample sizes
39 40
Principal Components Analysis (PCA) /
Multidimensional Scaling (MDS) PCA/MDS Can be Used to Identify Outliers
* Unrelated individuals are used to generate PC plots * Individuals of different ancestry

— Related individuals are projected onto to the PC plots
Plot 15t component vs. 2" component

— Additional PCs should also be plotted
* e.g..PCs 1-10

Mahalanobis distance can be used to determine outliers
- eg,<1

— e.g., African American samples included with European
Americans samples
— Can use samples from HapMap/1000 genomes to help to
determine the ancestry for samples that are outliers
¢ Should not include HapMap/1000 genomes samples when calculating

components to control for population substructure/admixture

e Batch effects

41
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pes

Principal Components Analysis Example

P1vs PC2 exomes N=189,016

pc1

P3vs PC4 exomes N=189,016

P1vs PC2 exomes N=188,488

ethniity_1

ethricity_1
JR—

pea

etmnicty_1

P —

Exclusion of Outliers using Mahalanobis distance (0.997)

Detecting Outliers Using PCA and HapMap
Sample

SCCOR, C58 and HAPMAP MDS

-CHB/J PT

o & CE
i
g .
H i
.
3 "1
i
YR :
- Wellcome Trust
g . 1958 Birth Cohor{
ERR 2 Controls

T
-0.10

T
-0.05

T
000

Component 1
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Detecting Outliers Using PLA and Detecting Genotyping Error — Examining HWE
HapMap Sam p|e e Testing for deviations from HWE not very powerful to
detect genotyping errors
CHBIPT| B ¢ The power to detect deviations from HWE dependent on:
2 — Error rates
— Underlying error model
0 * Random
% EN B * Heterozygous genotypes -> homozygous genotypes
g‘ - * Homozygous genotypes ->Heterozygous genotype
s N ﬁl — Minor allele frequencies (MAF)
1958 ih cohor
Controls
ERE
45 46

Detecting Genotyping Error — Examining HWE

¢ Controls and Cases are evaluated separately

— Deviation found only in cases can be due to an association

ancestry

¢ Test for deviation from HWE only in samples of the same

— Population substructure can introduce deviations from HWE

deviations from HWE
— Can cause deviations from HWE

¢ Do not include related individuals when testing for

Detecting Genotyping Error — Examining HWE
¢ What criterion is used to remove variants due to a
deviation from HWE
— GWAS studies have used 5.0 x 107to0 5.0 x 1015
e Quantitative Traits

— Caution should be used removing markers which deviate from
HWE may be due to an association

* Remove markers with extreme deviations from HWE and Flag markers
with less extreme deviations from HWE

¢ When performing imputation need to be more stringent in
removing variants which deviate from HWE

47
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Sequence Data QC Overview
* Remove variant sites that fail VQSR
¢ Remove genotypes with low DP, GQ scores, etc.
e Remove variant sites with large percent of missing data
¢ Remove samples with missing large percent of missing
data
Evaluate genetic sex of individuals based upon X and Y
chromosomal data
— Sample mix-ups
— Individuals with Turner or Klinefelter Syndrome

Sequence Data QC Overview

o Evaluate samples for cryptically related individuals and
duplicates
— Use variants which have been pruned for LD
e eg,r<0.1
— King or Plink algorithm
¢ Always remove duplicate individuals

— Retaining only one in the sample
e If sample includes related samples use linear mix models
(LMM)/Generalized LMM (GLMM) to control for relatedness
— Best to perform even for data without related individuals
e If only a few related individuals can retain only one individual of a
relative group if not using LMM or GLMM

49
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Sequence Data QC Overview

Detection of sample outliers

— Perform principal components analysis (PCA) or
multidimensional scaling (MDS) to detect outliers

e Use variants pruned for LD
- e.g., r<0.1
¢ Use unrelated individuals and then project related individuals
onto the PCs
¢ Due to population substructure/admixture and batch effects

e Remove effects by
— Additional QC
— Removal of outliers (can be determined by Mahalanobis distance)
and\or
— Inclusion of MDS or PCA components in the association analysis

Sequence Data QC Overview
* Remove/flag variant sites that deviate from HWE in
controls
— HWE should be only be tested in unrelated individuals from the
same population
o Post Analysis - Quantile-Quantile (QQ) plots

— To evaluate uncontrolled batch effects and population
substructure/admixture

51 52
. .. . . QQ Plot of Exome Wide P Values
QQ Plots - Genome Wide Association Diagnosis .
& UK Biobank 200K
¢ Thousands of variants/genes are tested simultaneously
¢ The p-values of neutral markers follow the uniform
distribution R 7
e If there are systematic biases, e.g., population E i
substructure, genotyping errors, there will be a 3 t
deviation from the uniform distribution g ¢
¢ QQ plots offers an intuitive way to visually detect B S S
biases s (o) e
¢ Observed p-values are ordered from largest to Hearing aid users Problem hearing
smallest and their -logio(p) values are plotted on the y ) v baCk_gmund nose
axis and the expected -logio(p) values under the null e e ot e ot
(uniform distribution) on the x axis
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Genomic Inflation Factor to Evaluate Inflation of

Phenotype ‘ Covariate Mean Chi-Square ‘ GIF (A)
the Test Statistic 5P 1.23629 116932
BP Age 1.24119 1.18025
e Genomic Inflation Factor (GIF): ratio of the median of 13 AgeYl 1.00471 1
Ty . . BP Age-EV2 1.0881 1
the test statistics to expected median and is usually . ey s s .
represented as }\ BP Age-EV10 1.09582 1.00402
BPI 1.14931 1.08921
— No inflation of the test statistic A=1 - Age 115139 108113
— |nf|ati0n }\>1 BPI Age-EV1 1.05079 1.01148
BPI Age-EV2 1.0428 1
— Deflation A<1 BEJ Age-EV4 1.04204 1
¢ Can be observed when a study is underpowered BPI Age-EV10 1.05421 1.01724
) ) .. BPII 117283 1.25664
¢ Problematic to examine the mean of the test statistic 8P Age 1.47583 1.26996
— Can be large if many variants are associated SPl AgeEVI 1.09874 115065
BPIl Age-EV2 1.09904 1.16425
¢ Particularly if they have very small p-values BPII Age-EV4 1.09502 1.14609
¢ Should not be used BPII Age-EV10 1.10046 11418
BPIl Sex,Age-EV1 1.05958 1.06424
BBl SexAge:EV4 105817 105323
BPIl Sex,Age-EV10 1.06338 1.05581
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Example Project Description Example Project Description
e 1,667 Samples ¢ Intersection of the three capture arrays used
o Seven cohorts — NimbleGen V2Refseq 2010
* Batch 1and3
e Two sequencing centers - NimbleGen bigexome 2011
— Center1 * Batch2
« Two capture arrays — Agilent Sure Select
— NimbleGen V2Refseq 2010 (CA1): 1082 e Batch 4
» Batchland3 . S . h
— NimbleGen bigexome 2011 (CA2): 234 equencing machine
» Batch2 — lllumina HiSeq
— Center2 e Sequence alignment
* One capture array — BWA
— Agilent SureSelect . . .
» Batcha e Multi-sample variant calling
 Four batches - GATK
¢ No intentional duplicate samples
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MDS First 2 Components Before QC* Mean GP (genotype) by Batch
g e
3 o " ; Eer
g é B2 meandP
= s B8 b3_meanDP
Sttt
7 king_all_variant_MDS1
“After VQSR fep— e ey
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Mean GQ by Batch

]

o

b0, 12 mearco b3 mearco bt mearca

variables

BH

Genotypes Removed by DP (genotype) Cut-off by Batch

40% -

Batch

~+ Batcht
~4- Batch2
~=- Batch3
~+ Batch4

N
9

Genotypes Removed
g 8

3

12345678910 15 20 40
Genotype Depth Cutoff
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Genotypes Removed by DP (genotype) Cut-off by Batch
n Rem -off Batch . - .
Genotypes Removed by GQ Cut-offs by Batc (First removing genotypes with GQ < 20)
20%
40%-
A 35%-
15%
g o 30%1
g Batch 4
3 = Batch 225% Batch
0 10%+ - Batch2 2 = Batch1
8. ~=- Batch3 g 20% ~+- Batch2
% ~+ Batch4 & ~=- Batch3
5 ‘g 15% | - Batchd
S @
5% S
5%
0%
T T T T T T T T T T 0%
0 5 10 15 20 25 30 35 40 45 T po = v P
Genotype Quality Cutoff Genotype Depth Cutoff
63 64
Genotypes Removed by GQ Cut-offs by Batch - - .
(First removing genotypes with a DP<8) Missing Rate Criteria & Sites Removed
15%
Variant sites Variant sites
removed if removed if
missing missing
3 >10% of their >5% of their
3 10% Batch genotypes genotypes
ﬂE) -+ Batch1
T o Batch2 Percent of genotype data removed
g -=- Batch3
z ~+~ Batchd Before QC* 2.5% 3.9%
2 50,
3 o After QC 12.9% 18.3%
0o Variant sites missing >10% of their data were removed
o 5 10 15 20 25 30 3 40 45
Genotype Quality Cutoff
*After VQSR
65 66
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Ti/Tv Ratios during QC Process

Ti/Tv Ratios by Individual Before and After QC

Known Novel All
Before VQSR 295+0.05 1.18+0.29 2.86+0.07
‘ H
Before additional QC 3.12+0.03 2.01+0.32 3.11+0.03 i {
e
Genotype QC DP<8, GQs20 3.18+0.04 2.10x0.32 3.16+0.03 , s ! :
Remove sites missing >10% genotypes 3.39+0.04 242+052 3.39+0.04 TilTv Ratios
Remove batch specific novel sites 22
N=17.835 3.39£0.04 241%053 339004
) . R
Remove sites deviating from HWE p<g5x10 3.41+0.04 239+054 3.40+0.04 I | |
N=4,414 Rawis o — [ ot Ao actir
Al Known “Novel Al Known
Novel
Before QC After QC
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MDS First 2 Components After QC Sequence Data QC
0s
> e Batch effects can sometimes be removed with
0t additional QC
e Extreme outliers should be removed
2o ¢ Additionally, MDS\PCA components can be included in
g ol the analysis to control for population
= .
g . ; substructure\admixture and batch effects
g 4
% — Unless correlated with the outcome (phenotype)
= o — The MDS or PCA components should be recalculated after QC
only including those samples included in the analysis
y © ¢ Batch (dummy coding) may be included as a covariate
in the analysis

-0.05 000 005 010 015 020

king_VLQC_BMR10_MDS1

— Unless correlated with the outcome (phenotype)
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Convenience Controls
¢ Can reduce the cost of a study
¢ Genotype data
¢ Type | error can be increased
— Ascertainment from different population

— Differential genotyping error
¢ Even if performed at the same facility

¢ Proper QC can reduce or remove biases

Convenience Controls—Sequence Data

e Obtain BAM files and recall cases and control together
— Can still have differential errors between cases and controls
— Check variant frequency by variant types in cases and control
* Synonymous variants should have the same frequencies

* Would not expect large differences in numbers of variants between cases and
controls

e For single variants can compare difference in frequencies with
gnomAD but is problematic
— Differences in frequencies can be due to differences in ancestry and/or
sequencing errors
— Cannot adjust for confounders
* e.g., sex, population substructure/admixture
e Don’t perform an aggregate test using frequency information
obtained from databases, e.g., gnomAD, TOPMed Bravo
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Genotype Array Data
Genotype Data QC — Population Based Studies
¢ Initially remove DNA samples from individuals who are missing
>10% or their genotype data
* For variant sites with a minor allele frequency (MAF)>0.05
— Remove variants sites missing >5% of their genotype data
e For variant sites with a MAF<5%
— Remove variant sites missing > 1% of their genotype data
e The genotypes for variant sites with missing data may have
higher genotype error rates

Order of Data Cleaning-Genotype Array Data

Remove samples missing >10% genotype data
Remove SNPs with missing genotype data
— If minor allele frequency >5%
« Remove markers with >5% missing genotypes
— If minor allele frequency <5%
« Remove markers with >1% missing genotypes

Remove samples missing >3% genotype calls

Check genetic sex of individuals based on X-chromosome
markers & Y chromosome marker data (if available)

— Remove individual whose reported gender/sex is inconsistent with
genetic data

* Could be due to a sample mix-up
Check for cryptic duplicates and related individuals

— Used “trimmed data set of markers which are not in LD
* e.g.r2<0.1
— Remove duplicate samples

Order of Data Cleaning-Genotype Array

e Perform PCA or MDS to check for outliers
— Use trimmed data set of markers which are not in LD
« eg,r2<0.1

— First with unrelated individuals and then project related individuals on
the components

— Remove outliers from data
* e.g.,, Mahalanobis distance
e Check for deviations from HWE
— Separately in cases and controls
— Only unrelated individuals
— If more than one ancestry group

* Separately for each ancestry group
— As determined via PCA or MDS

e Examine QQ plots for potential problems with the data
- e.g., not controlling adequately for population admixture
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Complex Diseases (Traits)

Top 10 leading causes of
death in the United States

Genetic and environmental contribution to
complex disorders
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Heritability for Common Traits Allelic Architecture
. R
Human height heritability is ~80% .
50.0
* Strongly associated common
variation explain 21—29%
* All common variation explains 60% of ey
height heritability - ‘ et
Modest ] Rare variants of
small effect
very hard to identify
11 by genetic means
Low
s
0.005 0.05
[Low frequency| [commen]
Allele frequency
T.A Manallo et al. Nature, 2009
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Complex Disease — Common Variant
Associations
e Disease susceptibility is conferred by variants which are
common within populations
— Variants are old and widespread

e These variants have modest phenotypic effect

e This model is supported by many replicated examples
— Age Related Macular Degeneration (Klein et al. 2005)
* Complement factor H (CFH) gene

Studying Complex Traits — Common Variant
Associations

e Hundreds of thousands of Single nucleotide polymorphism
(SNPs) genotyped and analyzed
— Indirect mapping
* Markers usually had a minor allele frequency (MAF) > 0.05
* Usually not pathogenic — tag SNPs
* In linkage disequilibrium with disease susceptibility variant
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Complex Trait — Common Variant Associations

« Although
highly
successful in
identifying
thousands of
complex trait
loci

Usually
pathogenic
susceptibility
variant(s) not
identified

Eaxe,
BERE:

NHGRI GWA catalogue

www.genome.gov/GWAstudies

SEEET wnwiohiac

Complex Disease — Rare Variant Associations

e Complex traits are the result of multiple rare variants

— Although first thought to large effects, there effect sizes are usually small
¢ Although these variants are rare, e.g., MAF<0.005

— Collectively they may be quite common

¢ Direct tests of this hypothesis where first reported >15 years ago
— Dallas Heart Study
* Small sample ~1,200 individuals
— Multi-ancestry
— Used “extreme” sampling

* Plasma low density lipoprotein levels (Cohen et al. 2004)
— NPC1L1

Rationale for Rare Variant Aggregate
Association Tests

e Testing individual variants with low effect sizes and minor allele
frequencies (MAFs)
— Underpowered to detect associations

e Testing variants in aggregate increases MAFs
— Improving the power to detect associations

Gene 1 Gene 2 Gene 3

Caveats - Aggregate Rare Variant Association Tests

e Misclassification of variants can reduce power
— Inclusion of non-causal variants
— Exclusion of causal variants
» Analysis is limited to
— Genes
— Genes within pathways
» Analysis outside of exonic regions is problematic
— Unlikely a sliding window approach will work
+ Size of window unknown and will differ across the genome

— A better understanding of functionality outside the coding regions is
necessary

+ Predicted functional regions, enhancer regions, transcription factors, DNase
| hypersensitivity sites, etc.
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Analysis of Rare Variants

« For biobank sized datasets higher frequency rare variants,
e.g., 0.5% can be analyzed individually

— Using same same methods implemented for common

variants |
SAMPLE SIZE  #MAFO.001 $MAF0.005 MAF0.01 ®MAF0.05
10,000,000 7
500,000 { *
5,000,000 1
Example fpesan R
Example Tosoonz Lt *
a=5x 108 s 000000 {7
. 750,000 7
Disease prevalence 5% 500000 1 .
1-B =0.80 ooz 3. Ttea.,
100,000
75,000 1
*Note: a more stringent significance 500001 L.
criterion may be necessary for genome- 300’ | I I IR ST AP
wide sequence data. Due to a larger 10,000 7
number of effective tests compared to 7500 1 .
. . 5,000 + .
analysis of common variant GWAS 2,500 e,
panels -

T11213 141516 17 18 19 20 2122 23 24 25

Q008 BATIO

A Few Rare Variant Association Tests

Combined Multivariate Collapsing (CMC)
— Liand Leal AJHG 2008
e Burden of Rare Variants (BRV)
— Auer, Wang, Leal Genet Epidemiol 2013
Weighted Sum Statistic (WSS) Fixed Effect
— Madsen and Browning PloS Genet 2009 Tests
e Kernel based adaptive cluster (KBAC)
— Liuand Leal PloS Genet 2010
e Variable Threshold (VT)
— Price etal. AJHG 2010
e Sequence Kernel Association Test (SKAT)
— Wuetal AJHG 2011
e SKAT-0
— Leeetal AJHG 2012

Random Effect
Test

Optimal test

11

12




Types of Aggregate Analyses

e Frequency cut offs used to determine which variants to include in
the analysis

— Rare Variants (e.g., MAF<0.05% frequency)

— Rare and low (MAF=0.05-5%) frequency variants

Maximization approaches

Tests developed to detection associations when variants effects

are bidirectional
— e.g., protective and detrimental

Incorporate weights based upon annotation

— Frequency

« e.g., gnomAD
— Functionality

* CADD c-scores

Methods to Detect Rare Variant Associations

Using Variant Frequency Cut-offs

framework
— Can use various criteria to determine which variants to collapse into

subgroups
* Variant frequency

* Predicted functionality

e Combined multivariate & collapsing (CMC)
— Li & Leal, AJHG 2008
¢ Collapsing scheme which can be used in the regression

13
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cMmC

o Define covariate Xj for individual j as

X;= .
o otherwise
e Compute Fisher exact test for 2x2 table

{1 if rare variants present

Number of cases for
which one or more rar
variants are observed

Number of cases
without a rare
variants

x
I
e

e.g., nonsynonymous
variants freq. £1%

cases

controls

Number of
controls without

Number of controls
for which one or morel
rare variants are
observed

Can also use same coding in a regression framework

a rare variants

— Binary coding 1

o

Rare Variant Sites
Green bars: Major allele is observed in the study subject
Red bars: Minor allele has been observed

cmC

e Example of coding used in regression framework:

if rare variants present

— Gene region with 5 variant sites

otherwise
- Codi
1 1
2 1
3 0
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Methods to Detect Rare Variant Associations
Using Variant Frequency Cut-offs

* Gene-or Region-based Analysis of Variants of Intermediate and
Low frequency (GRANVIL)
— Aggregate number of rare variants used as regressors in a linear
regression model
— Can be extended to case-control studies
* Morris & Zeggini 2010 Genet. Epidemiol
- Test also referred to as MZ

GRANVIL

e Example of coding used in regression framework

— Gene region with 5 variant sites — data available on all sites

Individual 1
|1 | .
1 | —

Individual 2

Individual 3

Individual 1: Coded 2

Individual 2: Coded 3
Individual 3: Coded 1

Coded 2/5 (0.4)

Coded 2/5 (0.4) Note same
coding for heterozygous and
homozygous genotypes

e Missing data for three of the five variant sites

Coded 1/2 (0.5)

(Auer et al. 2013 Genet Epidemiol)
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Methods to Detect Rare Variant Associations
Weighted Approaches

e Group-wise association test for rare variants using the
Weighted Sum Statistic (WSS)

— Variants are weighted inversely by their frequency in controls (rare
variants are up-weighted)

* Madsen & Browning, PLoS Genet 2009
¢ Kernel based adaptive cluster (KBAC)

— Adaptive weighting based on multilocus genotype
* Liu & Leal, PLoS Genet 2010

Methods to Detect Rare Variant Associations
Maximization Approaches

e Variable Threshold (VT) method

— Uses variable allele frequency thresholds and maximizes the test statistic
— Can also incorporate weighting based on functional information
* Price etal. AJHG 2010
e RareCover
— Maximizes the test statistic over all variants with a region using a greedy
heuristic algorithm
* Bhatia et al. 2010 PLoS Computational Biology
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Methods to Detect Associations with Protective
& Detrimental Variants within a Region

e C-alpha
— Detects variants counts in cases and controls that deviate from the
expected binomial distribution

* For qualitative traits only
— Neale et al. 2011 PLoS Genet

e Sequence Kernel Association Test (SKAT)

* Variance components score test performed in a regression framework
— Can also incorporate weighting
* Wuetal. 2011 AJHG

Optimal Test

* SKAT-O

— Maximizes power by adaptively using the data to combine a burden test
and the sequence kernel association tests
* Leeetal 2012 AJHG
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Significance Level for Rare Variant
Association Tests

e For exome data where individual genes are analyzed usually a
Bonferroni correction for the number of genes tested is used
— There is very little to no linkage disequilibrium between genes

¢ Bonferroni correction used
- e.g, p<2.5 x 10 (Correction for testing 20,000 genes)

Determine MAF Cut-offs for Aggregate Rare
Variant Association Tests

e MAF cut-offs are frequently used to determine which variants
to analyze in aggregate rare variant association tests

¢ MAF from controls should not be used
— Increases in type | error rates

e Determine variant frequency cut-offs from databases
— Using population frequencies for those understudy
— gnomAD
* hite://gnomad.broadinstitute.ora/
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http://gnomad.broadinstitute.org/

Problem of Missing Genotypes for Aggregate
Rare Variant Association Tests

Same frequency of missing variant calls in cases and controls

— Decrease in power

More variant calls missing for either cases or controls

— Increase in Type | error

— Decrease in power

Remove variant sites which are missing genotypes, e.g., >10%
Can impute missing genotypes using observed allele frequencies
— For the entire sample

* Not based on case or control status

Analyze imputed data using dosages

Dosages

e Genotypes are no longer assigned 0 (1/1), 1 (1/2) or 2 (2/2)
— Due to uncertainty
e Each genotype is assigned a probability
— Probabilities sumto 1
e For example
— Probability of 0(1/1) genotype is 0.98 and 1 (1/2) genotype is 0.015
e The dosage can be estimated for this example as follows

0x0.98=0
1x0.015= 0.015
2x0.005=0.01

Dosage = 0.025

¢ Instead of using the most likely genotype the dosage is used

25 26
Results Rare Variant Aggregate Methods
) } o |deally should be performed in a regression framework to adjust
. ° for covariates
— Logistic
§ — Linear regression
g
+ ouo .
B o * B o)
s * SloMmasa| o |, -
°1 ¢ s o D .
- ;,' - ’i
N ;o /
1 / B # e Almost all rare variant aggregate methods have been extended
g
5 / - to be implemented within a regression framework
B Eaz:mmm) & EUH‘W, e Some have also been implemented in a linear mixed model
. wenmea| <, v (LMM)/generalized LMM (GLMM)
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Analyzing Quantitative Variants

Most rare variant aggregate analysis methods can be performed
on quantitative traits

If phenotype data includes outliers or deviates from normality

— Can increase type | errors

200

100

04 e
O 05 1 15 2 25 3 35 4 45 5 55 &

Egg 1o Smolt Survival (%)

g § 8

Frequarcy
g

Analyzing Quantitative Variants

¢ For data that deviates from normality
— Quantile-quantile normalization

¢ For data that includes outliers
— Winsorize

e Don’t winsorize and then normalize
¢ Instead of analyzing quantitative trait values
— Residual can be generated

¢ Adjusting for confounders
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Family-based Methods for Rare Variant

o N Linear Mixed Model (LMM) & generalized LMM (GLMM)

Aggregate Association Analysis Analysis of Related & Unrelated Individuals
e e LMM is an extension of the linear model to allow for both
inary Traits

fixed & random effects and also allows for non-
independence of samples
Trios

— Early implementations calculated the kinship matrix ® on the
EpstallllsE basis of known relationships

— Amin et al. (2007) proposed to estimate kinships based on

genome-wide variant data
Nuclear and

Multiplex
Families

[ | * The generalized relationship matrix (GRM) can be estimated for all
Variance-Component Tests indivi 1 i : ;
P! individuals using for example identical-by-descent (IBD) sharing

¢ Extended to binary (case-control) traits - GLMM

Quantitative Traits

31 32

LMM and GLMM:

LMM and GLMM:
Analysis of Related & Unrelated Individuals

Analysis of Related & Unrelated Individuals

Can be applied to analyze families, cryptically related, & unrelated
individuals

- e.g., UK Biobank

* 500K study subjects of which 30.3% are ¢ 3rd degree relatives & 4.5% sib-pairs

To allow for use with biobank sized datasets
REGENIE does not use the GRM

— It uses whole genome regression, i.e., the ridge regression
* In essence, it includes all the SNVs as covariates in the null model

More recent implementation for large scale data using a variety of

— Performed by blocks to avoid having to load the entire genome in memory
methods » Using different effect size differences per block
- BOLT-LMM (Loh et al. 2015) * REGENIE (Mbatchou et al. 2020) * o This large-scale approximation may not control type |
- FastGWA Jiang et al. 2019) * SMMAT (Chen et al. 2019)** error for individuals that are closely related
— SAIGE (Zhao et al. 2015)*
— e.g., when only families are being analyzed
e *Can be used to analyze data where case to control ratio is very c € R v & SMMAT J ¥
— Can use tor example
unbalanced
¢ Which uses the GRM
— e.g., 20 cases for every control

e **Cannot be used for UK Biobank Scale data

33 34
LMM and GLMM: Rare Variant Association Analysis - Confounders
Analysis of Related & Unrelated Individuals
e Control for covariates in the analysis which are potential
confounders
o A few programs which can perform rare variant aggregate - Age
analysis - Sex
- Batch
- REGENIE - Burden test, SKAT, & SKAT-O
— Body Mass Index (BMI)
— SMMAT - Burden, SKAT, & SKAT-O

— Smoking pack years

— rvtests (Zhan 2020) implements BOLT-LMM to perform burden

— Population substructure
association analysis

35 36
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Confounder -Population Substructure and Admixture

Population Substructure and Admixture

e If proportion of cases and controls sampled from each
population is different
— Can occur due to
* Disease frequency is different between populations
e Sloppy sampling
¢ Population substructure\admixture can cause
detection of differences in variant frequencies within a
gene which is due to sampling and not disease status
— False positive findings can be increased
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Example River People

Population Substructure and Admixture

e Currently PCA or MDS are use
to control for population
substructure\admixture

— Controls on the global level
— May not be sufficient
* For admixed populations

* Rare variation
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Rare Variant Aggregate Association Analysis

¢ When analyzing different populations, e.g.,
— Africans
— Europeans
e When analyzing data from different source
— Analyze each group separately
e Meta-analysis can be used to combine the results from
each group

Rare Variant Aggregate Methods

e Best to obtain principal components to include in the
regression model (including LMM and GLMM)
— using variants which are not in LD e.g., r’<0.1 (pruned)
— covering a wide range of the allelic frequency spectrum e.g., >0.1%
— Evaluate how many components need to be included
* Don’tinclude a fix number of components

- e.g.,, 5or 10 components

e Success of PCA\MDS in “1 =002 .
controlling for population
substructure\admixture can be
evaluated through lambda and
examining Quantile-Quantile
(QQ) plots

Osened -log(p)

Expected ~iogun(p)
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Part Il
Example of a Rare Variant Association
Study

Analysis of UK Biobank Exome Data to
Study the Etiology of Late-onset
Hearing Loss

Age-related Hearing Loss (ARHL)
(aka Presbycusis)

e ARHL can impact quality of life and daily functioning
e ARHL is one of the most common adult conditions
— In the USA
o ARHL affects 50% of individuals >75 years of age
o |t is estimated that 30-40 million will be affected with significant

ARHL by 2030
Pure Tone Audiogram O mamex

<8~ =

- 0

: \

: \ 1 oo

. % v

: S am
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Goals of the Study

e Using data from the UK Biobank to detect
associations between self-reported measures of

ARHL and genetic variants
— H-aid self-reported hearing aid use (f.3393: “Do you use a
hearing aid most of the time?”)

difficulty with your hearing?”)

— H-noise self-reported hearing difficulty with background noise
(f.2257: “Do you find it difficult to follow a conversation if there
is background noise e.g., TV, radio, children playing)?

— H-both individuals with both H-diff and H-noise

e With an emphasis of understanding the role that
rare variation plays in ARHL

— Current analysis - exome sequence data

— H-diff self-reported hearing difficulty (f.2247: “Do you have any

UK Biobank

e 500,000 individuals randomly sampled
— Aged 40-69 at time of enrollment
¢ To be followed for at least 20 years
* Predominantly white Europeans

— Also includes South Asians and individuals of African Ancestry and smaller number of
individuals of a few other ancestries

Extensive phenotype data
— Qualitative and quantitative traits
ICD-10 and ICD-9 codes
Self reports
Cognitive test
Brain MRIs
NMR-metabolomics data
* Genetic Data
— Genotype and imputed data
— Exome sequence data
— Whole genome sequence data
* 200K currently available
¢ Remining sample - Quarter 1 2023
— Telomere length data

L"Data showcase can be used to examine phenotypes and sample sizes available
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Genetic Data Analyzed

e Exome data
—~200,000 participants

¢ Imputed variant data (secondary replication
sample for common variants)
—~300,000 participants

¢ Did not have exome data at the time of the study

_wgmm | pVCF Quality Control

L Exome Data
e
) ‘ Threshold Used

Left normalization/ Mutti-allelic splitting

10
genotype depth (DP) b
level 2
O ion " oenote qualty (60) g 155 (sps -
alelc balance (AB) ol

Sample-level
2t Missingness >=0.1

T ?

monomorphic
Variantievel | Varianis removed
Filiration
missingness >=0.1
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: Principal Components Analysis and
Analysis of Exome Sequence Data
for Age-related hearing loss Exclusion of Outliers
. P1vs PC2 exomes N=189,016 P1vs PC2 exomes N=188,488
comedata | phenctype data 2
\ oD / ethnicity 1 o
' I i T
& ]
'Na11,385 non-white individuals Replied "No" to allof l—l RepliedYes' lo either
it =0 =2 CCR T TR (A T o £
N=527 do not pass genoiype amay QC B e P3 vs PC4 exomes N=189,016 P3vs PC4 exomes N=188,488
with I % :
mio [ | | | i
N=188,474 ethnicity_1 ethnicity_1
[ Neopohamenss  ———p, s - Hhnoise 12257 oy gt O B
e il I — .
Nete708 mostofth tine? ‘oanng?’ / g
[»Hmu excluded atter exclusion criteria. 1 ‘children piaying)?
| T e T - o

Exclusion Criteria
Obtained from ICD10, ICD9, & Self Report

e Deafness

e Early-onset hearing impairment

e Otosclerosis

e Meniere's

e Labyrinthitis

¢ Disorders of acoustic nerve

e Bell’s palsy

e History of chronic suppurative and nonsuppurative otitis
media

* Meningitis

¢ Encephalitis, myelitis, and encephalomyelitis

e Etc.

Defining Cases and Controls

¢ Based on answers obtained from a touch screen
e Cases - self-reported hearing difficulty
—£.2247: “Do you have any difficulty with your
hearing?”
e Controls - did not have any self-reported
hearing problems
— H-aid hearing aid use (f.3393)
— H-diff self-reported hearing difficulty (f.2247)
— H-noise self-reported hearing difficulty with
background noise (f.2257)
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Hearing difficulty/problems -Data field 2247

569,977* items of data are available, covering 498,704 participants

Yes [146,020]

No [399,713]

| am completely deaf [144]
Do not know [23,616] :|

Prefer not to answer [598]

0 80 160 240 320 400
(thousands)

*Due to repeat visits

Repeat measures*

¢ Individuals with inconsistent answers removed

Visit 1 Visit 2 Visit 3 Visit 4

Study subject A Probl(?ms No Hearing I No Hearing | No Hearing [RISSUSECA
Hearing Problems Problems Problems Remove
. No Hearing | No Hearing | Problems IO Consistent
Study subject B RN Problems Hearing Hearing (Case)
. No Hearing | No Hearing | No Hearing [| No Hearing Consistent
StUdy SUbJSCt C [Plietd) 21 &ICBICMS (Contr°|)

*Majority of study subjects currently have data from only one visit
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Analysis of Exome Sequence Data
for Age-related hearing loss

ndiiduals i

ncivicusls i

oomedata | phenotype data
Nes02.461

\ oo /

" {2.Did not have a d

-
= o
) e T
'N=11.385 non-white individuals Replied "No" to all of Replied "Yes" to either
= ECa) ettt
v Define. Deiine
N Netmgo01 controls ‘each trait
{N-Sﬂ dotpass gonlype anay QG le——— NeB6.801 NeT2851
o
=
(i .t

Heald-13393

nonutiars Do you have any. IH-both t2247 8 12257

inPCA
N=187,908 “mostof the tme?

=7 590 excluded atr exclusion orfera |
1cd8/10 and setreport

T
sosia|— )

hero s background
h‘ P ’—Lv-s
Nesa38 Nets 502 NesBaT0 Nes5 680

Genetic Data Analyzed

e Exome data
— ~200,000 participants

e Imputed variant data (secondary replication
sample for common variants)
—~300,000 participants

¢ Did not have exome data at the time of the study
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UK Biobank Discovery and Replication Samples

Analysis of white-Europeans
N=416,522

Exome sequence data (Release 2)
N=169.452

Discovery sample || _ _ _
N=128,988

Replication sample
N=40,464

‘Secondary-replication sample
Megasample | = = = = = == = ‘Genotyped/imputed data
N=247,070

Analysis of Exome Data

e Analysis performed using generalized linear mixed
models (GLMM) (REGENIE)

— To control for inclusion of related individuals
* For the UK Biobank data 30.3% of participants are ¢ 3rd degree relatives & 4.5%
sib-pairs
— Genotype array data (~¥800K) were used for the ridge regression

« Data pruned to remove variants with a r>>0.1
— Using exome data for the ridge regression led to an an inflated lambda value
QQ Plot using exome data for ridge regression QQ Plot using genotype data for ridge regression

Oserved -loaunlp)
Obsarved ~logi(p)

Expected ~hgia(p) Expocted -10g.o(p)
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Analysis of Exome Data

e Analysis limited to individuals of white European
Ancestry

e Sex, age, and two PCAs included as covariates

— Age for cases first report of hearing difficulty &
controls age at last visit

— The PCAs where recalculated for only individuals
included in the analysis

¢ Using the pruned genotypes array data (r2<0.1)

Analysis of Exome data - Single Variant

o All variants with four or more alternative
alleles observed in the sample analyzed
— A very low minor allele frequency was used since it

was hypothesized some of the variants may have
large effect sizes
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Analysis of Exome data - Single Variant

¢ Discovery sample
— Second release of 150K exome

¢ Replication sample
— First release of 50K exomes

e Entire exome sample (200K)

e Secondary Replication Sample*
— To replicate findings from the entire exome sample
— Genotype and Imputed data (Haplotype Reference
Consortium Panel)
¢ 300K individuals who were not included in the exome

data
— Imputed variants with an INFO score > 0.3 were analyzed
*Only used for replication of common variants

Significance Levels
¢ Discovery sample
— A genome-wide significance level was used to reject
the null hypothesis of no association
* p<5.0x10°8

¢ Replication sample

— Permutation was used to obtain empirical p-values

¢ Adjusting for the phenotypes and variants brought to
replication
- p<0.05

For the replication it is not necessary to use a genome-wide
significance level of 5 x 10-¢ for single variant tests or 2.5 x 106
for gene-based rare variant aggregate analysis. Significance
level is adjusted for the number of variants/genes tested in the
replication sample

. Bonferroni correction

. Estimate empirical p-values
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Hearing Difficulty - Data Field 2247

Manhattan Plot QQ Plot

“ogu(p)

Opserved

-logwo(p)

Expectat -logip)

1 2 3 4 5 78 9 11

13 15

18 21

Chromosome

Genome-wide significance level 5 x 108 (red line)

Cases N=45,502
Controls N= 96,601

Hudson Plot Discovery and Replication
Hearing Difficulty Data Field 2247

2- Exome Sequence data: N=~200K
(Cases N=45,502 and Controls N= 96,601)
ER
Su i N :

e N i
- m

™ i
TR

Genotype array/imputed sequence data: N= ~300K
2- (Cases N=64,953 and Controls N=141,001) '
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Analysis of the Discovery Sample & Replication
Single Variant Analysis

Discovery sample single-variant associations analysis for age-related hearing loss traits
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Mega analysis single variant analysis with age-related hearing impairment traits
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‘Genome-wide significant variants (p < 510-8) with hearing aid (H-aid), hearing difficulty (H-diff), hearing difficulty with background noise
(H-noise) and the combined hearing trait (H-both) in the analysis of the mega-sample of White-European individuals from the UK Biobank.
The p-values for replicated associations (empirical p-values <0.05 adjusting for variants and traits brought to replication) are shown in
red. *Variant not found present in the replication sample; CHR -chromosome; EA - effect allele, EAF - effect allele frequency, OR — odds
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Analysis of Exome Data
Rare Variant Aggregate Analysis
¢ Genes with at least two variants were analyzed,
e.g., predicated loss of function (pLoF) variants
e Max coding was used

e Two masks were used
— Mask 1 — pLoF variants
— Mask 2 — pLoF and missense variants
e Minor allele frequency cut-off of <0.01 was used
— The frequencies for each variant site were obtained
from gnomAD non-Finnish Europeans

67

* Max
* Sum
* Comphet

Single variant sites

00000000000000 —
00000100010000 —
00201011010100 —

hitps://rgcgithub github io/regeni fion.

max

N = O

REGENIE Rare Variant Aggregate Analysis

* Three different codes can be used

* This term is not correct because the phase is unknown
« Variants may be on the same haplotype

sum  comphet
0 0
2 2
7 2
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Selection of Variants to Include in Rare
Variant Aggregate Association Tests

Annotation File Mask File AAF file

1:55039839:T:C PCSK9 LoF
1:55039842:G:A PCSK9 missense

Mask1 LoF
Mask2 LoF,missense

1:55039839:T:C 1.53e-05
1:55039842:G:A 2.19e-06

1:55039839:T:C PCSK9 CADD30
1:55039842:G:A PCSK9 CADD20

Mask1 CADD score > 30
Mask2 CADD score > 20

+

+ 1:55039839:T:C 1.53e-05
1:55039842:G:A 2.19e-06

REGENIE will use information from the annotation and alternative allele
frequency (AAF) files to build the Masks (variants to be included in the
association testing)

Analysis of Exome Data
Rare Variant Aggregate Analysis

* Exome sample was split

— Second release of 150K exome were used as the discovery sample.
— First release of 50K exome were used as the replication sample

e Entire exome sample (200K) was also analyzed*

e Discovery sample significance level

- p<2.5x10°®
* 0.05/20.000 Bonferroni correction for testing 20,000 genes

e Replication sample significant level

- pg0.05
— Empirical p-values generated
* Permutation used to adjust for the number of phenotypes and genes brought
to replication (pLoF and pLOF & missense)

*No replication sample available for these findings
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Hearing Difficulty - Data Field 2247

pLoF Variants
Genes N=16,821

.

{2 =1038

.

~loguo(p)
N ——
Observed  ~logio(p)

12 34 s

789 u 1315 12 o 2 4 6 s
Chromosome Expected ~logia(p)

pLoF and missense variants

) Genes N=18,010 *

4 =1.035

L —)

12 34 s

789 1 15 w2

Chromosome
Expected -logu(p)

Exome-wide significance level
2.5 x 10 (blue line)

Cases N=45,502
Controls N= 96,601

Rare Variant Aggregate Analysis — Discovery and
Replication Samples

Discovery Sample Rare-variant aggregate association analysis with age-related hearing traits

ot baia e Hnoise Hbot
vaiation Belon)__se ® Bemlon) e P sewmlom) st P sealon) st ®
aHDCE 125036) 021 2esot  oss(1s) 012 S50 OS61s) 01 20007 072 012 30
Bl TECTa o0s423) 016 om0t 0si23) 016 41sa0’
e 33pry  ost 178act
Pocos 10629) 015 1smo0®  06720) 008 0507) 007 108:0% 0520 008 4070
. POOS o721 015 ossus) oo 03414 oos 057 010 228007
e M6 M6 oo 450
Mg osoiis) 008 7300

Genes associated to an exome-wide significance level (p<2.5 x 10%) with hearing aid (H-aid), hearing difficulty (H-diff), hearing
difficulty with background noise (H-noise), and the combined trait (H-both). Using rare-variant aggregate association tests pLoF or
missense + pLoF variants with a MAF<0.01 in gnomAD v2.1.1 were analyzed in the discovery and mega samples of white European
individuals from the UK Biobank- The p-values for replicated associations [empirical p-values <0.05 adjusting for genes (pLoF and
missense & plof] and traits brought to replication] are shown in red
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https://rgcgithub.github.io/regenie/options/

Manhattan Plot Rare Variant Aggregate Analysis —
Discovery Sample

p.LoF & missense variants

p.LoF variants
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Conclusions — Part Il
¢ Replicated some previously reported ARHL genes
— Some which had not been previously replicated
« e.g., BAIAP2L2, CRIP3, KLHDC7B, MAST2, and SLC22A7
¢ |dentified and replicated a new HL gene, PDCD6 which has not been
previously reported

— Inner ear expression in humans and mice supports the involvement of gene in
HL etiology

— PDCDE6 is a cytoplasmic Ca2+ binding protein with an important role in
apoptotic cell death
e Rare-variant aggregate analysis demonstrated the important contribution
of Mendelian HL genes, i.e. MYO6, TECTA, and EYA4 the genetics of ARHL
e Rare variants for ARHL tend to have larger effect sizes than those for
common variants
— Rare variants should play an important role in risk prediction by increasing
accuracy
e For additional information see
— Cornejo-Sanchez et al. (2023) Eur J Hum Genet in press PMID: 36788145
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Why Estimate Sample Sizes and/or Power?

* To avoid wasting time and money
— Does not make sense to perform an inadequately powered study for which it
is unlikely to to correctly reject the null hypothesis due to inadequate sample
size
* Collaborations can aid in increasing sample sizes
— Caveats
» Disease definition may not be the same between studies
» Study subjects may be drawn for different populations
» Processing of genetic material maybe not be consistent
* Almost always necessary for grant proposals
— Can be denied funding if unable to demonstrate planned study has adequate
power
* Realistic disease models are necessary when performing power calculations
e Correctly adjust alpha for multiple testing which will be performed
— e.g., use genome-wide significant level of 5 x 10¢ for GWAS studies

Power and Sample Size Estimation for Case-
Control Data

The correct a must be use for sample size estimation/power
analysis

Type | (a) the probability of rejecting the null hypothesis of no
association when it is true

Due to multiple testing a more stringent value than a=0.05 is
used in order to control the Family Wise Error Rate

Power and Sample Size Estimation for Case-
Control Data

¢ GWAS of common variants where each variant is test separately
— a=5X10 (Bonferroni Correction for testing 1,000,000 variant sites)
— Shown to be a good approximation for the effective number of tests
* Valid even when more than 1,000,000 variant sites tested
— Effective number of tests is dependent of the linkage disequilibrium (LD)
structure
¢ Single variant tests using whole genome sequence data
— Many more rare variants than common variants
* Lower levels of LD between rare variants than between common variants
— The number of effective tests for rare variants is higher than for analysis
limited to common variants
— ais yet to be determined for association analysis of whole genome
sequence data

An Example of Determining Genome-wide
Significance Levels for Common Variants

Using genotypes from the Wellcome Trust Case-Control
Consortium
Dudbridge and Gusnato, Genet Epidemiol 2008
Estimated a genome-wide significance threshold for the UK
European population
By sub-sampling genotypes at increasing densities and using
permutation to estimate the nominal p-value for a 5% family-
wise error
Then extrapolating to infinite density
The genome wide significance threshold estimate ~7.2X108
Estimate is based on LD structure for Europeans

— Not sufficiently stringent for populations of African Ancestry

Power and Sample Size Estimation for Aggregate
Rare Variant Tests

e For gene-based rare variant aggregate methods a Bonferroni
correction for the number of genes/regions tested is used
— e.g., 20,000 genes significance level a=2.5x 106

* Can use a less stringent criteria
— Not all genes have two or more variants
» Divide 0.05 by number of genes tested

* If units other than genes are used
— A more stringent criteria may be necessary
e Forrare variants — very low levels of LD between variants in
separate genes
— Therefore, a Bonferroni correction is not overly stringent

* The number of tests = effective number tests
— This would not be the case for variants in LD

36




Power and Sample Size Estimation for Replication

Studies

e For replication studies can base the significance level (a)

e On the number of genes/variants being brought from the
discovery (stage 1) study

e To replication (stage Il)

For example, if it is hypothesized that 20 genes and 80

independent variants will be brought to stage Il (replication)

— A Bonferroni correct can be made for performing 100 tests

« Ana=5.0x103can be used for a family wise error rate of 0.05

Estimating Power/Sample Sizes For Single
Variant Tests

¢ Can be obtained analytically
¢ Information necessary
— Prevalence
— Risk allele frequency
— Effect size (odds ratio-for case control data)
— Genetic model for the susceptibility variant
* Recessive (y1=1)
* Dominant (y2=y1)
* Additive (y2=2y1-1)
* Multiplicative (VZ:VIZ)

7 8
Estimating Power/Sample Sizes For Individual .
g 'p Armitage Trend Test
Variants
e Usually, information on disease prevalence is known from e Power and Sample size
epidemiological data - Calculated under different models
¢ Arange of risk allele allele frequencies and effect sizes are used « Where y is the relative risk
* Avariety of genetic models can also used = Multiplicative
* Dominant _ Ad:_fvz:v‘z
« Additive »' ‘v";w_l
* Multiplicative — Dominant
» vy
— Recessive
» yi=l
9 10

Gamma is the Relative Risk not the Odd Ratio

Most software for power calculations/sample size estimation use
the relative risk (y) and not the odds ratio

e The relative risk only approximates the odds ratio when disease is

rare (Prevalence ~< 0.1%)

— The relative risk is not appropriate for common traits when a case-control
design is used

Correspondence Between the Odds Ratio and Relative Risk

Dominant Model

1/2* RR=1.5 | 2/2" RR=1.5

0.01 1.51 1.51
0.10 1.59 1.59
0.20 1.71 1.71
Multii licative Model
Disease Prevalence
0.01 1.51 2.28
0.10 1.59 2.61
0.20 1.71 3.25

Marker minor allele and disease allele frequency 0.01

D’ and r’=1

*1/2 genotype — heterozygous (one copy of the alternative allele)
**2/2 genotype - homozygous for the alternative allele
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Armitage Trend Test - Power Calculations

¢ Information need
— Population prevalence
— Genetic Model
— Risk allele frequency
e Tools
— http://ihg.gsf.de/cgi-bin/hw/power2.pl
— Reference Slager and Schaid 2001

Armitage Test for Trend

Sampie $iz¢ approXimauons 10r ATMIAEE'S ST 10T Urena:

Discase prevalence 001

High risk allele frequency 005

Type 1 error (alpha) 000000005
Power (1- beta) 08
Gamma | 2
Gamma 2 2

Cases / (cases + controls) 0s
Cases necessary = 1502
Controls necessary = 1502

Cases and controls necessary = 3004

submit | Reset
Gamma (genotypic relative risk):

Under a multiplicative model, gamma2 = gammalA2; under  additive model, gamma2 =2 * gammal - 1;
under a dominant model, gamma2 = gammal; under a recessive model, gammal = 1.

Adapted from:

Slager SL, Schaid DJ: Case-control studies of genetic markers:
Power and sample size approximations for Armitage's est for trend.
Hum Hered 52, 149-153 (2001).

an
Freidlin B, Zheng G, Li Z, Gastwirth JL:

Trend tests for case-control studies of genetic markers:
Power, sample size and robustness.

Hum Hered 53, 146-152 (2002).

Tim M. Strom
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Genetic Association Study (GAS) Power Calculator

e http://csg.sph.umich.edu/abecasis/cats/gas _power calculator/i

ndex.html
e A one-stage study power calculator
— Which was derived from CaTs
* Which is to perform two-stage genome wide association studies
— Skol et al. 2006

e Cochran Armitage Trend Test

Displays graphs of the results

GAS Power Calculator

15
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Genetic Power Calculator

e http://zzz.bwh.harvard.edu/gpc/

e SPurcell & P Sham

e Uses the methods described in Sham PC et al. (2000) Am J Hum
Genet 66:1616-1630
— VCQTL linkage for sibships
— VCQTL association for sibships

— VCQTL linkage for sibships conditional on the trait
— TDT for discrete traits
- Case-Control for discrete traits
— TDT for quantitative traits
— Case-Control quantitative traits
e Although input is the relative risk
— Displays odds ratios

Genetic Power Calculator

Case - control for discrete traits

High risk allele frequency (A) : 001 | (0 - 1)

Prevalence : 02 | (0.0001 - 0.9999)
Genotype relative risk Aa $15 (21

Genotype relative risk AA 215 (>1)

D-prime s (0 -1)

Marker allele frequency (B) 001 (0-1)

Number of cases + 10000 (0 - 10000000)
Control : case ratio B (>0)

( 1 = equal number of cases and controls)

Unselected controls? (* see below)

User-defined type I error rate : 000000005 (0.00000001 - 0.5)
User-defined power: determine N : 080 (0 - 1)
(1 - type II error rate)

Process  Reset

Created by Shaun Purcell 24.0ct.2008
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http://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/index.html
http://zzz.bwh.harvard.edu/gpc/

Power Association With Errors (PAWE)

http://compgen.rutgers.edu/pawe/
Implements the linear trend test

Four different error models can be used
— See online documentation for complete explanation
Can either perform:
— Power calculations for a fixed sample size
— Sample size calculations for a fixed power
The genotype frequencies can be generated either using a:

— Genetic model free method or
— Genetic model-based method

19 20
Quanto . . -
) ) ) Linkage Disequilibrium (LD)
¢ Provides sample size and power calculations for
* Genetic and environmental main effects « Power will be reduced if causal variant is not in perfect LD (r2=1)
¢ Interactions with the tag SNP
- Genexgene e Can adjust sample size when r2<1 to increase power to the
— Gene x environment
. ) same level as when r2=1
e Sample & power calculations can be carried for:
— Case-control
* Unmatched e Can estimate sample size when r2z1
¢ Matched — N/r=N’
- Casessibling - Valid only for multiplicative model
- Case»pare.nt .(tI‘IOS) — (Pritchard and Przeworski, 2001)
¢ Quantitative i
* Qualitative e Power calculation almost always assume that r2=1
= Independent sample of individuals * For whole genome sequence data this should be the case since
* Quantitative traits ) usually the causal variant would be included in the data
— Assumption sampled from a random population
e Can only be run under windows
— https://pphs.usc.edu/download-quanto/
21 22
Power Analysis for Rare Variant Aggregate Simplistic Analytical Power Calculation for Rare-
Association Tests variant Aggregate Association Analysis
e Assumption
e Many unknown parameters must be modeled P . .
— Allelic architecture within a genetic region — All rare variants are causal and have the same effect size
* Varied across genes and populations . Although usual not be correct
~ Effects of variants within a region — Provides a gestalt of the power for a given samples or sample size
* Fixed or varied effect sizes of causal variants f .
« Bidirectional effect of variants oragiven power
« Proportion of non-causal variants o Use aggregate of allele frequencies
e Power estimated empirically — For example, assume a cumulative allele frequency of 0.025
¢ Simplified assumptions can be made to obtain analytical — Use an exome-wide significant level e.g., 2.5x10
estimates . .
A ) ¢ Provide disease prevalence and penetrance model
— Allvariants have the same effect size . . X
— No non-causal variants within a region that is analyzed in aggregate e Perform calculations in the same manner as was described
for single variants
23 24
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https://urldefense.proofpoint.com/v2/url?u=http-3A__compgen.rutgers.edu_pawe_&d=DwMFAg&c=G2MiLlal7SXE3PeSnG8W6_JBU6FcdVjSsBSbw6gcR0U&r=kQ1dicU9QIx3lqhSii74HsZDNTBu2WQ6MsDpiC2xsMo&m=0dt8Q9U07VjL49DGy7UM-oI_eWM6TAtkjEX_QYuU-DA&s=l_G1Sg6A4Hpfq9fq9FVV3PxqaVYlBsFdG9aE8fOPM58&e=

Empirical Power Calculations

¢ Avariety of methods can be used to generate variant
data to empirically estimate power
¢ Variant data is generated

- Based upon a penetrance model samples of cases and
controls are generated

— Or a quantitative trait is generated based upon the genetic
variance

¢ Multiple replicates are generated and analyzed

— To determine the power

Empirical Power Calculations

e Examples

— 5,000 replicates are generated each with 20,000 cases and
20,000 controls
¢ The power is the proportion of replicates with p-value less than the
specified threshold, e.g., 5x10%
— For rare-variant aggregate tests all autosomal genes are
generated and those genes with more than two rare variants
(e.g., predicted loss of function) are analyzed

¢ The power is the proportion of genes that were tested with p-value
which is below a specified threshold, e.g., 2.5x10®

25 26
Simulation Methods Generating Exome Sequence Data Sets
Forward-time Simulation
Data Haplotype Demographics
Counts
Boyko 105,814* .
Kyrukov | 1,800,000*
Other e
Coalescent Gazave | 1,308,000*
22.2% 57
1KGP/GAW "
361%
Forward-time

11.1%

Note: Not all methods give a realistic distribution of variants & in particular for rare variants

*Selection coefficients used to define “variant type”
~"Missense” (1.0 x 10°- 1.8 x 102

nlice site and fr; Rift” (>1 8 x 102
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SKAT Power Calculator

e RLibrary
* Provides a haplotype matrix

— 10,000 haplotypes over 200kb region
— Simulated using a calibrated coalescent model (cosi)

SEQPower
http://www.bioinformatics.org/spower/

Generation of Phenotype Models

“'"::'f,,:,':: b Caselcontrol data Power analysis
— Mimicking linkage disequilibrium structure of European ancestry oo Froqunces condonsl | o
. & sample size ~
— User can also provide haplotype data oomeiedste [ ocputaton atmbutable ek sancle s Povssansi sza
* Power and sample size calculations for binary and quantitative Linear Rare variant ~———
i Resworgsie . |_awamerar sssociation methods assocaton methods
traits froquency speciru Poworbonohwrerks
. . . . . Quantitative trait data E‘l‘nmrrl power
e User specify proportion of variants that increase or lower risk Linear Caselcontrol status or bt
+ Random sample quantitative trait values SR
* Extrome cuantiatvo s
Wang et al. 2014 Bioinformatics
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http://www.bioinformatics.org/spower/

Generating Variants: Using a European
Demographic Model and Exome Sequence Data

Generation

« Variant data generated on 18,397 genes >1,000
« Variant data simulated using a European 10,000
population demographic model
620

— Gazave et al. 2013 5,633

« Variants generated using exome
sequence data

— 4332 Exomes obtained from European
American

Which method performs better and why?

Does Generating Variant Data Using the European
Population Demographic Model Perform Well?

Distribution of number of variants per gene

B simulated Data
Bl EsP Data

. Simulated variant counts based « Simulated variant counts based on

on the entire simulated population h.aplotype pool down-sampled to ESP
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Simulating Data Using Sequence Data (ESP)

P gold standard
S ESP: from allle requen
@4 ESP: samplo with replacement

Number of variants
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Sample size
Number of Variant Sites Proportion of Variant Sites that are

Singletons, Doubletons and Tripletons

Simulating Data: Using Population
Demographic Models (PDM)

= Singleton
= Doutleton
m— Trpleton

£
- ESP: gold standard
W PDM:from allele frequency
@8 POM: sample with replacement
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S

BV 77777777777777777777777773
KRR

Proportion ofvaants

Q7777777777777
AXAANARARANAARNNSS

B r77777777777227772
ALALLRALIRRRRARRNRRRNSY

B rrr777777777777772
ALLILALILARRNARNARRNRSY

b 777777777777777722774
[SSSSSRSSSRRRRRRRRRAESSY

B 777777777777777777773
RRSSRSSRRSRRSSRRRESSH

3000

T S WA IIIINIIIIIIIY
5 'NNNNNNNANNNNNNNN
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Proportion of Variant Sites that are
Singletons, Doubletons and Tripletons

@

Number of Variant Sites
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Simulation Studies to Evaluate Power for Rare Variant
Association Studies

e [tis unknown which genes are important in disease etiology
— Correct allelic architecture is unknown
e Can get a better understanding of power to detect
associations by generating variants for the entire exome
e Use a variety of disease models
— 0dds ratios
— Proportion of pathogenic variants
e Analyze of all genes
— e.g., those with 2 or more variant sites
* Determine power as the proportion of genes that meet
exome-wide significance (e.g., alpha=2.5x10%)

Power Analysis

e For tests of individual variants

— Power depended on sample size, disease prevalence, minor
allele frequency, genetic model and variant effect size

¢ For rare variants (aggregate association tests)

— Also dependent on the allelic architecture
* Cumulative variant frequency within analyzed region
* Proportion of causal variants
— How much contamination from non-causal variants
* Effect sizes the same the same or different across gene regions
- Effects of variants in the same or different directions
» Protective and detrimental for binary traits

» Increase and decrease quantitative trait values
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Power Analysis Rare Variants
(Aggregate Association Tests)

¢ Power will not only vary between traits greatly
¢ The power to detect an association will also vary
drastically between genes for the same complex trait
— For some causal genes even with hundreds of thousands of
samples power will be low
— While for other causal genes a few thousand samples may be
sufficient

How Large of a Sample Size is Necessary to
Detect Rare Variant Associations?

Generation

* Data generated on 18,397 genes >1,000
* Variant data simulated using a 10,000
European population demographic 620

model 5,633

— Gazave etal. 2013

141

¢ Every missense, nonsense and splice with a MAF< 1% assigned an 0
odds ratio of 1.5
e Sample sizes to detect X number of genes determined for
- a=25x10°
— power=0.8
37 38
Sample Sizes Necessary to Detect an Association
(Case-Control Data)
>
39
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The Ethics and
Regulation of Human
Subjects Research

CONSULTING GROUP

Wayne Patterson, PhD
Senior Consultant

Tuskegee Study of Untreated Syphilis
in the Negro Male (1932-1972)

CONSULTING GROUP

The Ethics of Conducting Research with
Humans: The Belmont Report (1979)

= Beneficence
= maximize benefits, minimize risks

= Justice
= Who should bear the burdens of the |
research?
= Who should benefit from results?

= Respect for Persons

= Autonomy =
= Protect those with diminished autonomy

CONSULTING GROUP

43

The Nuremberg
Code (1947)

Ten Basic Principles, including:
“The voluntary consent of the human subject is absolutely essential...”

“The experiment should be conducted as to avoid all unnecessary
physical and mental suffering and injury..."

“No experiment should be conducted where there is an a priori reason to

believe that death or disabling injury will ocour; except, perhaps, in
those experiments where the experimental physicians also serve as
subjects.”

“During the course of the experiment, the human subject should be at
liberty to bring the experiment to an end if he has reached the physical
or mental state where continuation of the experiment seems to him to
be impossible.”

During the course of the experiment the scientist in charge must be
prepared to terminate the experiment at any stage, if he has probable
cause to believe...that a continuation of the experiment s likely to
result i injury, disability, or death to the experimental subject

CONSULTING GROUP

National Research Act (1974)

Required the creation of the National Commission for
the Protection of Human Subjects of Biomedical and
Behavioral Research.

hirlp

CONSULTING GROUP

The Belmont Report was the basis for
federal requirements of human
research protections

Office for Human Research Protections
* 45 CFR 46 Subpart A (‘Common Rule’)
* Subpart B (Pregnant Women, Fetuses, and
Nonviable/Questionable Viable Neonates),
 Subpart C (Prisoners),
* Subpart D (Minors)

Food & Drug Administration
(jurisdiction: clinical investigations of drugs, devices, biologics)
* 21 CFR 50: Protection of Human Subjects

* 21 CFR 56: Institutional Review Boards r 0
* 21 CFR 312: Investigational Drugs

CONSULTING GROUP

* 21 CFR 812: Investigational Devices




Part | of the definition:
What's a Systematic Investigation?

an activity that involves a prospective plan
which incorporates data collection, either
quantitative and/or qualitative, and data
analysis to answer a question

Does a case study involve a systematic
investigation?

CONSULTING GROUP

13

An activity is not likely to be
generalizable if the intent is:

The evaluation or improvement of a process, practice, or
program at the site where the activity is being conducted

Results only to be applied to populations, or inform practice
within the target population or within the site where the activity
is being conducted

Implementation and evaluation of an evidence-based practice,
process, or program (is it functioning as intended within the site
where the activity is being conducted or with the local target
population

15

CONSULTING GRDUP|

Once you determine if the activity is or is
not human subjects research according to
the Common Rule...

You still need to assess if the activity is human
subjects research according to FDA

CONSIUTING GROIIP

17
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Part Il: What does ‘designed to develop
or contribute to generalizable
knowledge’ mean?

...designed to draw general conclusions:
v'what we know about what is being tested is not
yet firmly established or accepted;
and

v'the activity is not dependent on the unique
characteristics of the target population or system in
which it will be implemented
hirip

CONSULTING GROUP

14

If the activity IS research:
Does the research involve human subjects,
according to the Common Rule?

A living individual about whom an investigator conducting
research:

(i) Obtains information or biospecimens through intervention
or interaction with the individual, and uses, studies, or
analyzes the information or biospecimens; or

(ii) Obtains, uses, studies, analyzes, or generates identifiable
private information or identifiable biospecimens.

hirlp

CONSULTING GROUP
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FDA Decisions

Does the activity evaluate an FDA-regulated test article (i.e.,
drug, biologic, device)?

Does the activity involve Human Subjects?

An individual who is, or becomes, a Participant in research,
either as a recipient of the test article or as a control. A
subject may be either a healthy human or a patient. Also
included in the FDA human subject definition: The use of a
biolo%[cal specimen —even if de-identified-from an individual
used to test an investigational device

Does the activity involve research (clinical investigation)?

Any experiment that involves a test article and one or mor
human subjects... r E

CONSIITING GROIIP
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If the activity IS human
subjects research, next
qguestion: Is it exempt
from the federal
regulations? *

*this does not mean exempt from institutional 0

review! CONSULTING GROUP

19

Exemption #4: Secondary research uses
of identifiable private information or
identifiable biospecimens can be
exempt under this category, if at least
one of the following criteria is met:

nirlp

CONSUITING CROID

21

Exemption 4 (iii)

“The research involves only information collection and analysis
involving the investigator’s use of identifiable health information
when that use is regulated under 45 CFR parts 160 AND 164,
subparts A and E [HIPAA], for the purposes of “health care
operations” or “research” as those terms are defined at 45 CFR
164.501 or “public health activities and purposes” as described
under 45 CFR 164.512(b)”

CONSULTING GROUP

23

45

Focus on: Exemption #4

Secondary research* for which consent is not required

*Secondary research only! (i.e., re-using identifiable information and/or
identifiable biospecimens that were, or will be, are collected for another

reason, e.g., clinical or research)

20

Exemption 4(ii)

Identifiable private information...is recorded by the
investigator in such a manner that the identity of the
human subjects cannot readily be ascertained directly or
through identifiers linked to the subject, the investigator
does not contact the subjects, and the investigator will
not re-identify subjects;

CONSIUTIG runu!

22

What are the ethical standards that should
be considered for all exempt studies?

ided to potential sul

that subjects will be
h

hirp

CONSULTING GROUP

24



It is the Federal Policy for the
Protection of Human Subjects

What is the
Originall Igated in 1991, with
Co rr%mlor; T S e e U U
ule®

Rockefeller’s Federal Wide Assurance
$FWA) certifies compliance with this
ederal policy (for human research
conducted or supported by Common
Rule agencies...)

P

CONSULTING GROUP §

First Question: Is your
activity “human subjects
research” (HSR)?

CONSULTING GROUP

9
Start with the Common Rule
First assess:
Does the activity involve Research?
rp
11

46

v19 federal agencies follow the new
Common Rule, e.g.,

What's so
Common
about the
Common

Rule?

* DHHS, including NIH (45 CFR 46,
Subpart A)*

* DoD (32 CFR 219)

« NSF (45 CFR 690)

« DoEnergy (10 CFR 745)

* Department of VA (38 CFR 16)

* DoEducation (34 CFR 97)

*FDA is within DHHS, but also has its own

regulations
CONSULTING GROUP |

*DoJ has not signed on yet

Specifically:

1. Is it HSR according to the Common Rule?
2. Is it HSR according to FDA?

(could be both!)

hirp

CONSULTING GROUP

10

Common Rule Definition of
Research:

“..a systematic investigation, including
research development, testing and
evaluation, designed to develop or
contribute to generalized knowledge...”

(Both parts of the definition must be met)

hirlp

CONSULTING GROUP
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If the activity IS human
subjects research, but does
not qualify for exemption, it
is HSR that is not exempt,
i.e., itis subject to federal
regulations governing human
research protection...

...including review by a
federally mandated

Institutional Review Board N
(IRB)

CONSULTING GROUP

25

For a non-exempt study to qualify for
Expedited (not full IRB Board)
Review...

...The research must be all of the following:
* no greater than minimal risk

* not involve prisoners (per OHRP guidance)
* not be classified

* not involve identifiable data that would place subjects at risk of
criminal or civil liability or be damaging to the subjects financial
standing, employability, insurability, reputation, or be
stigmatizing. If it could, reasonable protections must be in place
so that risks related to invasion of privacy and breach of
confidentiality are no greater than minimal, and

* Fit into one or more of these categories:

https://www.hhs.gov/ohrp/regulations-and-_ )
policy/guidance/categories-of-research-expedited-review-
procedure- mdex-html

CONSIUTING RO !

27
Whether expedited or full board, a
study must meet federally-defined
criteria in order to be approved
ie.,
“The .111 Criteria”
29

47

Two Types of Non-Exempt Review

1. Expedited Review

2. Full Board Review

hrlp

26

If the nonexempt
research doesn’t qualify
for expedited review, it
must be reviewed at a
convened IRB meeting.

hirjp

CONSULTING GROUP

28

§ 46.111 Criteria for IRB approval of

(a) In order to approve research

research.

covered by this policy the IRB shall
determine that all of the following
requirements are satisfied:

nirlp

CONSULTING GROUP
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https://www.hhs.gov/ohrp/regulations-and-policy/guidance/categories-of-research-expedited-review-procedure-1998/index.html
https://www.ecfr.gov/current/title-45/section-46.111

1. Risks to subjects are minimized:

(i) By using procedures which are consistent with
sound research design and which do not
unnecessarily expose subjects to risk, and

(i)  Whenever appropriate, by using procedures
already being performed on the subjects for
diagnostic or treatment purposes

CONSULTING GROUP

31

3. Selection of Subjects is Equitable
Consider:
* The setting in which the research will be conducted

* Who is included, who is excluded? Does it make
scientific sense? Ethical sense?

* If applicable: Are children in a study involving a test
article that hasn’t first been tested in adults?
Pregnant women before non-pregnant women?

* Costs or compensation that may impact ‘fairness’

* Screening and recruitment?

* What about non-English speakers? D

CONSULTING GROUP

33

5. Informed consent will be
appropriately documented or
appropriately waived in accordance with
§46.117

If not:
Does the research meet one of the

allowable criteria to waive

documentation? ﬂn
0

CONSULTING GROUP

35
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2. Risks to subjects are reasonable in
relation to anticipated benefits, if any, to
subjects, and the importance of the
knowledge that may reasonably be
expected to result

hirlp

CONSULTING GROUP

32

4. Informed consent will be sought from
each prospective subject or the
subject's legally authorized
representative, in accordance with, and
to the extent required by, §46.116

If not:

Are ALL the criteria for waiving informed
consent or for altering/excluding specific
elements of informed consent met?

hirlp

CONSULTING GROUP

34

6. When appropriate, the research plan makes
adequate provision for monitoring the data
collected to ensure the safety of subjects

* What data will be monitored for safety purposes?
When? How?

* Who will be responsible for evaluating safety data?
Is a DSMB needed?

* Stopping Rules?

* Communication plan of findings to investigators
and IRBs (from the IRB of Record or Sponsor)

hirlp

CONSULTING GROUP

36




7.When appropriate, there are
adequate provisions to protect the
privacy of subjects...

Consider:

* Settings where recruitment, consent, and research
procedures and interactions will occur
* Provisions to ensure privacy for each of the above

* Provisions to ensure privacy when contacting or
soliciting information from subjects

CONSULTING GROUP

37

A closer look at data security: minimize the risk
of disclosure or breach of data

* Obtaining the data
* What is the sensitivity of the data? Are all the data points that will be
accessed or gathered for the research necessary to achieve the objectives
of the research?

* Recording the data
* What (if any) identifiers, including codes, will be recorded for the
research?

* Storing the data
* Wh ill h ds, including signed t fi , b
stored? How Will paper records be kept secre and restricied 1o -
authorized project personnel?
Wh il| the electroni h data be studly be stored (University-
prosilge\glJata%gs%ca;)%rrilgarteié% Iirltée REDaCag,SI'IuﬂYe seerng,eetz(:lf;[?‘NersI v
If there a key that links code numbers to identifiers, that list should be
kept separate from the coded data, including copies of signed informed

consent f?{ms Additionally, a(fcess to that list/key must be restricted
authorized research personnel.

CONSIITING CROI
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And (111.b) When some or all of the subjects are likely to be vulnerable to
coercion or undue influence, such as children, prisoners, individuals with
impaired decision-making capacity, or economically or educationally
disadvantaged persons, additional safeguards have been included in the

study to protect the rights and welfare of these subjects.

(set aside issues with children, pregnant women/fetuses, prisoners,
regulations for which are codified in the Common Rule subparts---more
on that in a moment)
* What are some considerations when determining if additional
safeguards are necessary and sufficient?
* Examples:
* For economically disadvantaged...is there payment? What
is the amount? schedule?
* For educationally disadvantaged...is the consent process
particularly simplified? Should there be a witness to the
consent process?

CONSULTING GROUP
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49

...and to protect the confidentiality of
subject data

General:

* How will the data/biospecimens be stored?

* If identifiers will be removed or replaced, is there a
possibility that such information/biospecimens could be re-
identified?

* Will the data/biospecimens be shared/transmitted/
transferred to a third party or otherwise disclosed or
released? How?

* Is there a potential risk of harm to individuals if the
data/biospecimens are lost, stolen, compromised, or
otherwise used in a way contrary to the parameters of the
study?

* Plans for data retention and destruction? n

0

CONSULTING GROUP
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Data security, continued

+ Transporting or transmitting the data

« If any research data will be collected on a mobile device, such as an
electronic tablet, cell [phone, or wireless activity tracker, details are needed
regardin%the hysical security of the device, electronic security, and how
the tranls_ %r of data from device to research storage location will be securely
accomplished.
If any research data will be directly entered/sent by subjects over the
internet or via email, will a University-provided database application (like
REDCap) be used, or is there an encrypted tunnel to the site/application?

* Access to the data

* How will the investigators ensure only approved research personnel have
access to the stored research data? Password-protected files, role-based
security, etc.?

+ Sharing of the data

* Will data be transferred or disclosed tg or fromfthe University? Is ?I %ontract
r data transfer agreement necessary? What¥ any) identifiers will be
included? How will the data be securely transferred or disclosed (University-

approved secure file transfer, etc.)? n

CONSULTING GROUP
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That’s it for the .111 criteria...
but that’s not all!

Pregnant Women?
Subpart B of 45 CFR 46

Prisoners?
Subpart C of 45 CFR 46

Children?
Subpart D of 45 CFR 46

Department of Education (ED)?
Family Educational Rights and Privacy Act (FERRAL(34 CFR 99)
and the Protection of Pupil Rights Amendment (PERA)(34 CFR 98)
See resources provided by ED when developing your research protocol

Investigational Drugs, biologics, devices?
FDA regulations at 21 CFR 50, 21 CFR 56, 21 CFR 312, 21 CFR 812

HIPAA?
45 CFR Part 160 and Subparts A and E of Part 164

CONSULTING GROUP
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http://www2.ed.gov/policy/gen/guid/fpco/index.html
http://familypolicy.ed.gov/ppra?src=fpco
http://www2.ed.gov/about/offices/list/ocfo/humansub.html
http://www.access.gpo.gov/nara/cfr/waisidx_07/45cfr160_07.html
http://www.access.gpo.gov/nara/cfr/waisidx_07/45cfr164_07.html

[
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Genetic association studies

Linkage disequilibrium in genetic
g a g Identify genetic variants associated with complex traits

association studies
e Association does not imply causality

e Disease, quantitative traits, molecular phenotypes

Gao Wang, Ph.D. in order to
Advanced Gene Mapping Course, May 2023 e Understand biological mechanism
The Gertrude H. Sergievsky Center and Department of Neurology o lIdentify potential drug targets

Columbia University Vagelos College of Physicians and Surgeons e Identify individuals with high disease risk

Sources of association signals Sources of association signals: analysis tools

Causal association — meaningful o ]
Causal association — meaningful

e Tested genetic variations influence traits directly
e Fine-mapping, colocalization, Mendelian randomization
Linkage disequilibrium (LD) — useful

) o . i Linkage disequilibrium (LD) — useful
e Tested genetic variations associated with other nearby

variations that influence traits e Meaningful: LD scores regression, polygenic risk scores
e Meaningful or misleading, in different contexts (PRS), transcriptome-wide association studies (TWAS)

Population stratification — misleading e Misleading: fine-mapping, LD pruning / clumping

e Tested genetic variations is unrelated to traits, but is Population stratification — misleading

associated due to sampling differences e Principle component analysis, linear (mixed) models

e eg, minor allele frequency, disease prevalence

Strong correlation

LD in human genome is pervasive Impact of LD on GWAS analysis
G C T (G)C A G A T CC ATTCATTC
SE St A B R e Oligogenic: trait influenced by a few genetic variants
G C T (G)C A G A T CC ATTCATTC
G C T (G C A CC C TG ATTC
Gc T @c A coeo Ta A e Misleading: difficult to identify causal variants
G C T (6 C A CC CCTG ATTC
AC T (G) A A G A T CC ATTCATTC N ') .
AC T @A A GA T CC ATTCATIC o Useful: ‘tag SNPs' in array based GWAS design
AC T (G) A A cCcC C TG ATTC
AC T (G) A A € C C TG ATIC
ACTT (GA A CC C TG ATIC A
AC T (G) A A € C C TG ATIC
GG A ()C T GA T CC ATTCATTC Q)
G G A ()C T G A T CC ATTCATTC
G G A ()C T G ACT cc ATTCATTC 6
G G A()c T G A T CC ATTCATTC (]
GG A ()C( )G ATTC la=|
Tf ‘1 ()ec 'i ‘f c f TLG AT"f [«>]
( —t 2
2 G 941041112 =
z
wn
Q
o

No correlation

Altshuler et al. (2008) 551 6



Impact of LD on GWAS analysis A second thought on genomic inflation

Polygenic: trait influenced by numerous genetic variants Population stratification? Or, polygenic inheritance + LD?

e Misleading: stronger association due to more LD ‘friends’
e Useful: whole-genome prediction with sparse models

A

observed effect 3

e
¢

Observed -log10(p)

0 2 4 6 8 10 12
Expected -log10(p)

Suggested reading: Yang et al (2011) EJHG

LD score regression (LDSC) LD score regression (LDSC)

Separating h§ and population stratification

LD score regression model without population stratification

Population stratification factor

Chi-square GWAS Sample size 2 T
statistic of variant j E [X] ] = NDC + 1 + —gl] - LD score of variant j
5 Narrow sense heritibility M
\ Regression slope
E 2 — 1 JZ . - LD score of variant j
: A more powerful and accurate correction factor for GWAS
Total number of variants L A
summary statistics compared to genomic control approach.
| — Z 7’:-2 LD score: sum of squared Pearson's ® Bulik-Sullivan et al (2015) Nature Genetics — the LDSC regression paper
] - ]k correlation coefficient between SNP j
k#j and other (neighboring) SNPs ® Zhu and Stephens (2017) AoAS — a neat, alternative LDSC regression model

derivation in supplemental material

LDSC application: heritability estimation Variance of height explained in GWAS

Narrow sense heritibility a

e Proportion of phenotypic variation explained by additive
genetic factors

Estimation strategy

310,082 SNPs in GWS loci
371,622 SNPs in GWS loci

e Pedigree design: genetic covariance and IBD sharing

‘SNP-based heritability (I3 SNPs)

e Population design: linear mixed models

Proportion of SNP-based heritability within GWS loci (¥ gys/heys) &

EUR HIS
(1130264 (1,27

SAS
7112 (12229%) (11

Population design, summary statistics Lot e inmbor f s arcs

EUR HIS SAS EAS AFR o o
(n=28645)  (1=4939)  (1=9.257) (1=49.939) (n=15149) 10,588)  (1,180,574)

e LDSC to estimate SNP-based heritability
e Stratified LDSC (S-LDSC) to partition heritability by
functional annotations

Yengo et al. (2022) Nature

1152 12



Statistical fine-mapping in genetic
association studies

Gao Wang, Ph.D.
Advanced Gene Mapping Course, May 2023

The Gertrude H. Sergievsky Center and Department of Neurology
Columbia University Vagelos College of Physicians and Surgeons

Fine-mapping: background and
challenge

Correlated variables in association studies

Due to a phenomenon called linkage disequilibrium (LD)

-

\

N

observed effect 3

cor(x1,

@ Fine-mapping: background and challenge

@ A (naively) simple approach to fine-mapping

© Probabilistic fine-mapping: Bayesian Variable Selection

@ A simple Bayesian variable selection with applications to

fine-mapping

@ Other variable selection problems in genetics

(@)

GWAS

context specificity

=
gon H © ya
o 2 ©
&
ﬁ%}' JLIU whole genome @
phenotypes
variant prioritization tools gene prioritization tools
(b) ©
fine-mapping identifying genes and networks

al

GWAS sign:

‘genomic locus

GWAS variant

&\'}@ il %
Po du =
@j& O eripheral [ Small
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Figure: Broekema et al. (2020) Open Biol.
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Objectives |dentify non-zero effect (“causal”) variables

Simply pick the top association in an LD block? Maybe?

A

Q. .
. . . . . . - . . “
Statistical fine-mapping aids in the identification of causal =
variants, in order to %
=
e interpret association signals (pinpoint to genes) 4
~
e understand biological function of a variant F%
e elucidate genetic architecture of complex and molecular ©

phenotypes
6 7

|dentify non-zero effect (“causal”) variables

Simply pick the top association in an LD block? ... or not! °
A

@ 27

244

18-

of association (-iog,, P

&
L

i
s
L

observed effect

9
Chromosome

Figure: O'Donovan et al. (2014) Nature

250 !

value)

. o é A (naively) simple approach to
. |
; i i g .II_!

~logso(p-
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Figure: UK Biobank height GWAS,
http://nealelab.is/uk-biobank

fine-mapping
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“One causal SNP" assumption “One causal SNP" assumption

case control
Al | A2 | A1 | A2 p-valie
SNP 1| 1200 | 800 | 1000 | 1000 | 2.1 x 10—10
SNP 2| 1191 | 809 | 1000 | 1000| 1.3 x 109

Effect variable (red) correlated with non-effect variable (green)

case control
Al A2 Al A2
SNP 1| 1200 | 800 | 1000 | 1000| 2.1 x 10—1°

AT YaYe —9
SNP 2| 1191 | 809 | 1000 | 1000 | 1.3 x 10 LR; = 6.15 X 108 LR, = 0.94 x 108

p-value

Compute likelihood ratios (LR) Hy vs Hy,

10 10
“One causal SNP" assumption Per variable contingency table analysis, R code

case control e
-V
S Al | A2 | Al | A2 P - # returns likelihood ratio of H.1 vs H_O
NP 1 [ 1200 | 800 | 1000 | 1000 | 2.1 x 10— _ )
SNP 2 [ 1101 | 200 | 1000 | 1000| 1.3 x 10=° e Jie = dmsen(EL) <
tbl = as.table(matrix(tbl, 2,2,

Compute likelihood ratios (LR) Hj vs Hy, dimnames=1list (status=c('case', 'control'),
genotype=c('minor_allele', 'major_allele'))))
LRy = 6.15 x 108 LR, = 0.94 x 108 test = MASS::loglm(“status+genotype,data=tbl)
return(exp(test$lrt / 2))
Probability of association assuming one effect variable, }
LRy 0.87 LR, 013 1rl = get_2x2_1r(c(1200,800,1000,1000))
LRy + LR, LRy +LR, 1r2 = get_2x2_1r(c(1190,809,1000,1000))
10 1

A “single effect” Bayesian variable selection Bayesian variable selection: PIP

Use Bayes Factor, and compute posterior inclusion

probability Computes Posterior Inclusion Probability (PIP)
b PIP =0.85 A A
. PIP = 0.85
case control 1 -
Al | A2 | Al | A2 LEPveltis 9
1200 [ 800 | 1000 | 1000 | 2.1 x 10~ 10 !
1191 | 809 | 1000 | 1000 | 1.3 x 1079 -
s PIP = 0.15
BF _ 2 *
PIPy = o = 085 ;IP =Ll 2 i
1 2
PIP, = — 22— 015 :
T BF +BF, '

13

1255



Bayesian variable selection: PIP Bayesian variable selection: Credible Sets

‘Clusters’ of signals to account for correlations between

Computes Posterior Inclusion Probability (PIP) variables (eg LD)

A

A

el
2 PIP =0.5
G.) ‘d b'd 5‘
E ‘Q ’”Q:" (n. 0
o
2 o pe
3 o
2 = .
o
o
o
0 200 400 600 800 1000
variable
13 14

Bayesian variable selection: Credible Sets Multiple effects: step-wise search
Conditional association analysis on lead SNP
Azu Before © 1Signal B - (C] 2 Signals
e 95% credible set S: Pr(ef fect variable in S) > 95% g "‘,f,; H L
e e.g. , "Single effect” model: S I A
WENE Fue e, That SENE Fue e, That
Z PIP(]) Z 950/0 . Position (Mb) Position (Mb)
]65 er
where PIP(]-)'S are in descending order. § ‘j; e
e Formal definition: Wang et al. (2020) J. R. Stat. Soc. B 5
LR e . R e Y

Position (Mb) Position (Mb)

Figure: Spain and Barrett (2015) Hum. Mol. Genet.
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A simple frequentist conditional analysis A simple frequentist conditional analysis

Forward selection algorithm

Forward selection algorithm 1. For each SNP fit a simple linear regression model
1. For each SNP fit a simple linear regression model 2. Select the SNP j that has the largest model likelihood
2. Select the SNP j that has the largest model likelihood 3. Form residuals y' := y — XjEj, and repeat

3. Form residuals y' :=y — XjEj, and repeat
A greedy algorithm to choose the “best” SNPs, but is

incapable of capturing multiple SNPs in LD

17
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To quantify uncertainty

Bayesian forward selection algorithm

1. For each SNP j, fit a simple Bayesian linear regression
model to get Bayes Factor BF;

2. Form weight for each SNP, Wwj o BF]-
3. Form residuals y' := y — Y ijjEj, and repeat

To quantify uncertainty

Bayesian forward selection algorithm

1. For each SNP j, fit a simple Bayesian linear regression
model to get Bayes Factor BF;

2. Form weight for each SNP, wj o BFj
3. Form residuals y' :=y — Y ijjIAﬂj, and repeat

What if a “bad decision” is made early on?

A motivating example A motivating example

data available as data(susieR: :N2finemapping)

o
Q& t
100 kb genomic region

o dnf
s " .
o
™~ (e»] _
[ I
o
I

m —

O —

0 200 400 600 800 1000

Probabilistic fine-mapping:
Bayesian Variable Selection
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o
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0O 200 400 600 800 1000
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Detecting multiple effect variables

Intuition: A model involving the two effect variables should
fit the data better than that involving the top variable.
A

observed effect 3

57 20



Bayesian Variable Selection Regression (BVSR) Why BVSR?

Fine-mapping is a particular multiple regression problem:

e Other sparse variable selection regression may not work

Yux1 = anpbpxl + enx1 e designed to minimize prediction errors, e.g. LASSO

e b is sparse: most of its elements are Q's

e Columns of X are very correlated

21 22

Why BVSR? S ——

put u:
covariates’ summary number  annotation? search
statistics? of causal

‘variants®
BIMBAMv1.0 qtand binary No No Fixed No Exhaustive Bayes factor
mvBIMBAM v1.0.0 mqt No Yes 1 No Exhaustive  Bayes factor
SNPTESTv2.5.4-beta3  qt.binary,mqtand  No No. 1 No Exhaustive Bayes factor
multinomial
PIMASS V0.9 qgtand binary No No. Computed No MCMC Bayes factor and PIP
BVSv4.12.1 Binary Yes No Computed  Yes mMcmC Bayes factor and PIP
FM-QTL at No No. Computed  Yes MCMC Bayesfactor and PIP
DAPv1.0.0 qt Yes Yes 1fixedand Yes Exhaustive  Bayes factor and PIP
computed
Fine-mapping Multinomial Yes No Computed No Greedy PIP
Y Other Sparse Varlable Selectlon regress|on may not Work Trinculo Multinomial Yes No Computed  No Greedy Bayes factor and PIP
BayesFM Binary Yes No 20 No MCMC PIP
g 9 0 o 9_~g ABF qtand binary* Yes Yes 1 No Exhaustive Bayes factor
e designed to minimize prediction errors, e.g. LASSO fowasvaz ey Yo o1 es Bt Bayesfactorand PP
CAVIAR/eCAVIAR qgtand binary* No Yes Fixed No Exhaustive  p probability
B . . bl I . . BVS R confidence set and
L] ayesian variable se ection regression PIP
PAINTORv3.0 qt, binary? and mqt No Yes Fixed and Yes Exhaustive  Bayes factor and PIP
. . . computed and MCMC
e can evaluate sign ificance of effect variables CAVIARBF v0.2.1 qtand binary* No Yes Fixed Yes Exhaustive  Bayes factor and PIP
FINEMAP v1.1 qtand binary® No Yes Fixed No Shotgun  Bayesfactorand PIP
e can quantify uncertainty in variables selected e
JAMinR2BCLIMSv0.1 ~ qtand binary* No Yes Fixedand  No Exhaustive  Bayes factor and PIP
computed and

Figure: Schaid et al. (2018) Nat. Rev. Genet.
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BVSR model BVSR results

Assess combinations of variables

SNPs Probability
0.25
0.25
0.25

0.25

y=Xb+e

e ~ N(0,0°I,)
7j ~ Bernoulli(7r)
byly ~g()
b_yly ~do

model configurations

O O - P
==
O = O RlWw
= O ~ O &
O O O olw

o PIP; = Pr(zj is non-zero)

7: model configurations; 7r: prior inclusion probability. PIP — (0.5,0.5,0.5,0.5,0 )

2458 25



Assessing multi-effects configurations

Assessing multi-effects configurations

L=l

7»>’illl---Hlll < Pr(M,)

L=1

»>ll---EEl < Pr(M)
B/ --Hll <Pr(M;)

26 26

Assessing multi-effects configurations

L=2
»>’llll---Hll <~ Pr(M,)
-- -- < Pr(My)

- -- < Pr(My)
- Bl = Pr(Mjp)

Assessing multi-effects configurations

Assessing multi-effects configurations

L=P

ZZEE- - < Pr(M)
HZZE---EE < Pr(M)

777/Mm---EEl < Pr(M))
7ZM7)--- MM <P:(M;.,)

DU - U0 = Pr(Mp)

26 26

Assessing multi-effects configurations

=2

741 | BN | By
WM --EE = PP

(M
(M
7v7/m---EEl = PIP(M
7ZM7 - Ml = PIP(M

(Mp

DU = PIP

Marginal associations

71 B8 |
HZE - -
%‘_\%"'-- PIP(M 1)
Bl

PIP, = PIP(M,) + PIP(M) + PIP(Mp)

(

(
ZzZm--- Wl PIP(M,)

(

(
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Assessing multi-effects configurations BVSR inference: posterior methods

The 95% (smallest) Credible Set

D o =0.70 BVSR is computationally challenging!
W l---BED o =015 o MCMC: BIMBAM, Guan & Stephens (2011)
E E e Enumeration: CAVIAR, Hormozdiari et al. (2014)
% - siee - -. a3 — 0.02 e Schochastic search: FINEMAP, Benner et al. (2016)
- ' ocC - - gy = 0.10 e Deterministic approximation: DAP-G, Wen et al. (2016)

DU - UM o5 =0.00

Summarizing BVSR results Summarizing BVSR results

»
-

A

observed effect (8

Summarizing BVSR results Summarizing BVSR results
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Summarizing BVSR results Limitation of BVSR inference

DR T 05]osfo5]05]
m m m m Posterior Inclusion e There are 2 signals expected (0.5 + 0.5+ 0.5+ 0.5)

Probability e But which two? Any two?
95% Credible Set (CS) e 95% certainty that all effect variables are captured?
(V]

28 29

Limitation of BVSR inference Quantifying uncertainty in variable selection

e There are 2 signals expected (0.5 + 0.5+ 0.5 + 0.5)
But which two? Any two?

Consider a sparse regression example

p
95% certainty that all effect variables are captured? y=)Y xbj+e e~N(0,0°L,), (1)

. . =1
We need to quantify this better! /

where X1 = X2,X3 — X4, bl 7& 0, b4 75 0, bjé{l,ll} =0.

observed effect 3

29 30

Quantifying uncertainty in variable selection Quantifying uncertainty in variable selection

Consider a sparse regression example

14 We are interested in making the following statement,
y= ijb]- +e e~ N(0,6°I), (1)
j=1

(bl#Oorbz#O) AND (b37£00r b47é0)
where X1 = X2,X3 — X4, b1 75 0, b4 75 0, bj¢{1,4} =0.
1. There are two independent variables with non-zero effect

We are interested in making the following statement, 2. x1 and x; (and x3 and x4) are too similar to distinguish

3. yet they can be prioritized relative to each other

(b1 # 0 or by # 0) AND (b3 # 0 or by # 0).

306 1 30



Quantifying uncertainty in variable selection Quantifying uncertainty in variable selection

b1 0 or by #0, and b3 # 0 or by # 0. b1 A0 or by #£0, and bs £ 0 or by # 0.
True effect size Lasso Bayesian sparse regression SuSiE, 2 CS identified
S . D D 2 D D . D S ® @ ® ®
g _ g 7 - , ° g | g |
(IJ 2‘00 4(;0 6(‘)0 S!I)O 10I00 0 200 400 600 800 1000 (‘) 2(‘)0 4(I)0 6(‘)0 8(‘)0 10‘00 0 200 400 600 800 1000
31 31
The Sum of Single Effects model (SuSiE)
A simple Bayesian variable
selection with applications to y=Xb+e 7 7
. . L X7 =XE+X +X8
fine-mapping b=Y b y; O -
I=1 N

Wang et al. (2020) J. R. Stat. Soc. B

32

The Sum of Single Effects model (SuSiE) A fast Bayesian variable selection algorithm

Iterative Bayesian forward selection algorithm (IBSS)

y=Xb+e 7 [ ] [ ] e For each iteration ¢
) ib X=X- +X7 +X 1. For each SNP j fit y = X;b\" + e get BF\"
- = ! % - - % 2. Form weight for each SNP w](t) & BF](t)

3. Form residuals y' 1=y — Y w](.t)leAJ](.t) and repeat

A variational approximation to posterior under SuSiE
q(by,...,br) = [ [a(br)
I

e by,...,by are treated as independent a posteriori.

e Until converge
Coordinate ascent algorithm; convergence based on

evidence lower bound (ELBO)
e Do not assume g; factorizes over the elements of b;.
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SuSiE model, formal notation IBSS algorithm, formal notation

“single effect”: b;'s Algorithm lterative Bayesian forward selection

y=Xb+e A mean-field approximation Require: data y and variable matrix X.

e ~ N(0, (len) Require: Single Effect Regression: SER(y, X) — (oc,m,g%)

. q(b,...,br) =] (b)) 1: Initialize &y, 7, by for [ =1,..., L.
b= Z b, ! 2: repeat

=i e by,..., by are treated as 3 forlinl,...,L do
by = 1B independent a posteriori. 4 TP Y — Yy Xby
9 ~ Mult(1, 7T) e Do not assume g factorizes 5: (_0&1,;41,0’12) < SER(r, X)
B, ~ N(0, ng) over the elements of b;. 6 by < wajop
ag’ >0 7: until converged

8: return aq, My,..., &L, UL

34 35

SuSiE model yields single-effect CS SuSiE model yields single-effect CS

| |
7. .z _ .

+
) DG 1D

|+|+|

36 36
IBSS algorithm illustration IBSS algorithm illustration
A

Q)

)

o

e ® e | A vang I

5} : . At random (zero) initialization, fit single effect model on y

L N :

AN i) /55 1 D

5 | N 0722

0 i

<= :

o .
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IBSS algorithm illustration IBSS algorithm illustration

3. Compute residual r3 using fitted model, and do it again

2. Compute residual 7, using fitted model, and do it again m m
— =0 | =0

BN BN 5 5

37 37

IBSS algorithm illustration SuSiE CS illustration
4. lterate until converge; compute single-effect credible sets 8 - ® ® @® @
[ =0 .
=l -
S o5 [o05/05]os)
= 5 s
o S 7 Two signal-level 95% CS
El1 E1E1E) .
o
P ————
37 38
Real-world example illustrated Real-world example illustrated
Marginal associations Marginal associations SuSiE results

-log10(p)
-log10(p)

PIP
00 02 0.4 06 08

—t i

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
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Real-world example illustrated Real-world example illustrated

Marginal associations SuSiE results

Marginal associations IBSS after 1 iteration IBSS after 10 iterations

© < S 24
O. h o o _| ®
- © g ® o 5
= S g g o ° a
=4 o g - L O~
=) T < 37 SNPs, minimum LI N N
o o P ¥ 4 4
- absolute pairwise © S
3] correlation is 0.97 ° 3 2 { c—E —
3 Ut
o 200 400 600 800 1000 o 200 400 600 800 1000 o 200 400 600 800 1000
g &0, variable (SNP) variable (SNP) variable (SNP)
0 200 400 600 800 1000 0 200 400 600 800 1000
39 39
The IBSS algorithm iterations breakdown
Iteration 1
0.12
. .
) Other variable selection
0.08
g R . .
5 B problems in genetics
0.04 H-
660 RN 71 11T T N U 1117011 1 Y|
0 250 500 750 1000
variables

40

Similar model, different problems The “changepoint” problem

Data is piecewise constant, e.g. copy number variation

e X is gene expression, ¥ is tissue / cell type

e X is pathway, y is gene-set

e X is functional annotation, y is GWAS effect size g "

e X is “step matrix”, y is spatially-structured variable S 10
0.5
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The “changepoint” problem Example: simulated DNA copy number variation

] o ] SuSiE vs Circular Binary Segmentation oisen et ai. (2004) Biostatistics
Can be modelled as linear combination of step functions

= o =
i Ny 2
o — .
= 5 s § S
L '-_‘. ‘-2-_
C)_ s .| .- »e ',
T
2 x | I |
" 0 100 200 300 400 500

Notice the benefit of quantifying uncertainty in this example

42 43
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Fine-mapping with summary statistics: GWAS deta GWAS summary

trait + genotypes statistics
current methods and practical %? : .
. . 9;, ol b Fine-mappin
considerations B\ L o
Reference. g_enotype LD information
panel size )
e -
@ w o
Gao Wang, Ph.D. v w
Advanced Gene Mapping Course, May 2023 Figure: Benner et al. (2017) Am. J. Hum. Genet.
The Gertrude H. Sergievsky Center and Department of Neurology
Columbia University Vagelos College of Physicians and Surgeons
1 2

Association analysis summary statistics Reasons to work with summary statistics

z-scores from univariate association studies:

Ay o= .3]‘/5]‘/ Advantage over full data (genotypes and phenotypes):
where e Easier to obtain and share with others
B (T —1oT e [A20aT N1 i : i
‘3] — (x], ) xTy 5; = f (x]. x) e Convenient to use: QC and data wrestling -barely needed
e Computationally suitable for large-sample fine-mapping
e O(p?) (summary statistics) < O(np) (full data)
o Sufficient statistics: xTx, xTy, @'jz o when sample size 1 > variants in fine-mapped region p

e “Summary” statistics:
Suggested reading: Pasaniuc and Price (2017) Nat. Rev. Genet.

e z-scores: Z

e Genotypic correlation: R

Regression with Summary Statistics (RSS) Properties of per SNP z scores

e z-score for a SNP depends on effects of both itself and
other correlated SNPs:

A 5_ B 4
2~ N(Rz K) E(ZIR) = }_rijz).
Assumptions: =1

L . : GWAS inal effect biased due to LD!
1. Heritability of any single SNP is small marginal efiects are biased due to
A . ) e z-scores are correlated,
2. R is sample genotypic correlation for the same study

3. Genotypes used to computed z and R are accurate Cor(ij, 2) = Tik Vi k

e Recall the previously discussed connection with LDSC



Fine-mapping via RSS model B and SE(B) based models

The £ model: The b, § model:
“Single effect”: z;'s 2 ~ N(Rz,R) b|s ~ N(SRS 'b,SRS)
5 ~ N(Rz R) Z 21 2 B
L ’ D D I:I D e Both models can be easily written as SuSiE regression
z = Z zZ e Z model: lower MAF variants have larger effects
1=1 |:| = D + I:’ + D e b,8 model: effect sizes are the same regardless of MAF
Z1 = MZ L] [] [] ] o b,8 model takes sample size into consideration

z; ~ N(0,w?)
v ~ Mult(1, )

e No longer have to assume small effect per SNP
e 2 model: CAVIAR, FINEMAP (2016)
e b,5 model: FINEMAP (2018), SuSiE_RSS

Suggested reading:

Zou et al (2022) PLoS Genet.

Summary statistics methods comparison Summary statistics methods comparison
in-sample LD in-sample LD
0.3 ) 0.3
0.25 1 0.25 1
0.2 4 0.2 4
8 | . — 8 | . —
(;) 0.15 1 jl e SUSIE-sUFF (;) 0.15 1 jl e SUSIE-sUFF
Q. Flo™ — SuSiE-RSS Q. o — SuSiE-RSS
014" 1 ——— SuSIiE-RSS, L = true 014" 1 ——- SuSIiE-RSS, L = true
- FINEMAP - FINEMAP
0.05 - ~——- FINEMAP, L = true 0.05 - -~~~ FINEMAP, L = true
—— DAP-G —— DAP-G
0 - CAVIAR 0 - CAVIAR
6 O.(IJS Oi1 0.115 0i2 o.és OI.S 6 O.(IJS Oi1 0.115 0i2 o.és OI.S
FDR FDR
Zou et al. (2022) PLoS Genet 9 Zou et al. (2022) PLoS Genet. 10

Impact of allele flips Impact of allele flips

A marginal associations B susie-rss with misaligned alleles
ry 14 ©
10 ‘l_ 0.8
% 5 V'.‘, : o 06
‘f’ o 2 g4 ®
What is allele flip? oS o 8
. o]
o Different allele encoding between GWAS and LD reference Yl 0 200 0 BY B e
o eg. AA=0 AC:1 CC:2 in GWAS AA=2 AC:]_ C diagnostic plot D after correcting allele encoding
, , : ] ] . : i
CC=0 in LD reference genotype 210 £ 08+
3 4 0.6 -|
. : . - s o
e A challenging problem coupled with strand flip, when 5 ¢ & o0a | %
. . E i Y : .
merging sequence data from different platforms 3° / 02
<) # o] 0 stk

T T T T T T

il ; ; : 0 200 400 600 800 1,000

5 0 5 10 SNP
expected z-score

|
o
|

Zou et al. (2022) PLoS Genet.
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Addressing the allele flip challenge

Impact of mis-matched LD reference: PIP

e susieR::susie_rss() function implements a diagnosis

e bigsnpr: :snp-match() function implements a basic

allele matching for two sets of summary statistics

e Other resources

o Allele flip illustration: https://statgen.us/

lab-wiki/compbio_tutorial/allele_qgc

e A powerful, multi-set data merger (by Yin Huang):

https://cumc.github.io/xqtl-pipeline/

pipeline/misc/summary_stats_merger.html

Impact of mis-matched LD reference: PIP

A CAVIAR, L = true

0.3 1
0.25
0.2
=
)
2 0.15
o SuSIE-suff (in-sample LD)
a in-sample LD
0.1 — n=1000,A=0
=== n=1000, A = 0.001
0.05 — n'=1000, estimated A

n=500,A=0

n=500, A =0.001
0+ - n =500, estimated A
T T

T T T T T
0 005 01 015 02 025 03

FDR

13

power

B DAP-G
0.3
0.25
0.2
0.15
SuSiE-suff (in-sample LD)
H in-sample LD
014:(1y | — n=1000, =0
~=- n=1000, A = 0.001
i — n=1000, estimated A
0,05 n=500,A=0

n=500, . =0.001
n =500, estimated A

04 ,
015 02 025 03
FDR

14

Impact of mis-matched LD reference: PIP

C FINEMAP, L = true D FINEMAP
0.34 0.3
0.254 0.25 1
0.2 0.2
9] o
2 0.15 2 0154
g g
0.14 0.1
------ SuSiE-suff (in-sample LD) e SUSIE-suff (in-sample LD)
0051 mf:ro":)pée}io n=500,A=0 0,05 o inn-—s?rggllaek?o n=500,h=0
—=-n=1000, A =0001  --- n=500, .=0001 ——- n=1000, A = 0.001 - n=500, = 0.001
0+ — n=1000, estimated ..~ n =500, estimated A 0- — n=1000, n=500, estimated A

——
0 005 01 015 02 025
FDR

Impact of mis-matched LD reference: credible sets

T T T T T T T
03 0 005 01 015 02 025 03

FDR

E SuSIiE-RSS, L =true

0.3
0.254
0.2
=
[
2 0154,
o
o
0.1
------ SuSIE-suff (in-sample LD)
] in-sample LD
005 — n=1000,A=0 n=500,A=0
=== n=1000, 1. = 0.001 n=500, A =0.001
0 — n=1000, estimated A~ n =500, estimated A

FDR

14

T T T T T T
0 005 01 015 02 025 03

power

F SuSiE-RSS
0.3
0.25
0.2
01541 o
04"
+wes SUSIE-suff (in-sample LD)
i in-sample
. f::?gg;kzo n=500,A=0
=== n=1000, 1. =0.001 ~- n=500, A =0.001
0 4 — n=1000, estimated >~ n =500, estimated A.
0 005 01 015 02 025 03
FDR
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Impact of mis-matched LD reference: real data

A coverage B power
8
BT, /S0 0 O O ,
.75
b +
0.90 ¢ # |
072 + \é
pa iy {ﬁ
0.69
0.80 + ¢ +
Srerr8y "Srerier
Q\Ww»'ﬁ F~N S & a“f’/e a:“"‘llcc');
FENEFT S FSIEFS
SISy oS iS¢
NEESEEN % RSN %
< R & IN method
o SuSiE-suff
-o SuSIE-RSS
C median number of SNPs D median purity o FINEMAP
9 . . - DAP-G
a 0991 ugn &, 2, ° Jo
7{e00 00 00 oo ®
0.98
6] e o o o o0 00 @
.
5 LA | 0.97
Q © & ¥ Q & ¥ Q 9O & w O X oy
FF SIS R
Feiesss  Feidels
iy 2 < oS i s
NN P L P
<& < & o

A 507 5icawas on 15626
individuals from the FINRISK
study

50

-log10( P-value )
w B
o o

n
=)

08 06 04 02

LD information
(Absolute value of
Pearson correlation)

Benner et al. (2017) Am. J. Hum. Genet.
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Impact of mis-matched LD reference:

log10( Bayes factor )

FINEMAP with LD information
from the original genotype data

real data

Benner et al. (2017) Am. J. Hum. Genet.

16

Fine-mapping in meta-analysis: overview

‘GWAS cohorts

Cohort 1

fHh

Cohort 2
Cohort N

Across constituent cohorts, inter-cohort
heterogeneity could arise from:

« Genuine biological mechanisms
« Population-specific variants
* GxG and GxE interactions
« Phenotyping
« Different diagnosis criteria
« Different proportion of subtypes
« Different measurement protocols
« Genotyping and imputation
« Different genotyping array
« Different imputation reference panel
« Different imputation quality
« Quality control (QC)
« Different thresholds for MAF.
imputation quality, etc.
«GWAS
« Different statistical model and
software

Meta-analysis

Effect models:
* Fixed-effect
* Random-effect

Ancestries:
« Single-ancestry
* Multi-ancestry

!
Typically, both pre- and
post-meta-analysis QC
are applied to summary
statistics

(Data S1).

For each locus

Fine-mapping

Summary statistics-
based methods include:
«ABF
« CAVIAR
+ PAINTOR
« FINEMAP
« SUSIE

2
Standard outputs:
« Posterior inclusion

probability (PIP)
+ 95% credible sets

Additional post-fine-map-
ping QC is sometimes
adopted.

Kanai et al. (2022) Cell Genomics

17

Fine-mapping in meta-analysis: diagnosis

~logio(P)

-
~10g10 Poenmsrs o

Chen et al.
Kanai

Impact of mis-matched LD reference:

1 1000 Genomes Proj
99 individuals

9 (<)

log10( Bayes factor )

FINEMAP with LD information ©
from the Finnish panel of the

ect with

real data

Benner et al. (2017) Am. J. Hum. Genet.

Fine-mapping in meta-analysis: key factors

A
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5
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5 } ] 4 } . H “ t f ’ , } } t ¢ g
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z = = 3 °s © 3 & 3 T & & o Er R
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Genotyping array Imputation panel Genetic ancestry Heterogenous settings

Kanai et al. (2022) Cell Genomics

Fine-mapping in meta-analysis: diagnosis

025 05
rto the lead variant

075

12

Suspicious loci analysis of
meta-analysis summary statistics

Input: summary statistics and LD reference

1. Define loci based on 1 Mb window around lead variants.

2. For each locus, detect outlier variants based on LD
using the DENTIST-S statistics:

3. Identify suspicious loci for fine-mapping that have outier
variants in LD with a lead variant
(Poaurrs < 10+ and > 0.)

Output: st of predicted suspicious loci for ine-mapping

(2021) Nat. Comm. (DENTIST)
et al. (2022) Cell Genomics

1970

.
" : 152099684 )
3 DENTIST-S outlier variants L 2 Ancestry Effective N
T e o AR ® 1,000
40
-logio Poenmists “ 10,000
012347 . 50 @ 50,000
o , > o
301 === o___. -3
ey - * g
. 51
, @ el
20 ; ., = Missingness
. } 2 g O Both exist
3 ® Missing rs396991
s * D
10 N
*
' 15396991
0{ ™ » o
000 025 050 075 1.00 25 00 25 5.0

r’to the lead variant

Kanai et al. (2022) Cell Genomics

Z-score (rs2099684)

16

18

20



Covariate adjustment in LD reference Covariate adjustment in LD reference

Consider two GWAS regression analysis: Ceigeletar G0 GRS egressien anelEie:
1. Evaluate SNP effect in Trait ~ SNP-+Age-+Sex+PCs L. Evaluate SNP effect in Trait ~ SNP-AgetSextPCs
2. Fit model Trait ~ Age+Sex+PCs, compute residual of Z :_It -model Ui~ Age—kSex—zPCs,I compsul;clTDre:Flduall &f
Trait (remove covariates), and evaluate SNP effect in ra(ljt I(rlsm?dve Ic?l\_/ar.lates)s,,\ii; evaluate effect in
model Residual_Trait ~ SNP model Residual-Trait ~
Pyie hese b anelyls cauivelEni? They are not equivalent because covariates should also be

removed from SNP data: Residual_Trait ~ Residual SNP

21

Covariate adjustment in LD reference

Covariates should be removed from genotype before
computing LD reference for fine-mapping

21

Adjusted LD Unadjusted LD Reference LD
° 1 °
a Y [ <
= 0.75
o‘-ut . ~
=2 /
(] "
g 5 |8 ol ] s
4 7
E ¥o gV 0.25 s ./
2 x r2=0.81 L r2=0.29
0 0
0 025 05 075 1 0 025 05 075 1 0 025 05 075 1

individual-level PIP

Quick et al. (2020) biorxiv
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Significant __—lead SNP
W vonssignificant

Integrating GWAS with functional Bl bk
annotations 5850 A S S el DR Y
Genomic position (bp) Genomiciposition (bp)

LD (r?)
Which are the e
causal variants?
Fine-mapping .

A
Gao Wang, Ph.D. . S TN
= v =
. In which cell types ‘ = — bt
Advanced Gene Mapping Course, May 2023 do the variants act? g Y. S
SNP enrichment e 5 A A
The Gertrude H. Sergievsky Center and Department of Neurology 3 —
g —
Columbia University Vagelos College of Physicians and Surgeons . - Genomiciposition (bp)
Which genes are regulated KH=HH
by the variants? ki e HE—
Colocalization Gores
1 2

GWAS variants catelog by functional annotations Functional enrichment in fine-mapped variants

Most GWAS variants are non-coding Signals concentrated in tissue / cell specific functional area

GWAS Catalog

D
0.

o
0.
o

— coding + — Gut (H3K27ac)
TFBS . Non-immune . Non-gut (H3K27ac)
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Figure: Huang et al. (2017) Nature

Lee et al. (2018) Human Genetics

Functional annotation filters in aggregated tests

Aggregated tests are sensitive to (mis-)classification of
Functional annotation in functional variants. Different sets can be evaluated in practice:

aggregated rare variant

a9 g q e Loss of function: start-loss, stop-gain, splice sites
association analysns . . . S
e Damaging missense: start-loss, stop-gain, splice sites,

nonsynonymous with REVEL score > 0.5
e loannidis et al (2016) AJHG

e All: start-loss, stop-gain, splice sites, nonsynonymous



Annotations integrated to aggregated tests Annotations integrated to aggregated tests

a. Prepare data b. Annotate variants c. Define variant-sets 4 Estimate STAeR statitles #0baln SYAA.R-O fomiues
_for each variant-set for all variant-sets
Individual Functional = Weight
Variants Functional Categories w8
3 & o cE e STARSOT ) u
2| Genotypes 5 E o, Ll — £
2 5 3, 3
2 g S romm 5 os
s g Gene weion  Psx 5
s 4—. . !-_ﬁ —— | .
§| (sparse) 3 wctw pay STAAR-Burden STAAR-O
3| Genetic “
2 | el = = 02
3 |Relatedness weem pgy  Powns o
£|  Matrix I Genel Gene2
< oo pax < .
8 2 =
Traits 2 l ® ®
s £ g
4| Pheno g | 2 < ] o
3| types+ ] 2 weitp pay STAAR-ACAT-V 2
2| co i 8 8
5 ey e S .l
g5 Sliding Windows
& =9
Figure: Li et al. (2020) Nature Genetics al

Also see Li et al. (2019) AJHG; Li et al. (2022) Nature Methods
Figure: Li et al. (2020) Nature Genetics

A polygenic model: stratified LD score regression

Chi-square GWAS Sample size

Functional annotation in tmti bl et

Narrow sense heritibility
- - - . 2 °
Common Varlant aSSOC|at|0n E[ij] = 1 —|— ]\Zgl LD score of variant j

a na IySis Total number of variants

§ r LD score: sum of squared Pearson’'s
]k correlation coefficient between SNP j

k;é] and other (neighboring) SNPs

A polygenic model: stratified LD score regression Cell-type enrichment in GWAS traits via S-LDSC

BB Adrenal/Pancreas

Chi-square GWAS Sample size Schizophrenia Sipolar disorder | Height W Cantial Nerueis Syt
statistic of variant j = [ Cardiovascular
' BN Connective/Bone
5 Narrow sense heritibility 2 | 2 2 B9 Gastrointestinal
- 4 £ 2 B Immune/Hematopoietic
) g k1| : M| : 8 : B Kidney
E [X - ] — 1 —|— —Z . - LD score of variant j ; : . Liver
j M ] 1 — ! i [ Skeletal Muscle
2 4 6 & 10 12 18 16 T B 3 @ o 2 4 6 & 1012 =3 Other

. Rheumatoid arthritis Crohn's disease Fasting Glucose BMI
Total number of variants H i

Category

Category

Cotegory

R 2 LD score: sum of squared Pearson's
=2 re & R
k?‘é] and other (neighboring) SNPs Years of education Eversmoked Age at menarche
e Perform LDSC restricted to a functional category ] ] ] I i
e Enrichment: The proportion of SNP-heritability in the o

category divided by the proportion of SNPs
Figure: Finucane et al. (2015) Nature Genetics



Integration approaches A sparse model (a somewhat oligogenic view)

o Integrate directly as range based binary annotations Generalized linear model for SNP effects given K annotations
o Finucane et al (2015) Nature Genetics — Stratified
LDSC paper B = (1- ”j)50 + 7T/’8(®)
e Extension: variant specific continuous annotations 7 = Pr(’)/j _ 1|o¢, d)
o Gazal et al (2017) Nature Genetics

K

] _

o Tissue specific variant level annotations independent of log [1 — } =g+ Z gy
GWAS results J k=1

e Deep Learning methods

a are log fold enrichment of functional genomic features
e Zhou et al (2015) Nature Genetics, Zhou et al (2018)

Nature Genetics ® Suggested reading: Wen (2016) AoAS
9 10
Enrichment of DNase | in GTEx eQTLs
A B

Integrative fine-mapping with
— functional annotations

Emchment Estinats o Bining Varnt ogodds ) Envenman Estmats o Binang Varint (o occs o)

Figure: Wen et al. (2016) AJHG

11

Annotations improves fine-mapping resolution Recall the toy example

@ @
K B Probability of association assuming one effect variable,
z z LR LR

——1  _—08 —2% =013

LRy + LRy LR1 + LRy

Integrating functional information prioritizes the left SNP.

1274 13



Recall the toy example Fine-mapping with functional annotations

Probability of association assuming one effect variable, Recallithe BVSR model

= Xb+
R ey 2 g3 yoavTe
LR; + LRy LR; + LRy e~ N(0,0°1,)
What if we determine a priori that SNP 1 is twice as Vi~ Bernoulli(7r)
important as SNP 27 byly ~ (")
b_ ~ 0
2 x LR, LR, 717 ~ %

= 0.07

-1 _093 — 2
2 X LRy + LRy 2 x LRy + LRy Key idea: 7t, prior inclusion probability, can be modelled by

enrichment of functional annotations

13 14

Genome-wide approach with S-LDSC Functionally informed fine-mapping in UK Biobank

In analyses of 49 UK Biobank traits, PolyFun + SuSiE
identified >32% more fine-mapped variant—trait pairs

A single locus may not have enough power to leverage

annotation enrichment

. ) . i iE alone.
e Genome-wide evaluation of thousands of annotations can compared to using SuSiE alone

increase power of fine—mapping ? 400 - PolyFun + SuSIE (3,025 PIP > 0.95 SNP-trait pairs)
. R 350 - I SuSiE (2,292 PIP > 0.95 SNP-trait pairs)
e Lead to new loci to discover o
% 300 +
e Functional enrichment can be done under the same % 20
£ s00
framework g
5 150 -
e Prioritize genomic features / tissues / cell-types 2 100
. . . 50
e Enrichment coefficient may be transferrable cross N
M E > 0 X O O 5 O 2 3 a o g © g_ S
population §232353cs:8¢c35 8
- TS I
o Weissbrod et al. (2021) medrxiv - s 53
g
Lo Figure: Weissbrod et al. (2020) Nat. Genet. L6

Example: SuSiE with functional informed prior Caution: disease specific enrichment

~ iPSCOCR ~log,(Pvalue)
e 5
A ——— S (x10%)  p=1.2x10°% NPC OCR e
1s2027349 10 05 00 g« At2do NGt OoR ® s
Q_DQ cw P S ur u:'.nn-.ﬂ,'..;."'"". - ..5% P=0.028 iN-Glut OC o
N T 28 — iN-DN OCR log:OR
B ot e i b iR Gy T 28 10 _ ogs
ENEITI 15024Mb ~o . SS iN-GA OCR N
chri ... VPS45  PLEKHO1 ANP32E CA14 32 o8 NPCASoC o o o ° . o
iN-Glut OCR v oo 22 iN-Glut ASoC ® ® o o o [
iN- . o TR 2
N-GA OcR I g0 e
iPS OCR TR AT o g LEEEEEEEEEEEEEEEEEEEEE
NPC OCR ' W 3 P LELLE S E S '\‘79'3‘°6°®°Q° N
o g VRS T T & TS
Codint ' " S 04 © 3 S e <& eb T
Conserve: AA  AG GG Q7 E & s &
Promoter ] ] ] n f§\° ) < OO SF
é\)ﬁ Q@@

Figure: Zhang et al. (2020) Science
Figure: Zhang et al. (2020) Science
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@ Rationale and assumptions
Complex phenotype prediction and

transcrlptome—W|de association studies @ Univariate TWAS methods (credits: Haky Im @ UChicago)

© Multivariate TWAS methods
Gao Wang, Ph.D.

Advanced Gene Mapping Course, May 2023 @ Connections between TWAS and fine-mapping,

The Gertrude H. Sergievsky Center and Department of Neurology colocalization and Mendelian Randomization
Columbia University Vagelos College of Physicians and Surgeons

1 2
Motivation: eQTLs are enriched in GWAS signals
::ausalily: ° Gene Differential Clinical
Expression Expression Phenotypes

Counfounder

SNP —» RNA —> Trait

Rationale and assumptions

Population /7

Pleiotropy: Sample 1

JE— Trait Genotypes
P4

SNP - Counfounder
RNA

Colocalization
TWAS

SMR
2 sample MR

Figure: Heinig (2018) Front. Cardiovasc. Med.

Transcriptome-wide association study (TWAS) TWAS challenge: association vs causality

0 o - . . H A. GE independent of trait
Contributions of multiple genetic variants to complex traits I snp H GE ‘ | TRAIT ‘ Well-controlledt: Supp, Tobe 59

through their impact on molecular phenotypes

B. Trait independent of GE

Reference Panel

I ENE | | gc ‘ | TRA ‘ Well-controlled: Supp. Table 59
————)
Individual TWAS Summary-based TWAS
C. All independent
s | NP | | o ] | THAIE ] Subsumed by (A and B)
f ; s Q@b"%
& &"¢

iEfelis] [ © ol

2 : ot ﬂ . S~ - D. Trait effects GE independently of SNPs
[ [7] i w [ SNP | | GE H TRAIT‘ With cis-GE component, equivalent to (C)
A [x[c[=[<] 9

SRARGIN - S5 Nul

¢

Figure: Gusev et al. (2016) Nat. Genet. Figure: Gusev et al. (2016) Nat. Genet.



TWAS challenge: association vs causality TWAS challenge: technical considerations

Alternative

Ideal TWAS setup

E. Expression mediates
[ SNP H GE H TRNT‘ Desired case .
e Homogenous population

e Tissue and cell-type specific
F. Trait mediates (no cis-GE effects)

l SNP | | GE H TRAIT ‘ Only identified if troit effects gene in cis
1 } and trait represented in expression pane!

e Training data-set is large and complete (N > 200)

But in reality
G. Independent effects at same SNPs i X i
l—‘ Unlikely to detect for multiple SNPs e Cross population TWAS aplications
SNP GE TRAIT Less parsimonious than (E)
e Multiple tissue and cell-types
Figure: Gusev et al. (2016) Nat. Genet. o Auvailability of individual level data vs summary statistics
6 7
TWAS methods overview
PrediXcan DPR
First TWAS, use Use non- UTMOST
elastic net as parametric DPR as Multi-tissue two-
prediction modle prediction model stage analysis
— Univariate TWAS methods
» [ » JEEl » B » : .
W (credits: Haky Im @ UChicago)
TWAS CoMM PMR
Use BSLMM as The first likelihood- Accommodate
prediction model based inference horizontal

pleiotropic effects

Figure: Zhu and Zhou et al. (2020) Quantitative Biology

Univariate TWAS methods overview Simple regression method

Y oS et 1 LETTERS

k=

1
R Common polygenic variation contributes to risk of
schizophrenia and bipolar disorder

The International Schizophrenia Consortium*

Regression

M
Y = Z ﬂ]SWASXk
k=1

\W—nmm

‘W>§}nmm+hwm+&wmz
k

These methods can also be used for Polygenic Risk Score

(PRS) calculations 77 10



Ridge regression / BLUP

Other penalized regression

REPORT
GCTA: A Tool for Genome-wide Complex Trait Analysis

Jian Yang,1* S. Hong Lee,! Michael E. Goddard,23 and Peter M. Visscher!

AJHG 2011

Penalized regression

M
Y =" Bl

k=1

Ridge
1Y = XuBrll2 + Azl Ball2
p

11

Bayesian variable selection regression

J. R. Statist. Soc. B (2005)
67, Part2, pp. 301-320

Regularization and variable selection via the
elastic net

Penalized regression

Hui Zou and Trevor Hastie
Stanford University, USA

LASSO

M
Y = Z BN X
k=1

1Y =37 XiBrllz + AdllBll + Azl Ball2
k

12

Choice of methods: cross validation

I PLOS |cenercs

OPEN a ACCESS Freely available online

Polygenic Modeling with Bayesian Sparse Linear Mixed
Models

Xiang Zhou'*, Peter Cart ! h hens™*

Y M
Y:ZBﬁXkJrZﬁka-Fe

k=1 k=1

Bi ~ N(0,0%)
B ~ N(0,0%)

MultiBLUP: improved SNP-based prediction for complex traits
Doug Speed and David J Balding

Genome Res. published online June 24, 2014
Access the most recent version at doi:10.1101/gr.169375.113

13

Likelihood based approach

Input: Model:
Genotype Gene expression

o [ fommn o o] [0 o o v N | A
Sglwfo = 1 1| [ 28 oz 21 | [0 2
E8lwm|1 o o 2 || o3 os 04 03|=| 1 o Output:
83 v

1 8 524282
§° 8 ={¥,,84,05,61,65}
E |0 1 o o | | |25 15 37 22| |o 1

-

Genotype Phenatype Hypothesis test:
id [sopy snpe o sopw, . sopw| [4 | % sps_snp Hoag=0 vs. Hyay#0
wgl@m|2 2 o EICE 38 FR
28wl o a o || e ar .
o8
| 0 1 1 3 | it | 42 s o 1 1 [[os
= ko) okanm)

z=aWogy, +e,

Figure: CoMM, Yeung et al. (2019)

Also see Yuan et al. (2022) likelihood based Mendelian

Randomization

1578

< TWAS / FUSION

Functional Summary-based Imputation

[25 New! RWAS (Grishin et al.) models for TCGA ATAC-seq

5 New! CONTENT (Thompson et al.) context-specific models for single-cell and bulk expression
New! GTEx v8 models

FUSION is a suite of tools for performing transcriptome-wide and regulome-wide association studies (TWAS and RWAS).
FUSION builds predictive models of the genetic component of a functional/molecular phenotype and predicts and tests that
component. for association with disease using GWAS summary statistics. The goal is to identify associations between a
GHAS phenotype and a functional phenotype that was only measured in reference data. We provide precomputed predictive

models from multiple studies to facilitate this analysis.
Please cite the following manuscript for TWAS methods:

Gusev et al. “Integrative approaches for large-scale transcriptome-wide association studies” 2016 Nature Genetics

14

Multivariate TWAS methods




Multivariate TWAS methods overview Multivariate TWAS method: mr.mash

Leverage similarity between molecular phenotypes

A. Equal Effects B. Independent Effects C. Mostly Null
S : 5 : 5108 °
o] S g
- 5 e S0 d S1o4
= S S g .
2 2 * . . 20 . <t
= .,‘%104 H -:,%1.05 R 2 AT R (A
g R § ooflhsiiipibiistoinl
-3 143 £ o 0.98
sl R \éf? 12345678910 12345678910 12345678910
. 44 tissues 11 million SNPs tissue tissue tissue
Similarity between tissues D. Equal Effects + Null E. Shared Effects in Subgroups
112 . o
Wgh  low Nodata é éms
£1.08 . g
e UTMOST, Yu et al. (2019) Nature Genetics 2 [T il
. ®1.04 5
e MR-JTI, Zhou et al. (2020) Nature Genetics s ST -« .+ method
. %) Lt 6 el Y M glasso
e mr.mash, Morgante et al. (2023) PLoS Genetic (to £100 Rttt L #Mj&r# & s
h e-net
16 123456780910 123456780910 17
a p pea r) tissue tissue

Multivariate TWAS hands-on exercise

Connections between TWAS
and fine-mapping, colocalization
and Mendelian Randomization

statgen-setup launch --tutorial twas

18

Missing regulation in eQTL and GWAS TWAS and fine-mapping: variable selection

b TWAS
associations
. . . . ®
The missing link between genetic .
association and regulatory function 2. . e THAS T SHAS (TS
a
Noah J Connally ®, Sumaiya Nazeen, Daniel Lee, Huwenbo Shi, John Stamatoyannopoulos, Sung Chun, é I = DK[I an I = I I ~ |:| +I
Chris Cotsapas ®, Christopher A Cassa ®, Shamil R Sunyaev ® T

... by applying a gene-based approach we found limited evidence that the baseline expression of

trait-related genes explains GWAS associations, whether using colocalization methods (8% of genes

implicated), transcription-wide association (2% of genes implicated), or a combination of regulatory ’ ’ Arice [[PuBNihed. 29 March202)

annotations and distance (4% of genes implicated). These results contradict the hypothesis that most vv Probabi!isticﬁ“e'mappi“gOftranscriptome'“'ide
association studies

complex trait-associated variants coincide with homeostatic expression QTLs, suggesting that better
models are needed. The field must confront this deficit and pursue this ‘missing regulation.’

‘Bogdan Pasaniuc™
Nature Genetics 51, 675-682 (2019) | Cite this article
10k Accesses | 115 Citations | 89 Altmetric | Metrics

Connally et al, December 2022, elife; also see Mostafavi et al + Prichard 2022
Predicted expression

correlation matrix

20
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TWAS and fine-mapping: variable selection TWAS and colocalization: pleiotropy

A 00 N e g C. cTwas @\ Vertic?_l Pleiotropy Horizontal Pleiotropy
| | | 5 OCUS
s WX WX Wy OEOEOEIO Locus
o d L ~ 0, —
« 90
Traits iﬂ\ y /H\ y M odel
, y=XB%+ X 6,Gute _
:(liz:zzlu‘/szl?/g:iant:zi‘:::’juiea?:ene J " m Tralt A
Gene effects Variant effects
B. Standard TWAS e——
Sparse priors . % .
@\ B; ~ 1ig - NO62) + (1 = 7g) - & Trait B Trait A Trait B
— — —5 6, ~ my- N0,62) + (1 — m,) - § . .
@ @ @ @ oy Moy + (L= - & Figure: Jordan et al. (2019) Genome Biology
Figure: Zhao et al. (2022) biorxiv
21 22

TWAS and colocalization: pleiotropy TWAS and colocalization: statistical framework

Association Colocalization

*ok L

PrediXcan, SMR, FUSION Coloc, Enloc, eCAVIAR, Sherlock

M =yl + GPe + ey ey ~ N (0. oﬁ.[)
Y = puyl +yM + GPy +ey.ey ~ N (0,671)

“locus level”, Pr(«y # 0|Data) o Pr(7y # 0)Pr(Data)
Pr(7y # 0) = Pr(coloc) x Pr(twas)
e Data: z-score from TWAS.

Key idea: Test v = 0, not to estimate 7 which is
Mendelian Randomization.

e Image credit: Haky Im @ UChicago
e “Locus level" colocalization: Hukku et al. (2022) AJHG;
Okamoto et al. (2023) AJHG.

23 24
TWAS and Mendelian randomization
A B
1”))(
et o Gy
st OeaTietecsp @i  caaictecia iy e < » o —
iy Moy~ Esposuea— g
(4 D

Figure: Zhu and Zhou (2022) Quantitative Biology

TWAS can be viewed as two-sample MR — using various |V
selection methods. 258(_')



@ Motivation

Multivariate analysis in genetic

.. ) T e e
association studies o) WisErarelEts e

© Meta-analysis: a multivariate regression prospective

Gao Wang, Ph.D.
Advanced Gene Mapping Course, May 2023

@ Variant colocalization: variable selection in meta-analysis

The Gertrude H. Sergievsky Center and Department of Neurology

@ Multivariate adaptive shrinkage and fine-mapping
Columbia University Vagelos College of Physicians and Surgeons

Beyond per trait per variant association studies

Statistical fine-mapping (multiple regressors)
e |dentify non-zero effect variables by accounting for LD
Motivation Meta-analysis (multiple responses)
o e Integrate information across multiple conditions / studies

“Causal” variants across multiple conditions?

e Cross-population fine-mapping; colocalization; pleiotropy;

mediation; ...
3
The problem The problem

g Methylation
¢ ] Histone acetylation For a genetic variable analyzed in two conditions:

ol uied i
g3 T :. P(“causal” in trait 1 & 2 | association data for 1 & 2)

:

ir GWAS

SNPs within 500Kb radius of ABCA7 transcription start site



The problem Multivariate relationships?

For a genetic variable analyzed in two conditions:

_— e
suppress suppress
* *
P(“causal” in trait 1 & 2 | association data for 1 & 2) P L
L
H a . enhance suppress
Denote data as D; and Dy, and use indicator variables 1, 72 3 : @
Lo
for variable having effects in 1 and 2, and hyperparameters ©: A

correlation (LD)

Figure: Pleiotropy or Linkage?
P(’Yl = 1/’)/2 = 1|D1/D2/®)

Fixed effect and random effects models

Meta-analysis review Different assumptions on effects across studies

o Fixed effect model: all studies share a common effect size
e Random effects model: effect sizes are random variables
from an underlying distribution

Fixed effect (FE) model Fixed effect (FE) model

Let ,Bi be the observed effect size of study i, 1 < i <k, and slz

R its variance. The true effect size is B. The observed effect is
Let B; be the observed effect size of study i, 1 <i <k, and slz

' . T . modelled as
its variance. The true effect size is B. The observed effect is Bi ~ N(B,s?)
modelled as ith likelihood f ct'o
N with likeli unction
pi ~ N(ﬁ,s?), k A 2
with likelihood function L(B) = P(BIB) HP BilB) Hexp Z 252
1
k A 2
L(B) ﬁ“g Hp(ﬁ |B) o Hexp Z Let w; = 1/512 be the weight of study i. The MLE of
i i 1 summary effect is
k B
ﬁ L ‘Bl Inverse variance weighting

sz



Random effects (RE) model Random effects (RE) model

Let Bi be the observed effect size of study i, 1 <i <k, and 512

Let Bz’ be the observed effect size of study i, 1 < i < k, and SZZ its variance. Let B; be the true effect size of study i. The

its variance. Let B; be the true effect size of study i. The observed effect is modelled as

observed effect is modelled as Bi|,3i - N(,Bl-,szz), Bi ~ N(, 02)
.Bi|.Bi ~ N(Bi, 512)/ Bi ~ N(B, (72) with likelihood function
with likelihood function p(mﬁ 02) o ﬁ 1 i (Bz B) 2
. . ’ ; 512—1—02 — 2(s? +¢72
; 1 (Bi
p L 02) exp|—) -~ 1, R
(ﬁ|ﬁ ) H Slg 402 P [ Zl: 2<512 1 02>] RE has weight wl* = 1/(512 + (72); summary effect B can be

similarly computed as FE, replacing w; with wy. 02 can be
estimated (e.g. , MLE).

Multivariate model(s) for effect sizes

Meta-analysis: a multivariate Consider a parametric model on effect sizes across studies,

regression prospective
g prosp Bjly =1~ MVN(0,U)

Consider 2 studies, e.g. height GWAS in Europeans and
Africans.

Fixed-effect model multivariate analysis Random effects model multivariate analysis

Effect sizes are different between two studies, but are from the

Effect sizes are exactly the same between two studies, L
same distribution,

10

01

11
Usixed = 03 X
fixed 7% |} 1‘| Urandom = Jg

X

12

1183



Other multivariate models Other flexible multivariate models

Lop
Uparti =05 X
partially shared 90 lp 1]

where |p| < 1. This contains the two meta-analysis models as

special cases!

Analogy to popular multivariate models

More generally,

U= 0% o2
1 0

2 2
4 ‘712]

e Pro: more generic than Ufixeq and Urandom

e Con: 3 parameters to deal with, compared to one (73

13 14

Analogy to popular multivariate models

(some necessary but, not sufficient)

e Colocalization correlation matrix:

B

e Condition specific correlation matrix:

bof- b

Variant colocalization: variable
selection in meta-analysis

(some necessary, but not sufficient)

e Mediation:

1
umediation = 0'(% X l PIZ]
P12 P2

e Genotype — Trait 1 — Trait 2.
e Effect on trait 2 should be smaller than that on trait 1.

15 16

The problem

For a genetic variable analyzed in GWAS and eQTL studies:

P(yg = 1,7 = 1|Dg, D,, ©)

84 !



Colocalization method: coloc Colocalization method: eCAVIAR

coloc [Giambartolomei et al. (2014) PLoS Genet.| eCAVIAR [Hormozdiari et al. (2016) Am. J. Hum. Genet.]

e On X: “one causal’ assumption . .
_ P _ _ e On X: multiple effect variables
e On Y: the null + 4 combinations given “one causal"

1. In 1 but not 2
In 2 but not 1
In 1 and 2 but not the same variable

e On Y: each effect variable can be
1. In 1 but not 2
2. In 2 but not 1
3. In both 1 and 2
4

In 1 and 2 and the same variable (colocalization) N iation in both data 1 and 2
. No association in both data 1 an

USROS

No association in both data 1 and 2

18 19

eCAVIAR effects assumption Colocalization method: enloc

Effect sizes are independent, enloc [Wen et al. (2017) PLoS Genet.]

0; 0 e Key difference: cross-condition effects not independent
u =
0 o? e eQTL signals are enriched in GWAS

20 21

Colocalization method: enloc enloc two step procedure

enloc [Wen et al. (2017) PLoS Genet.]

e Key difference: cross-condition effects not independent

e eQTL signals are enriched in GWAS
But how?
1. Obtain P(yy = 1) and P(7. = 1) using fine-mapping

e Recall fine-mapping with functional annotation for j 2. Fit the enrichment model via multiple imputation

T
log [——] =
og[l_n] &g + aye
and in this context

mi=Plyg=1]1.=1)

2185 22



Connections between colocalization methods Connections between colocalization methods

e eCAVIAR is a special case of enloc with « = Q.

e eCAVIAR is a special case of enloc with & = 0. e coloc is a special case of “one causal’ fine-mapping
e coloc is a special case of “one causal” fine-mapping based enloc with fixed, high(!) a value by default.
based enloc with fixed, high(!) a value by default. o Recent coloc extension: coloc version 5, aka SuSiE-coloc
e Recent coloc extension: coloc version 5, aka SuSiE-coloc removed the “one causal” assumption.
removed the “one causal” assumption. e Wallace (2021) PLoS Genetics
e Wallace (2021) PLoS Genetics e https://chriswallace.github.io/coloc/

* https://chriswallace.github.io/coloc/ Summary: pattern and scale of effect size correlations,

represented as different prior models.

23 23

Practical considerations Multi-trait colocalization
SN - R — ffi(ffff‘fﬁ

10000-0'
Hy: One trait has a CV in the region 000000 ) ¢ 5,
00000.. u
10000
10000- ) es,

00000..0,

e Choice of prior P ——

onnac
01000-

nouon 0

e Best to estimate enrichment « from data Hap+ T valshav disinet OV
e 1 € [0,5] suggested by > 4,000 GWAS + GTEx data '

: mnnn g
Hingaz : m— 2 traits share a GV —_— oovou u €Sin-119
two traits have distinct CVs
00100,

e LD reference mismatch: underestimate &, thus power loss

100000
0000 | g5 -vw(U".‘,

01000..0,

one trait has a CV elsewhere

[-]

[8l

(@]

()

Hem-y * m — 1 traits share a CV :|

Hukku et al. (2021) Am. J. Hum. Genet. mi  wesmecior 4]
Coaten ]

Indicator =

Figure: HyPrColoc, Foley et al. (2021) Nat. Comm.

Assuming a single causal variant in the loci.
24 25

More phenotypes, more complications

Multivariate adaptive shrinkage =

|
and fine-mapping o ..or, = |On " Jor ..
|

Figure: Plausible patterns of sharing

86 26



Major challenges A naive mixture model

“FE and RE are equally likely for any variant”:
e For a given variant: the less assumption made on

multivariate effects, the more parameters to estimate. 2 o> 2 0
- . Upivea =05x | § Ol +05x%x |0

e FE and RE models are restrictive but easy to fit. mixed : o2 o2 : 0 o2

0 0 0

¢ Different variants: may fit in different multivariate

effect models Prior allows for possibility of both; data will determine where

posterior lands.

27 28

A data-adaptive mixture model Patterns of sharing: factor analysis

Decomposing effect estimates, B=LF+E

Factor 1; pve: 0.694 Factor 2 ; pve: 0.022
o) :
Instead of making assumptions, can we learn from data: ) | i o
400 “'l il v 1 e
e What are the latent structures for multivariate effects? il -
Factor 3 ; pve: 0.016 Factor 4 ; pve: 0.01 .
e How often does each structure appear? Pt Siciocons
Adipose - Visceral (Omentum)
. | Adrenal Gland
and use these to construct the mixture model? | | e o
ol omm o pt o Artery - Tibial

Brain - Anterior cingulate cortex

Figure: Sparse factor analysis of GTEx data

29 30

Incorporating all possible patterns Multivariate effect size sharing in eQTLs

Multivariate effects of a variant follows the k-th pattern with

probability 71:

24 03

03 15

1.6 0.001
3 X v
0.001 0.02

—|—7T2>< [

Upixed = 701 X l

This is the Multivariate Adaptive Shrinkage Prior.

e Step 1: estimated 71, via EM algorithm using data across

genome.
e Step 2: apply this prior to each variant in association Figure: Quantitative characterization of eQTL effects
mapping. heterogeneity in GTEx

32
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Application

a. GWAS data

phenotypes

fine-mapping regions

c. estimate residual correlations

to multivariate fine-mapping

g. mVSUSIE fine-mapping
+ posterior inclusion probabiliies (PIPs)

phenotypes
A - credible sets (CSs)
b. select gl « posterior effects (NGPs) and CS ffsrs
weakest —p £ -
signals § 0
ig imm A s os2
&
g
e. Extreme Deconvolution (ED) 5083
phenotypes
d. select g 0 g
strongest —» 2 - 3 &
signals H g @
mixture covariances 2
SNPs e NCP
mixture weights. ‘ H
J e
1. select a region for fine-mapping

Figure: mvSuSiE fine-mapping with adaptive shrinkage model

Zou et al. (2023) biorxiv

Comparison to other methods

= 7| A. 20 traits, correlated, equal effect size C

B. 20 traits, correlated, heterogenous effect sizes.

- -
g2 g3
] oracle prior o oraclo prior
— random effects prior — random effects prior
canonical prior canonical prior
— data-driven prior — data-driven prior
2 — CAFEH 2 — CAFEH

= 7 C.3traits, correlated, equal effect size

— SUSIE deta-crven prior
PAINTOR

s — tasnim

33
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GWAS application: 16 blood traits in UK Biobank

Analysis overview

e Sample size 248,980; 975 candidate regions fine-mapped
o Average #SNPs per region 4,776; maximum 36,605

Top patterns of effect size sharing inferred from data:

mixture weight = 0.287

mixture weight = 0.249

mixture weight = 0.202

mixture weight = 0.117

G e e e

ey o omm v s

o o o

«  platelet m

R Rer ' e

HLA% HLA% | | HLR% C d hi;t bl d "
P m i B ompouna wnite bDlood ce
PCT " [ PCT

o o o ron

e L] w Redblood .

MoNoY ovox — CE)| MONG MONGH L ]

i mr aim [

o o Co o

o oo o o
AR AT SRR SRR

Multi-trait fine-mapping methods & challenges

mvSuSiE CAFEH PAINTOR MTHESS BayesSUR flashfm msCaviar HyPrColoc moloc

>5 traits integrated -

>10 traits integrated

Multiple causal signals ‘

Individual level data
Summary statistics
Missing data

Trait specific LD
Correlated effects

|
Trait specific effects (1| I
Arbitrary

heterogeneous effects ‘

Arbitrary multi-trait
colocalization

Correlated traits

I
Partial sample overlap ‘-

Functional annotation

Trait specific functional
annotation

Genome-wide
scalability

Reference: CAFEH: Arvanitis et al (2022); PAINTOR: Kichaev et al (2017); MTHESS: Lewin et al (2016); BayesSUR: Zhao et al (2021);
flashfm: Hernandez et al (2021); msCaviar: LaPierre et al (2021); HyPrColoc: Foley et al (2021); moloc: Giambartolomei et al (2018).

GWAS application: 16 blood traits in UK Biobank

Analysis overview

e Sample size 248,980; 975 candidate regions fine-mapped
e Average #SNPs per region 4,776; maximum 36,605

GWAS application: 16 blood traits in UK Biobank

Many more signals identified compared to fine-mapping per
each trait
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From cross-phenotype associations to
pleiotropy in human genetic studies

Andrew DeWan, PhD, MPH
Associate Professor of Epidemiology
Director, Yale Center for Perinatal, Pediatric and Environmental Epidemiology
Yale School of Public Health

Yale scuoov ok pus HEALTH
b %
St - ol sl
s Soccalah e g
N ; N g " -
e ¥
S ’ .
Misclassification or
ascertainment bias
P, b P, P, P, P Bi
Region of strong LD
G Gene Yk Causal observed) @ identified in GWASs
Solovieff et al. Nat Rev Genet. 2013 July ; 14(7): 483-495. doi:10.1038/nrg3461.
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Examples in humans
» Marfan syndrome
— FBN1 (fibrillin-1)
— thinness, joint hypermobility, limb elongation, lens dislocation,
and increased susceptibility to heart disease.
* Holt-Oram syndrome,
— TBX5 (transcription factor)
— cardiac and limb defects
* Nijmegen breakage syndrome
— NBS1 (DNA damage repair protein)
— microcephaly, immunodeficiency, and cancer predisposition

89

Pleiotropy

+ Phenomenon in which a genetic locus affects more than
one trait or disease

* Molecular level

— Single gene with multiple physiological function

— Two domains of a single gene product with different functions
and affecting multiple phenotypes

— Gene product with a single function that affects multiple
phenotypes acting in multiple tissues
+ Statistical level
— Alocus displaying cross-phenotype associations is often
considered pleiotropic
— Can be at the variant, gene or region level

4

Mendel, J. G., 1866 Experiments in plant hybridization. Ve

Early example of “pleiotropy”

Gregor Mendel documented one of the earliest examples of
pleiotropy in his pea plant experiments

& | Violet flowers
220" - seed coats = brown-grey A

- ‘«S‘ - axils = red and spotted &?
2% oy €1

v v

Violet White
flowers flowers

White flowers
- Seed coats = white
- Axils = white and unspotted

des Vereines in Brunn 4: 3-47 (in German).

Pleiotropy and complex disease
comorbidity

« Examples of correlated (comorbid) disease

— Obesity, hypertension, dyslipidemia, type 2 diabetes
(metabolic disorder)

— Depression, anxiety, personality disorders (psychiatric
disorder)
— Asthma, obesity (pro-inflammatory conditions)
» Why do certain disease occur together
— Causality
— Shared environmental risk factors
— Shared genetic risk factors




Pleiotropy and complex disease
comorbidity

Hypertension

Asthma Obesity

Dyshpidem;a 4

*., Overlap rep a narrowly-defined pe with
low heterogeneity (relative to the individual phenotypes)

Pleiotropy and complex disease comorbidity

« Detecting shared genetics and/or molecular pathways
between comorbid diseases can help us understand exactly
how the etiology of the diseases overlap

« Etiologic overlaps:

 provide opportunities for novel interventions that prevent
or treat the comorbidity, rather than preventing/treating
each disease separately

facilitate drug repurposing (that is, known drugs targeting
a pleiotropic locus may be repurposed to treat other
diseases controlled by that locus, precluding the need for
the development and testing of a brand-new drug)

« Mapping a single genotype to multiple phenotypes has the

« It can also offer insights into the mechanistic underpinnings of

It can increase power to detect novel associations with one or

Pleiotropy in gene mapping
potential to uncover novel links between traits or diseases

known comorbidities

more phenotypes

11
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Pleiotropy and complex disease
comorbidity

* Pleiotropy-informed analyses consider multiple
phenotypes together and take into account the
correlation between the phenotypes

— Analyzing multiple correlated phenotype (e.g.
comorbid diseases) is equivalent to analyzing a single
narrowly-defined phenotype with low heterogeneity

Abundant Pleiotropy in Human Complex
Diseases and Traits

Shanya Sivakumaran,!6 Felix Agakov,1.26 Evropi Theodoratou,.6 James G. Prendergast,® Lina Zgaga,+
Teri Manolio,s Igor Rudan,! Paul McKeigue,! James F. Wilson,! and Harry Campbelll*

The American Journal of Human Genetics 89, 607-618, November 11, 2011

Table6. Extent of Pleiotropy in Different Disease Classes

Genes SNPs

Disease Class Pleiotropic (%) Nonpleiotropic (%) p Value® Pleiotropic (%) Nonpleiotropic (%) p Value®
Al comparison group) 233 (16.9) 1147 (83.1) 77 (4.6) 1610 (95.4)

Immune-mediated phenotypes 106 (37.7) 175 (62.3) <00001  31(8.3) 343 91.7) 0.0066
Cancer 49 (348) 92 (65.2) 00001 8(48) 158 (95.2) 08456
Metabolic syndrome 79 (28.5) 198 (71.5) <0.0001 30 (8.4) 327 916) 0.0056

* Fisher's exact test p value.
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A practitioners’ guide for studying pleiotropy
in genetic epi studies

A Eidamil 2017 Aug 1. g 101083ljwnZ96 Epu ahead of )
Statistical Analysis of Multiple
Phenotype Associations to Pleiotropy.
Sainas YO, WangZ, DeWan AT

in Genetic Cross-

Abstract

In the context of genetics, pleiotropy refers to the phenomenon in which a single genetic locus affects more than one trat or disease,
have identified loci multiple phenotypes, and these cross-phenotype associations are

often incorrectly interpreted as examples of pieolropy. Pleiotropy is only one possible explanation for cross-phenatype associations.

Cross-phenotype associations may also arise due to issues related to study design, confounder bias, or non-genetic causal links

between the phenotypes under analyss. Therefore, it h !

carefully to uncover true
pleiotropic loci. In this review, we describe statistical methods that can be used to identify robust statistical evidence of pleiotropy. First,
Wwe provide an overview of univariate and multivariate methods for discovery of cross-phenotype associations and highlight important
‘considerations for choosing among available methods. Then, we describe how 1o dissect cross-phenotype associations by using
mediation analysis. Pleiotropic loci provide insights into the mechanistic underpinnings of disease comorbidity, and may serve as novel

targets for Discerning between of
is necessary to realize the public health potentialof pleiotropic loc.
© (92017 Uriversy e For

permissions, please e-mal: journals, permissions@oup.com

KEYWORDS: genetc epidemiology; mediatio analysis; pleiotropy
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Guidelines for generating robust
statistical evidence of pleiotropy

Discover CP

associations

13

Analytic options for discovery of
CP associations

G | ecee

con a2

Multivariate :

« Univariate methods examine the association between a given SNP and each
trait separately

 Multivariate methods examine the association between a given SNP and
each trait by modeling the traits jointly

Cross-phenotype (CP) associations

Statistical associations between a single genetic locus — a single
gene or a single variant within a gene — and multiple phenotypes

Note that the dashed lines denote uncertainty
about whether the SNP has a direct effect on the
phenotypes.

14

Analytic options for discovery of
CP associations

e
[t

Multivariate

« Types of data available on our phenotypes of interest
* Summary statistics vs. individual-level data?
Are the phenotypes measured on the same subjects?
« Distribution of the phenotypes (e.g., quantitative or disease trait)

Vo

G

15
Univariate methods are by far the most
commonly used to detect CP associations
« Univariate methods include (but are not limited to) the
methods you've discussed in class so far:
allelic Chi-Square test
genotypic Chi-Square test
regression-based methods
« The overall approach is to:
obtain univariate association p-values for each phenotype
declare CP associations at genetic loci that are statistically
significantly associated with each phenotype
17
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16

Hypothetical example: Discovery of CP
associations for hypertension and heart
disease by using logistic regression

Step 1. Fit two univariate regression models within PLINK
E[hypertension] = B, + B, * SNP
/ Elheart disease] = B, + B; * SNP

Word of caution: The univariate tests of association should be
marginal tests (conducted irrespectively of the second phenotype)
NOT conditional tests (conducted on a subset defined based on
absence/presence of the second phenotype). In this example, what
that means is that the regression for hypertension should be fit on all
subjects irrespectively of their heart disease status; and the
regression for heart disease should be fit on all subjects

irrespectively of their hypertension status. More on this later!
evidence 1o declare a association al IS SNP.

18




Hypothetical example: Discovery of CP
associations for hypertension and heart
disease by using logistic regression

Step 1. Fit two univariate regression models within PLINK
E[hypertension] = B, + B, * SNP
Elheart disease] = By + B * SNP

Step 2. For a given SNP, examine p-values for $, from each model.

 P-value for B, in hypertension model = 1.03 x 1012
« P-value for B, in heart disease model = 6.02 x 10¢

Step 3. Declare CP associations at a given SNP, if the p-values for 3, in
each model surpass the study significance threshold.

« Assuming the standard GWAS significance threshold (alpha=5 x108), there
is a statistically significant association with both hypertension and heart
disease at this particular SNP. Therefore, we have sufficient statistical
evidence to declare a CP association at this SNP.

19

A Comparison of Multivariate Genome-Wide Association
Methods

Tessel E. Galesloot', Kristel van Steen?, Lambertus A. L. M. Kiemeney'*, Luc L. Janss®>,
Sita H. Vermeulen™*+>

Nimegen,

Lige, AR A0epsnment o e

Netherands,

PLOS ONE | www.plosone.org
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A comparison of univariate and multivariate
GWAS methods for analysis of multiple
dichotomous phenotypes

Yasmmyn D. Salinas’, Andrew T. DeWan?, and Zuoheng Wang?

1 Department of Chronic Disease Epidemiology; 2 Department of Biostatistics,
Yale School of Public Health, Yale University, 60 College St, New Haven,
Connecticut, USA

Genet. Epidemiol. 41 (7), 689-689
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Using multivariate methods to increase the
power to detect cross-phenotype associations

20

Table 1. Simulation scenarios.

# traits associated with QTL

Heritability (h%)

Effect size (a))

MAF (g)

1
2

3

h?=01%, h;=h% =0
W, =h,=0.1%, h; =0
= =0.1%, W =0

>0, 2;=2;=0
323 2,=0
—ay=a32:=0

IR Y

—ay=ay=a;

3X03X03/3x07
3X0/303/3%0.7
3x03x03/3x07
3X03x03/3x07
303 x03/3x07

o01/04
001/04
oo1/04
00104
001104

d0i:10.1371 journal pone.0095923.1001

Powar(h)

MAF indicates minor allele frequency; J trait; QTL, quantitative trait locus; rE, residual correlation; 1G, genetic correlation.
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Simulation scenarios

h12=0.1%,h,?=0%

[-0.9,0.9]

P1=P2=10%

P1=P2=20%

P1=10%, P2 = 20%

P1=20%, P2=10%

he2= hy2=0.1%

[-0.9,0.9]

P1=P2=10%

P1=P2=20%

P1=10%, P2 =20%

P1=20%, P2=10%

h{?2=0.1%,h,? = 0.05%

[-0.9,0.9]

P1=P2=10%

P1=P2=20%

P1=10%, P2 = 20%

P1=20%, P2=10%
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PLEIOTROPY PRESENT
equal effect sizes
Figure 2. Power when both phenotypes are associated with the SNP (h,2 = h,2 = 0.1%) 2

Py=P,=10% P, =10% and P, = 20%

. p
2w fa
e )
H ie
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. .

.
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Cross-phenotype correlation

0 08 05 04 92 00 02 04 06 08 10
Cross-phenotype correlation

. P, = 20% and P, = 10% » P,=P,=20%
1
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w©
; i

o
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40 08 08 04 02 00 02 04 08 08 10
Cross-phenotype correlation

2 Results for GLMMs are shown for ryyy < 0.5 only, since the models experienced convergence issues for ry;y > 0.5.
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Biological
pleiotropy

[ CP associations ]

Mediated Spurious
pleiotropy pleiotropy

27

Mediated pleiotropy

Association between a genetic locus (A) and an intermediate
phenotype (M) that causes a second phenotypic outcome (Y)

Anon-genetic causal link between Mand Y
induces an association between Aand Y,
even in the absence of a direct effect of Aon Y.

29

93

Problem: CP associations need not be
indicative of pleiotropy

26

Biological pleiotropy

Independent associations between a genetic locus (A)
and multiple phenotypic outcomes (Y)

The SNP has a direct effect on each phenotype.
(Note that direct or causal effects are depicted
with solid lines).

N

&
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Spurious pleiotropy

Artifactual associations with multiple phenotypes due to issues related
to study design, confounding, or associations with markers in strong
linkage disequilibrium* with multiple causal variants in different genes

*Linkage disequilibrium is the non-random co-segregation of alleles.

30




Spurious pleiotropy

Artifactual associations with multiple phenotypes due to issues related
to study design, confounding, or associations with markers in strong
linkage disequilibrium* with multiple causal variants in different genes

Confounders of the
relationship between the
phenotypes induce spurious
cross-phenotype associations

*Linkage disequilibrium is the non-random co-segregation of alleles.

31

Spurious pleiotropy

Artifactual associations with multiple phenotypes due to issues related
to study design, confounding, or associations with markers in strong
linkage disequilibrium* with multiple causal variants in different genes

Variables associated with the phenotypes and the
SNP induce spurious cross-phenotype associations

*Linkage disequilibrium is the non-random co-segregation of alleles.
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Pleiotropy exercise (Parts 1 and 2)

Univariate:

Phenotype 1 | . p<5x108

P<5x10%
> Mediation

Univariate:
Phenotype 2

35

94

Spurious pleiotropy

Artifactual associations with multiple phenotypes due to issues related
to study design, confounding, or associations with markers in strong
linkage disequilibrium* with multiple causal variants in different genes

or

The SNP has a direct effect
on only one of the
phenotypes.

*Linkage disequilibrium is the non-random co-segregation of alleles.

32

Spurious pleiotropy

Artifactual associations with multiple phenotypes due to issues related
to study design, confounding, or associations with markers in strong
linkage disequilibrium* with multiple causal variants in different genes

on either phenotype.

‘ The SNP does not have a direct effect ‘

*Linkage disequilibrium is the non-random co-segregation of alleles.
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Pleiotropy exercise (Parts 1 and 2)

Univariate:

Phenotype 1 P<5x10%

P<5x10%

> Multivariate » Mediation

Univariate:
Phenotype 2

36



Guidelines for generating robust
statistical evidence of pleiotropy

Discover CP

associations associations

»

Dissect CP

37

Mediation analysis: Data requirements

» Al phenotypes must be measured on

. Total Effect
the same subjects

Bt ®
+  The occurrence of the
intermediate variable M must B 0.

precede that of the phenotypic N

outcome variable Y
Indirect Effect

«  Temporality must be ascertained

39

Mediation analysis: Assumptions

Typically met in genetic epi studies!

*  There must be no unmeasured:

« confounders of the total effect

Total Effect
6
= confounders of the relationship @ . @
between SNP A and the
mediator M B 6

Indirect Effect

»  confounders of the relationship
between mediator M and
phenotypic outcome Y

41
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Mediation analysis provides a tool
for dissecting CP associations

* Mediation analysis decomposes the _
Total Effect

total effect of the SNP (A) on a
phenotypic outcome (Y') into: @ 9 @
+  Direct effect: effect of Aon Y ., DirectEifect =
that occurs independently of an B e
1 /D2

intermediate phenotype (M)

» Indirect effect: effect of Aon Y
that occurs through the
intermediate phenotype M

Indirect Effect

38

Mediation analysis: Assumptions

«  There must be no unmeasured:

« confounders of the total effect

" Total Effect
O
*+  confounders of the relationship @ " Direot Effoct @
between SNP A and the

mediator M B ."'"‘vez

Indirect Effect

» confounders of the relationship
between mediator M and
phenotypic outcome Y

40

Mediation analysis: Assumptions

«  There must be no unmeasured:

« confounders of the total effect

Total Effect
61
« confounders of the relationship @
between SNP A and the
mediator M By, o

» confounders of the relationship
between mediator M and
phenotypic outcome Y

Indirect Effect

/

Requires adjustment for known confounders to prevent bias
(Note: this effectively restricts the use of mediation analyses to datasets
in which data on such variables have been collected)

42



Mediation analysis:
Regression-based approach

* Requires fitting two regression models,
one for mediator M and one for
phenotypic outcome Y: [}

* E[Mla,cl = fo+Bra+frc
« E[Y|am,c] =0y +6ia+6,m+6;c

Total Effect

| . Direct Effect

Assesses the effect of Aon M,
while controlling for measured
confounders (C)

Indirect Effect

Mediation analysis:
Regression-based approach
* Reaquires fitting two regression models, —_
. Total Effect
one for mediator M and one for
phenotypic outcome Y:
. E[M Ia,c] = ﬁ0+ﬁ1a+ﬁéc Direct Effect )
e E[Y]|a,mc]=0y+61a+6,m+0,c )

» The parameter estimates from these \\@/
models (na_mely B1, 6_1, and 62_) alfe Indheot Effect
used to estimate the direct and indirect
effects

Mediation analysis: Interpretation

Mediated pleiotropy

Complete mediation: SNP A is associated with

mediator M and the total effect of A on phenotypic e ——

outcome Yis equal to its indirect effect (i.e., the Total Effect

direct effect is equal to 0). o

Incomplete mediation: SNP A is associated with @ T : @

mediator M and A has both direct and indirect -, Direct Effect

effects on phenotypic outcome Y (i.e., the total Y

effect is equal to the sum of the direct and indirect By, 0

effects) L :
Biological pleiotropy @

SNP A is associated with mediator M, and the total v

effect of SNP A on phenotypic outcome Y is equal .

to its direct effect (i.e., the indirect effect is equal to Indirect Effect

0)

96

Assesses the effect of Aon Y,
while controlling for both M and C

Mediation analysis:
Regression-based approach

* Requires fitting two regression models,
one for mediator M and one for
phenotypic outcome Y:

* E[Mla,c] = By+Bra+ P ‘ )
* E[Y |la,m,c]=0y+61a+0,m+ 04c| a{*,} 92

Total Effect

@2 )

-, DirectEffect =

Indirect Effect

Guidelines for generating robust
statistical evidence of pleiotropy
i i Classify them as examples
Discover CP |$ Disseat P |$ of biological, mediated; or
spurious pleiotropy
Mediation analysis: Interpretation
Mediated pleiotropy
Complete mediation: SNP A is associated with
mediator M and the total effect of A on phenotypic ——
outcome Yis equal to its indirect effect (i.e., the Total Effect
direct effect is equal to 0).
Biological pleiotropy
SNP A is associated with mediator M, and the total
effect of SNP A on phenotypic outcome Y is equal
to its direct effect (i.e., the indirect effect is equal to
0)
ncomplete mediation: SNP A is associated with @
mediator M and A has both direct and indirect
effects on phenotypic outcome Y (i.e., the total .
effect is equal to the sum of the direct and indirect Indirect Effect
effects)




Mediation analysis:
Interpretation

+ Spurious pleiotropy

« SNP Ais not associated with
mediator M after controlling for
measured confounders

Total Effect

o @

. Direct Effect =

Indirect Effect

mediation R package

> med.fit<-gIm(W1~rs1_2, data=combined, family=binomial("logit"))
> outfit<-gim(W2~W1+rs1_2, data=combined, family=binomial("logit"))

> med. fit,outfit, treat="rs1_2", mediator="W1", boot=TRUE, boot.ci.type="bca", sims=1000)
> summary(med.out)

Causal Mediation Analysis
Nonparametric Bootstrap Confidence Intervals with the BCa Method

Estimate 95% CI Lower 95% Cl Upper p-value
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Empirical searches for pleiotropic loci
for asthma and obesity

51

Am.J Hum Gene. 2009 Ju85(1)87-96. doi: 10.1016/,3jng.2009.06.011. Epub 2009 Jul 2.
PRKCA: a positional candidate gene for body mass index and asthma.
Murphy A", Tantisira KG, Soto-Quirds ME. Avila L, Klanderman BJ, Lake S, Weiss ST, Celeddn JC.

Study design

« Two phases:
+ genome-wide linkage analysis of BMI

+ follow-up family-based candidate-gene association study
of BMI and asthma

« Strategy for candidate-gene study:

+ Authors focused on a single gene (PRKCA) within the BMI
linkage peak because:

+ animal models suggest role of PRKCA in obesity; and

* published association studies of other genes within the
linkage peak had found no association with BMI.
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ACME (control) 002152 001823  0.03 <2e-16 "
ACME (treated) 002199 001868  0.03 <2e-16
ADE (control) 0.00723 000415  0.01 <2e-16
DE {treatod 0.00771—0.00443 01 20-16
Frotares y 0246+ y 4 ]
Prop. Mediated (control) 073634 065420  0.84 <2e-16
Prop-Medialed reated) 07524708 085 20162
I o § § § P
[ eg g 6 0 ]
‘Prop-iediated-taveragey 006254 B4 16
Effect Modifiers
Obesity/BMI .=.':> Asthma
Shared environmental
risk factors
o aiz0
SiksDR. e chcenar ot
P ——r o395
g, Etinger A5, e AT ot T, FoimenTl. Backen V.
the UNT Sy, Pt chesty. 2004
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Study population

+ Costa Rica study
* N =415 asthmatic children + parents
+ Childhood Asthma Management Program
» N =493 non-Hispanic White asthmatic children + parents

Note that ALL children in both study populations are asthmatic
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Phenotype definitions

* Body mass index (BMI)
« calculated from objective measures of height and weight
* Asthma
+ physician-diagnosed asthma + one of the following:
+ 2 respiratory symptoms or asthma attacks in prior year

+ increased airway responsiveness or bronchodilator
response

55

Results for BMI

Table 3. Evidence for Association of PRKCA with BMI in Costa Rica and CAMP.

Number of Informative
Families® (number o

Allele offspring with 0/1
Frequency  recoded genotype) Effect Size®
CAMP Replication ~ Joint p Value'
Location  Minor «® p Value®® (CR, CAMP
Marker __(BP)° __Allele CR__CAMP_CR cAmP CR__CAMP _pValue®* _(two-sided) two.sided)
5228883 61874457 T 027 033 91(6724) 11060/39) 245 1.60 400011  +0.0038 (10.0076) 5.6 X 105
10x10°
S1005651 61868473 C 026 033  83(6023) 11383/39) 227 160 400019  +0.0039 (+00077) 9.5 x 10
18107
TOB87S | 61924337 A 02 035 10100 129024 171 12 100109 100182 (100365 00019 & |
(0.0035)
152244497 61931405 C 031 036 1208634 13608/47) 169 121 400160  +0.0171 (+0.0341) 00025
0.0046)

Two BMlI-associated variants

57

Conclusions

« Authors’ conclusion: PRKCA displays pleiotropy for
asthma and BMI (pleiotropy at gene level)

» Two variants (rs228883 and rs1005651) displayed
statistically significant associations with body mass index

« Adifferent variant (rs11079657) displayed a statistically
significant association with asthma.

Statistical methods

+ Univariate family-based association tests (FBATs) were used

to test PRKCA SNPs for association with BMI and asthma
separately

» Note: The FBAT statistic takes into account the
phenotype of the offspring only

« Significance threshold used by study authors: a = 9.5 x 105
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Results for asthma

Table4. Evidence for Association of PRKCA with Asthma in Costa Rica and CAMP.

Number of Informative
Families® (number of offspring
Allele Frequency  with 0/1 recoded genotype)

CAMP Replication _ Joint p Value®
< «

Location  Minor Costa Rica p Value* (CR, CAMP

Marker  (8P)°  Allele CR camP R camp pValue™®  (two-sided) two.sided)

2191 61779673 G 046 035 168 (117/51) 14111343 00194 -0.0214 (-0.0428) 00036 (0.0067)
159895580 61789701 C 047 035 168 (117/51) 14111443 00171 ~0.0160 (-0.0320) 00025 (0.0047)
4411531 61793662 A 029 012 88 (70/18) 25 (24/1) 00058 -0.0058 (-0.0117) 0.0004 (0.0007)
8080771 61824330 G 046 035 164 (116/48) 108 9029) 00161 ~0.0070 (-0.0140) 00011 (0.0021)
1511652956 61839798 G 020 012 83 (65/18) 23 @2/1) 00101 -0.0111 (-0.0222) 00011 (0.0021)
7221968 61848731 C 027 om 7 (63/16) 18 (17/1) 0012 -0.0216 (-00432) 0.0024 (0.0045)
17405806 61862056 A 049 031 164 (109/55) 90 (77/20) 00309 ~0.0009 (~0.0018) _0.0003 (0.0006)
(11079657 61862528 A 03 02 129 (94735) 60 (56/8) 0009 -0.0002 (-0.0004) 26 x 107

(£0X1075

t

One asthma-associated variant
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Conclusions

+ Our conclusion: PRKCA is associated with asthma and
with BMI among asthmatics (no true CP association!)

« There is insufficient evidence to declare a CP association at
PRKCA because the test of association with BMI was not a
marginal test

« FBAT test for BMI only took into account the phenotype of the
offspring — which were ALL asthmatic

* Thus, it remains to be seen whether the association with
BMl is also present among non-asthmatics subjects

+ Without that information, we would not be able to assess
whether asthma is a mediator or a moderator of the
relationship between PRKCA and BMI.
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A GWAS study of pleiotropy

Discovery and Mediation Analysis of Cross-Phenotype Associations Between
Asthma and Body Mass Index in 12q13.2

Yasmmyn D. Salinas*, Zuoheng Wang, and Andrew T. DeWan

Yasmmyn D, Sainas,

. Yalo School of Pubic Hoalth, 60
Collogo Stroet, Now Haven, CT 06520 (o-mai: yasmimyn sainas @ yale.od.

Am J Epidemiol. 2021;100(1):85-94
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Study population

« N = 305,945 White, British subjects from the UK Biobank (a

population-based prospective cohort study of > 500,000
subjects, aged 40-69 years at baseline)

bio

Improving the health of future generations

ank’
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Statistical Methods

( QC in PLINK

I

[ Estimation of genetic correlation using BOLT-REML

I

Univariate association analyses using
linear mixed effects models in BOLT-LMM

Part 1

Search for overlapping signals between asthma and BMI

l

!

Assessment of asthma-BMI relationship in the UK Biobank GWA sample

I

— o — ——

Part 2

Assessment of potential confounders of the asthma-BMI relationship

) J UJ

!

[ Follow-up mediation analysis in ‘mediation’ R Package

65
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Study design

* Two parts:

+ Genome-wide search for cross-phenotype associations
with asthma and body mass index

» Follow-up mediation analysis to dissect genome-wide
significant CP associations

62

Phenotype definitions

+ BMI at baseline (kg/m?):

+ calculated based on height and weight measurements
collected by trained UK Biobank staff at the recruitment
sites

» Asthma diagnosed prior to baseline (yes/no):

+ ascertained via the question “Has a doctor ever told you
that you had asthma?”

* Note: In mediation analyses, two subgroups were created

based on age-at-diagnosis
A uk
ank

Improving the health of future generations
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Overlap in GWA signals

Association with BMI among the 1,457 SNPs with genome-
wide significant p-values for asthma

805
(85%)

#p<005 ®p<5x105 5p<5x10%

= Not associated with BMI

Figure 1. Overlap in GWA signals between asthma and BMI. Results for asthma are for the
analysis of all asthmatic subjects (35,373 asthmatics vs. 270,572 non-asthmatics). Results for
BMI are for the quantitative BMI analysis (n=305,945). Both analyses are sex- and age-
adjusted. The threshold for genome-wide significance was alpha=5x10-.
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Overlap in GWA signals

Association with asthma among the 1,699 SNPs with
genome-wide significant p-values for BMI

#p<005 ®p<5x105 = p<5x10® =Notassociated with asthma

Figure 1. Overlap in GWA signals between asthma and BMI. Results for asthma are for the
analysis of all asthmatic subjects (35,373 asthmatics vs. 270,572 non-asthmatics). Results for
BMI are for the quantitative BMI analysis (n=305,945). Both analyses are sex- and age-
adjusted. The threshold for genome-wide significance was alpha=5x10-.

Regional plot around rs705708 for BMI
(blue) and asthma (red)
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Cross-phenotype associations in 12q13.2

Table 2. Cross-phenotype associations in 12q13.2*

BMI-
SNP Gene Effectireference allele | EAF 5% CI) 3
2069408 | CDK2 | 56,364,321 GIA 3388 50510 [ 0.06 (0.0 40x107
1873914 | RABS 379421 CIG 4237 .40x107_| 0,05 (-0.0° 90x10°
13705702 3376 .10x10™ | -0.05 (. 10x10%
1310876864" | SUOX. K 4279 | L. X S0x10° | 0,05 (<. 60x10°
1701704 | IKZF4_| 56412487 GIT 03433 11.07(1.05,1.09) | 1.50x10 | -0.06 (:0.09,-0.04) | 3.70x107
152456973 | IKZF4_ | 56,416,928 CIA 03432 | 1.07(1.05,1.09) | 1.50x10™ |-0.06 (:0.08,-0.04) | 6.00x107
m11171739% | ERBB3 | 56470625 CIT 04337 11.06(1.04,1.07) | 880x10": | -0.05 (:0.07, - 1.10x10%
152292239 | ERBB3 | 56,482,180 T/G 03470 | 1.07(1.05,1.08) | 450107 |-0.06 (:0.08,-0.04) | 4.20x107
™705708 | ERBB3 | 56488913 A/G 04712 ]1.05(1.03,1.07) | 720x10° | -0.06 (0.0, 130x10%
11171747" | ESYTI | 56518408 T/G 0.6180 | 1.04(1.02,1.05) | 2.90x10° | -0.06 (:0.08,-0.04) | 4.50x107

Abbreviations: BP = base-pair ; BMI = body mass index; CI = confidence interval; EAF = effect allele frequency; OR = odds ratio; SNP = single-nucleotide
polymorphism

Results shown for SNPs with p < 5x10°* for asthma and p < 0.05 for BMI.

For intergenic SNPs, the nearest gene is lsted, with priority given to genes directly downstream of variant.
P-value from BOLT-LMM, derived using the standard “infinitesimal” mixed model.

P-value from BOLT-LMM, derived using the Gaussian mixture model,
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Decomposing the effect of rs705708 on BMI
via mediation analysis

Among childhood asthmatics Adult asthmatics (n=16,801) and

70

(n=4,817) and common set of non-
asthmatics (n=181,304)

total effect = -0.0656

direct effect = -0.0655
IS705708 cr-r - BMI

+ 0 # varies by sex

asthma

indirect effect = -0.0001*

Population Average

common set of non-asthmatics
(n=181,304)

total effect = -0.0560

direct effect = -0.0582
rs705708 ;- s BMI

+

asthma”

indirect effect = 0.0022

Population Average

Note: Effect estimates shown are adjusted for common determinants of asthma and
BMI: age, sex, breast-feeding status, exposure to maternal smoking, and smoking
status at asthma diagnosis (adult analyses only). Unless otherwise noted by an
asterisk(*), all paths are significant at the 0.05 level.
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Conclusions

* rs705708 has a positive direct effect on asthma

+ Stronger in magnitude for childhood asthma

+ rs705708 has a negative direct effect on BMI

+ Consistent in magnitude and direction in analyses
including childhood vs. adult asthmatics

+ This suggests that locus 12q13.2, tagged by rs705708, has

pleiotropic effects on asthma and BMI.
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Conclusions

* 12q13.2 is multigenic and our CP associations span genes
CDK2, RABS5, SUOX, 1ZK4, RPS26, ERBB3, and ESYT1.

« rs705708 is the top regional BMI signal and resides in ERBBS3.
« The top regional asthma signal, rs2456973, resides in IZKF4.

*  While rs705708 and rs2456973 could be in LD with the same
causative variant in either ERBB3 or IKZF4 or another gene in
12913.2, it is also possible that each variant could tag a distinct,
trait-specific causative variant in different genes.

« Therefore, locus 12q13.2 displays pleiotropic effects on
asthma and BMI, but this may not be an example of pleiotropy

at the gene level (biological pleiotropy).
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Pleiotropy exercise (Part 3)

Univariate:

Phenotype 1 _P<5x10%

P<5x108

> Multivariate —_

P<5x10%

Univariate:
Phenotype 2

Mediation
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Mendelian randomization:
An Introduction

Andrew DeWan, PhD, MPH
Associate Professor of Epidemiology
Director, Yale Center for Perinatal, Pediatric and Environmental Epidemiology
Yale School of Public Health

05 5010 71 Years 014 N Eng 3 Med 255785778

Yale scroor oF pUBLIC HEATTE [Adams ot a1 (2008) Overwoiont. Ovesty ana woriatty

1 2

p - ” ~ e BMI and Bloodstream Infection (BSI)/Sepsis
The “Obesity Paradox I ~ Mortality

aseor 1

10,05 0001635
o0

. o wmon osiforsosm

a4,

Areas of Concern (BMI/BSI as an example)

« Selection Bias: If obesity is associated with BSI risk, non-obese
patients may have other characteristics that cause their BSI that in
turn are more strongly associated with mortality

* Reverse Causation: if measured BMI is affected by BSI

» Confounding: if factors such as chronic diseases and smoking habits
that affect both BMI and BSI mortality are not adequately adjusted
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Mendelian randomization

* Mimic randomized trial using genetic data as instruments for
exposures

* Leverages information on genetic variants that segregate randomly at
conception

« If an association between the instrument and outcome is detected, a
causal relationship for this association is strengthened

MR Assumptions

* The genetic instrument (G) is associated with the exposure (X)

* The genetic instrument is not associated with any confounder (U) of
the exposure-outcome association

* The genetic instrument is conditionally independent of the outcome
(Y) given the exposure and confounders

—e— Risk factor-outcome association
~~ce= Mendelian randomisation results

N ——— Mean difference (95% CI)

Dairy consumption on systolic blood pressure (serving/day)*’ =
Uric acid on blood pressure (SD)"* -
10 05 20 25 30
Binary outcomes
Uric acid on heart disease (SD)"* P ol -
Vitamin D on mortality (20 nmol/L)” e
CRP on heart disease (SD)’2 = -
LDL-C on myocardial infarction (SD)* T e
HDL-C on myocardial infarction (SD)* e -
BMI on coronary heart disease (SD)'*
o4 07 10 19 22 25 28

10

CRP and Heart Disease

Single nucleotide  Allele _ No of studies/cases  Per allele higher Per allele higher Per allele risk Per allele risk
Polymorphism  frequency® " jpanicpanist ~  mean n Ch ‘mean n CRP "atiofor CHD et for D
(95% C1), mg/L. (95%C), mg/L (5% ) (95%C1)
53093077 006 19/15133/96807 — 020170020 093 087101.00)
51205 067 43/40527/172567 - 018(01610020) 10009810 1.02)
1130864 030 41/37145/157 905 - 01301210015 098 (09610 1.00)
151800947 094 31/31636/93 507 ~ 0260230029 099094 101.03)
o1 0 0102 03 08 085090095 1 105 110
Risk ratio* (95% CI) Risk ratio* (95% C1)
for CHD per 1 S| or CHD per 15D
higher In CRP (mg/L) higher In CRP (mg/L)
Circulating usual concentrations of CRP ! (me/1) 8! (mg/1)
Adjusted for age, sex, and ethnicity —_— 1.49 (1.40 to 1.59)
Further adjustedt b 1.33(1.23t0 1.43)
Genetically raised concentrations of CRP#
SNP analyses 1.00 (0.90 t0 1.13)
Haplotype analyses 1.00 (0.89 t0 1.12)

BMI and CHDIStrokel Type 2 Diabetes

b stoke

Diabetes

11




One-sample

* Genotype(s), risk factor and
outcome all measured in the
same set of study subjects

* Individual level data must be
available

One-sample vs. two-sample designs

Two-sample

* Genotype(s) and risk factor
measured in one set of study
subjects and genotype(s) and
outcome measured in a separate
set of study subjects

* Can use summary statistics or
individual level data

One-sample vs. two-sample designs

Assumption/Issue One-sample

Two-sample

Instrument variable related to risk ~ Weak instrument biases towards

factor the confounded regression result

Confounders Can (and should) check this for
measured confounders

Pleiotropy Multiple methods to explore this

issue (including MR-Egger)

Subgroup analyses Possible if large sample sizes and
data on relevant risk factors are
available

Bias from adjustments made in
GWAS

N/A as all adjustments made in the
same set of subjects

Weak instrument biases towards
the null

Not often possible when using
summary statistics

Multiple methods to explore this
issue (including MR-Egger) and may
be more powerful with large
consortium datasets since methods

tend to be statistically inefficient
Only possible if individual level data
are available

Summary data may or may not
have been adjusted

13
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« Single or multiple variants

Selecting genetic variants for an instrument

* Current recommendation is to select variant(s) that are significantly
associated with the exposure at the genome-wide level

* Want a strong genetic instrument to avoid weak instrument bias
* Asingle variant or variants with modest effects in small samples are likely to
have low power and can suffer from bias

« If selecting multiple variants these should not be in LD and assumes
negligible gene-gene interaction among variants

Instrument strength

exposure

N: sample size
K: number of genetic variants

* Measured using the F statistic in the regression of the IV on the

R2: proportion of the variance of the exposure explained by IV

General Rule: F < 10 is an indication of a weak instrument

15
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Pleiotropy

* Assumption that the IV is not
associated with Y independently
from X

causal estimate

« Sensitivity analyses such as MR-

not the pleiotropy assumption has
been violated

* Presence of pleiotropy can bias the

Egger can be used to test whether or

—e— Risk factor-autcome assaciation
—m- Mendelian randomisation resuls

0dds ratio (95% C1) of coronary heart

disease per 15D increase in HDL cholesterol

HDL-C-CHD association from Ef
MR inverse variance weighted
MR Egger estimate from Bowden et al”
Weight
Weighted mode estimate from Hartwig et al

mate from Bowden etall?  eemt

jan estimae from Bowden el al

Testing MR: Wald Ratio

« Simple ratio of the effects of the
instrument variable on the
outcome over the instrument
variable on the exposure ~

* Can be implemented in both one
and two sample designs

* One sample can use either a single
variant or a GRS

* Two sample design that uses
multiple variants requires a
method for combining Wald Ratios

BIV

_ P

B

17

18
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Testing MR: 2 stage least squares (2SLS)

« Single continuous instrument * Regress Xon G

(GRS) * Calculate genetically predicted
* Only for one sample method values of X
* Assumes a linear relationship * Regress Y on genetically

between exposure and outcome predicted values of X

* Fix the standard errors (e.g.
sandwich estimator)

Testing MR: Inverse variant weighted

For each variant calculate the Wald ratio:

* One or two sample designs

« Tends to give more reliable G _ F_,
results in the presence of J ¥
heterogeneity and when using ) . .

. Combine into an overall estimate using a
large number of instruments

formula from meta-analysis literature:

52 20
« Fixed (assumes no heterogeneity - Zij Oyj B;
across SNP) or random effects ww = ZAZ—_Z
meta-analysis jYjOyj

19
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Testing MR: Weighted Median

* Calculate the Wald ratio for each instrument
* Select the median value according to the weighted method

B B B B B B B BB P 1 1

095
085
o8
085
085
045
0as
0z
015
+oos
£

0

Simple median 085
Weight ()
Percentile (p

chgepeticyariant ()

* Valid estimate when more than half of the genetic variants satisfy the IV
assumptions

* No single IV contributes more than 50% of the weight

Testing MR: MR-Egger

* Provide a valid causal estimate in the presence of some violations of the
MR assumptions (mainly pleiotropy)

* MR consisting of a single study with multiple IVs is analogous to a meta-
analysis

+ Bias resulting from pleiotropy is analogous to small study bias in meta-
analysis
+ Small studies with less precise estimates tend to report larger estimates than big
studies with more precise estimates
* Regress the standard normal

deviate (odds ratio divided gl s 52 Qisis4

g2
by its se) on the estimate’s £o &x -
precision (inverse of the se) 6 .
4
* Without bias, intercept = 0, 4 .. .
and in the presence of bias 2 o . : e ) °
. . I DR R S .
the intercept is a measure of Oy o 05 i 2 A Lg 0s 1 2 o
asymmetry O rato 0dds ratio

21

ncessing
erumant
gt

- ww
- Egger

—t

Databases and software

Table 3 | Databases of genome-wide association study results

Number Integrated with
Data source Description of traits statistics package?
MR-Base A curated database of genome-wide Over 1000 Yes

association study results with
integrated R package for MR*

PhenoScanner A curated database of genome-viide Over 500 Yes
association study results with
integrated R package for MR”

GWAS catalog  Searchable database of genome-wide Over24000  No
association study results™




Body mass index and risk of dying from a
bloodstream infection: A Mendelian
randomization study

Tormod Rogne('23*, Erik Solligard 2, Stephen Burgess*°, Ben M. Brumpton»®7:8,

Julie Paulsen(>®, Hallie C. Prescott»'®'", Randi M. Mohus "%, Lise T. Gustad " "2,
Arne Mehl'2, Bjern O. Asvold %%, Andrew T. DeWan'*, Jan K. Damas»"'*1%*

PLOS Medicine | https:/doi.org/10.137 1/journal.pmed.1003413 November 16, 2020

Assess the causal association between BMI and risk of and mortality
from BSI by overcoming the limitations of previous observational
studies by conducting an MR study in a general population of
approximately 56,000 participants in Norway with 23 years of follow-up

Study Population

* The Trondelag Health Study (HUNT) is a series
of cross-sectional surveys carried out in Nord-

Trondelag County, Norway

* 130,000 inhabitants who are representative of
the general Norwegian population in terms of
morbidity, mortality, sources of income and age
distribution

* Based on HUNT2 survey conducted in 1995-
1997 with 65,236 participants, 55,908 of whom
had complete data for the analysis

25 26
Outcome
13 18
1,955 (3.7) 144(6.2)
— — — * Linked to all prospectively recorded blood cultures at the two
e S e community hospitals in the catchment area (Levanger and Namsos
1617 294 723.090) s 269) Hospitals) as well as St. Olav’s Hospital in Trondheim (tertiary referral
) ) P center)
FERrere Heom « Data on blood cultures were available from January 1, 1995 through
13810 (27.4) 397 (19.4) 64(18.2) the end Of 2017
e o * Date of death and emigration out of Nord-Trondelag County were
108203 Ba0s) obtained from the Norwegian population registry
St bloodsccam ifection. Data e prseedas * BSI was defined as a positive blood culture of pathogenic bacteria
. coninuaton * BSI mortality was defined as death within 30 days of BSI diagnosis
27 28
Genetic Instrument Analysis Methods
* Based on a BMI meta-analysis of ~700,000 individuals ....... s s * Fractional polynomial model (suggestion of a nonlinear relationship
o e o e between BMI and BSI)
* 939 of 941 SNPs identified as associated with BMI (p<5x10°8, two . X X .
SNPs did not pass imputation quality control) . 2—s.tage Ieast.squa'res (with sandwich estimator) for analyses assuming
o . a linear relationship between exposure and outcome
* Genetic risk score (GRS) was calculated for BMI using the --score o
command in PLINK (version 1.9) and weighted based on the effect * Sensitivity analyses
estimates from the meta-analysis * MR Egger (random effects)
* INW
* Weighted median
* GRS (939 variants) explained 4.2% of the variation in BMl in the « 2-sample (using Yengo et al. for SNP-exposure associations)
population (F-statistic = 2,461)
29 30
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Table 1. Background chractrisis

Hazard ratio for B incidence

50
Body mass index

31 32

2
L

-2
L

Instrument-outc%me associations
L

Hazard ratio for BS| mortality

05 <
v T T T T T
0 .05 A 15 2 25
Instrument-exposure associations
* Instuments 959 Cls MR Eggor MREqger95% Gl — — = VW
% £ E3
Body mass index
S5 Table. Mendel I body
bloodstream infection mortality in the general population - N e . . . X
WROR  bowe  Uppe P e Lover  Upper v STROBE-MR: Guidelines for strengthening the reporting of
Mendelian randomization studies

Authors (in alphabetical order):

George Davey Smith, Neil M Davies, Niki Dimou, Matthias Egger, Valentina Gallo, Robert

Golub, Julian PT Higgins, Claudia Langenberg, Elizabeth W Loder, J Brent Richards, Rebecca

i C Richmond, Veronika W Skrivankova, Sonja A Swanson, Nicholas J Timpson, Anne Tybjaerg-
Hansen, Tyler J VanderWeele, Benjamin AR Woolf, James Yarmolinsky

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.27857v1 | CC BY 4.0 Open Access | rec: 15 Jul 2019, publ: 15 Jul 2019,

35 36
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Some Advanced MR analysis approaches

Strong evidence
of causation

Very weak evidence
of causation

Uy

i G Y
=/ =/

VS

B)
)f1 T

G

Burgess and Thampson

uan ot a1 (2022) Lieliod-based Mondelan randon zation analysis win sutomaisd

Inatrument selaction ana horzantal peitropic modain

Biehmond ot s (2014) Assassing Causaily n tne Associaan between Chi
Aciposity and Physical Actuily Levels: A Mendelan Randomization Analsis. PLoS.

S Adv. 5. eabis7es (2022)
Wed 1103) s1001512

Osvie 51 (2018) escing Mendelion andomiston
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COMRBASE

http://app.mrbase.org/
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review of RCTs
RCT
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outcome GWAS
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Genotype Pattern Mining For
Digenic Traits

Advanced Gene Mapping Course, May 2023

Jurg Ott, Ph.D., Professor Emeritus
Rockefeller University, New York
https://lab.rockefeller.edu/ott/
ott@rockefeller.edu

PH +1 646 321 1013

Frequent Pattern Mining
https:/ /www.philippe-fournier-viger.com/spmf/

O  Thirty years ago, supermarkets started collecting huge amounts of consumer data
at their cashiers. Consumer habits - if someone buys bread and milk, how likely
will they also buy wine?

O  Apriori algorithm (Agrawal et al, ACM SIGMOD Conference on Management of
Data 1993; 207-216): Efficient search for frequent sets of items (“itemsets”,
patterns) purchased by a consumer (“transaction”). (1) Development of
association rules, that is, conditional probabilities P(Y | X), with Y and X being
items or itemsets. (2) Apriori property: “If an itemset is infrequent, all its
supersets will be infrequent”. Recursive search for longer patterns.

O Research published in conference proceedings, less so in traditional journals.

O  Other implementations of search algorithms, e.g. fpgrowth (written in C)
(hitps://borgeltnet/softwarehtml), SPMF (in java). Huge memory demands.

Ot "Genotype Patterns” 3

Genetic Interactions between Variants
Okazaki & Ott (2022) Trends in Genetics 38 (10):1013-1018

1. Traditionally, disease association has been carried out at the level of alleles or
genotypes. The total number of pairs can be prohibitively large. While this level of
analysis generally requires the most effort, it also entails the highest degree of
precision in the sense that disease-causing elements can be directly traced down to
nucleotides.

2. Working with pairs of variants provides some economy of computational effort but
may ‘dilute’ a signal from a single genotype pair when all nine genotype pairs in a
pair of variants are analyzed jointly.

3. Finally, focusing on pairs of genes represents the most economical approach but is
also the most imprecise among the three strategies. Also, focusing on genes disregards
susceptibility elements outside of genes. Distant-acting transcriptional enhancers have
been known for over 10 years to affect susceptibility to human disease and noncoding
RNAs have been shown to be associated with many diseases, for example, cardiac
hypertrophy.

Ot "Genotype Patterns” 5
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Topics

O Science develops independently in different fields
®  Frequent Pattern Mining
B Human gene mapping
O Mining consumer databases
B The Apriori algorithm (30 years ago)
B Newer algorithms: eclat, fpgrowth

O Case-control association analysis

GWAS: Main effects in genetic association studies

Digenic traits (20 years ago)

MDR, Multifactor Dimensionality Reduction (20 years ago)

Differences in interaction between cases and controls
AprioriGWAS (10 years ago)
Newest approaches, Vpairs and Gpairs programs
Analysis of AMD dataset
Ott "Genotype Patterns" 2

Digenic Traits

Ming & Muenke (2002) Am | Hum Genet 71, 1017 (review)
Schatfer A (2013) | Med Genet 50, 641-52 (review)

. Gine 1 GENE 2
EFFECT AND
PHENOTYPE Mutation Phenotype Mutation Phenotype
Synergistic:
Normal Normal
RP Normal Normal
Bardet-Bied! Normal BBSG Normal
Deafness Normal GJB6 Normal
Deafness Normal GJB6 Normal
Hirschsprung Normal EDNRB" Normal
Severe insulin resistance Normal PPPIR3A "M% Normal
Modifier:
Juvenile-onset glaucoma  MYOC Adult-onset glaucoma  CYPIBI "t Normal
Usher 1 USH. Usher 3 MYO7A Normal
Congenital nonlethal JEB COLI7AT**S5% Juvenile JEB LAMB3 Normal

More severe ADPKD PKD1 e Less severe ADPKD PKD2"" Less severe ADPKD
More severe hearing loss Mild hearing loss ~ DFNA2 Mild hearing loss
WS2/0A 2Ws2 TYR ™0 Normal
More severe WS2/OA 2WS2 TYRUPQG Normal

Ot "Genotype Patterns” 4

Pairs of variants (SNPs)

Interaction differences cases vs. controls

O Plink, --fast-epistasis: Implementation of an approximate genome-wide
interaction analysis for all pairs of variants (SNPs)

O  Hyperlipidemia data: 5 relevant genes, ~200 variants in each gene, look for
interactions in each pair of variants. Work with LR chi-square!

CASES Variant 1 CONTROLS | Variant 1 Data__[chi-sq_| df
Var2 |GG |GT_[TT Var2 |GG [GT [TT cases

AA AA controls

AC .. AC .. both

cC | | cc heterogeneity

¥Heterogeneity = Y Cases *+ Y*Controls — Zboth

O Vpairs program, likelihood ratio test,
https:/ /www jurgott.org/linkage/ GPM.html

O For specific sets of variants: Sophisticated analysis by logistic regression
(Cordell, Nat Rev Genet 2009;10:392-404), allowing for covariates and >2 SNPs.

Ot "Genotype Patterns” 6



https://lab.rockefeller.edu/ott/
mailto:ott@rockefeller.edu
https://borgelt.net/software.html

Finding disease-associated pairs of
variants or genotypes

O Multifactor Dimensionality Reduction (MDR)
Ritchie MD, Hahn LW, Moore JH. Power of multifactor dimensionality reduction
for detecting gene-gene interactions ... Genet Epidemiol 2003;24:150-157

O Zhang Q, Long Q, Ott ]. AprioriGWAS, PLoS Comput Biol.
2014;10(6):€1003627
Apriori applied to GWAS: In the absence of strong main effects, we need to
directly search for genotype patterns (at two [or more] variants) with different
frequencies in cases and controls, without consulting main effects.

O Applying off-the-shelf pattern search algorithms
Chee C-H, Jaafar ], Aziz IA, Hasan MH, Yeoh W. Algorithms for frequent itemset
mining: a literature review. Artificial Intelligence Review. 2019;52(4):2603-21

O Construction of Bayesian network
Guo Y, Zhong Z, et al. Epi-GTBN: An approach of epistasis mining based on
genetic Tabu algorithm and Bayesian network. BMC Bioinform 2019;20:444

Ott "Genotype Patterns" 7

Vpairs program: All pairs of SNPs

https://www jurgott.org/linkage/GPNM.html

Klein et al. Complement factor H polymorphism in age-related macular degeneration.
Science. 2005;308(5720):385-9

Trend test in plink, all 103,611 SNPs, 96 cases, 50 controls:
pBon = #SNPs x pNom
EMP2 = p-value via 100,000
permutations

O  Evaluate all pairs of SNPs, disregarding the two significant SNPs and any
SNP pair with both SNPs on same chromosome:

CHR SNP CHISQ
[ 1 lmse0390 | 2e.18]
[7_[rs1329428 | _24.0]

pNom | EMP2 | pBon
3A1E-07] _0.0117] 00322
8.68E-07] 0.0361] 0.0900]

ooQg

O Min. 10 occurrences of a SNP
pair; run time 5.9 mins, 30 CPUs
O  pBon =#SNP pairs x pNom

103,609 SNPs
5,050,626,692 SNP pairs, different chromosomes
168,354,224 sNP pairs for each of 30 cpus
294,643,816 SNP pairs tested

O  Permutations too time-consuming

chisqadf | ch1 pNom | _pBon
4.67E-09) 1

O  Despite heavy Bonferroni
penalty, significant result.

49.9547| 6 |rs690,
446653] 6 |rs104..

Ot "Genotype Patterns” 9

Combine genotype pair results for prediction
Data based on: Dewan et al., HTRA1 promoter polymorphism in wet age-related
macular degeneration. Science. 2006;314(5801):989-92 (AMD data from Hong Kong)

O Many genotype pairs with a = 0 or ¢ = 0. Such patterns, X, uniquely
identify the phenotype of an individual carrying X.

o gﬁa{nple with AMD Z: Proportion correctly
ata: classified cases
O 96 cases °* 'and controls
07
u] 127 controls 06
O 81,295 SNPs 05
O Combine effects of |
best genotype pairs.  |**
02
O  Todo: Verify results |, Number of genotype
with cross-validation. |, pairs combined
1 0 100 1000
Ot "Genotype Patterns” 11
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Exhaustive search for interacting SNPs

O “Discovering Genetic Factors for psoriasis through
exhaustively searching for significant second order SNP-
SNP interactions”

O Kwan-Yeung Lee, Kwong-Sak Leung, Nelson L. S. Tang & Man-Hon Wong.
Sci Rep 2018;8:15186

O  Abstract: To deal with the enormous search space, our search algorithm is
accelerated with eight biological plausible interaction patterns and a pre-
computed look-up table. After our search, we have discovered several
SNPs having a stronger association to psoriasis when they are in
combination with another SNP...

Ott "Genotype Patterns" 8

Gpairs program: All pairs of genotypes

hitps://www jurgott.org/linkage/GPM. html

O  Evaluate all pairs of genotypes for SNPs. For each SNP pair, analyze each
of the 9 genotype pairs: 12,894, 854,063 genotype pairs tested. For each

genotype pair, X, make 2 x 2 table: No-of ndvidusls
O  Min. 20 occurrences of a pe pair. Phenotype, ¥ with X_| Without X
Run time 12.6 mins, 30 CPUs. Affected, "case” a [ b
Unaffected, "control” c | d

O  pBon = #genotype pairs x pNom; no
significant results. Genotypes AA =1, AB=2,BB=3

rs1 g1 | ch2 rs2 g2
rs139.. 3 7 |rs235.. 3
rs928.. 3 | 20 |rs727.. 3
rs721. 3 | 18 |rs105. 2
rs150.. 3 9 |rs105.. 2
O  Prediction, classification: ¢ =0 — person with X must be a case!
Ot "Genotype Patterns” 10

10



https://www.jurgott.org/linkage/GPM.html
https://www.jurgott.org/linkage/GPM.html

Genetic risk prediction

Genotype of an individual

(Common SNPs)

» Life-time risk of genetic disorders

(Common complex genetic disorders)

Effect sizes of individual variants are very
small

* Genotype at a single locus carries very little
information about phenotype.

* It does not mean that one cannot predict phenotype
from genotype.

* Accuracy (r?) of an ideal genetic predictor equals
heritability.

Measuring risk of myocardial infarction

Coronary Risk Prediction in Adults
(The Framingham Heart Study)

PETER WF. WILSON, MD, WILLAM P. CASTELLI, MD,
and WILLIAM B. KANNEL, MO

‘The Framingham Heart Study, an ongoing prospec-  functon that allows calculation of the conditional

v sty of adut men and women, has shown that  probabilty of cardovas Gotormi-
3 5,208 men and
velopment of coronary artery dls0aso. These faclors  Women particpating n the Framingham study. esti-
Include age. gender, lolal cholestero evel, high  mate coronary artery disease rsk over variabie pe-
y blood  riods o folow.up.
prossure. cigarete smoking, gucose infolerance ffom <1% 0 >80% over an arbiarly selected 6-
yper they are typically <10%

phy h and 25%

chost x.ray). Colculators and compulers can bo  women.

easily programmed using a multivariae logitic (Am J Cardiol 1987:59:91G-84G)

LDL levels and risk of disease

Annals of Internal Medicine ‘ ARTICLE

Nonoptimal Lipids Commonly Present in Young Adults and Coronary
Calcium Later in Life: The CARDIA (Coronary Artery Risk Development
in Young Adults) Study

i inghlt, 0. a4 Stan . e, D, P

~3500 subjects < 35 years old

LDL levels and risk of disease

P <0.001

Prevalence of Coronary Calcification

White Men

<181 mmol/L (<70 mg/dL)
[011.81-2.56 mmol/L (70-99 mg/dL)
[012.59-3.34 mmol/L (100-129 mg/dL)
[013.37-4.12 mmol/L (130-160 mg/dL)
124,14 mmol/L (2160 mg/dL)

LDL levels and risk of disease

<181 mmol/L (<70 mg/dL)
[01.81-2.56 mmol/L (70-99 mg/dL)

[13.37-4.12 mmol/L (130-160 mg/dL)
124,14 mmol/L (2160 mg/dL)

S
Average LDL United
States

White Men Pltcher et ol Ann Itern Med 2010
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Selecting populations for treatment

Why estimate genetic risk?

* An estimate of the long-term risk at birth

* Genetic risk can be combined with biomarkers and clinical
features

* Genetics explains about 50% of risk. One cannot predict
risk any better than that but 50% is a non-trivial
proportion of risk

BLUP — Best Linear Unbiased
Predictor

* Infinitesimal model

* Genetic effects are random

+ Predict the expected genetic
effect

Accuracy of polygenic prediction in
cattle

Poor transferability between breeds!

10

* LD-prune

Applications in humans

LETTERS

Common polygenic variation contributes to risk of
i i ipolar disorder

* Exclude SNPs of very small effect

Extensions of BLUP — multiple variance scales
and binary phenotypes

MultiBLUP: Speed and Balding. Genome Research 2014
Bayesian analysis: MaclLeod et al. Genetics 2014

BSLMM: Zhou et al. PLOS Genetics 2013

GeRSl: Golan and Rossett. AJHG 2014

11
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Methods that work with summary statistics

* Summary statistics are easily available

* Most methods require a separate small individual level dataset to
tune parameters

LDPred — a Bayesian method using summary

statistics

n
N 0,—% | with probability
ﬁ,w{ ( Mp) P i Viimsan 1. 2015

0 with probability (1 - p),

Also, check BayesR

13

14

Extreme tails in the distributions of genetic risk scores are
highly predictive

b 13
100 Highest 1% —»e
%0 10
. 8
R g 84 Highest 5%
2 g
2 60 H .
2 S o <3
50 H -
© H *
20 g 4 Average risk Seal
& X
® A "
10 A
3 04
T T N A s e e e
Gontrol Case 0 10 20 30 40 50 60 70 80 90 100
Coronary Artery Disease Percentile of polygenic score

Khera et al. 2018

With some caveats

15

16

Linear models for genetic risk prediction

5= Dy
s

Genotype of SNP j and individual i
Genetic risk of

individual i
Effect size of SNP

“Polygenic scores” can leverage summary statistics from a large

™1

Estimated effect size
Predicted genetic risk

17

113

18




“Polygenic scores” can leverage summary statistics from a large
GWAS study

Vi = ZE/XU'
"

‘ Estimated effect size
Predicted genetic risk

sampling error

Non-causal SNPs

Estimated effect sizes (f;)

“Polygenic scores” can leverage summary statistics from a large
GWAS study

‘ P-value Thresholding ‘

Vi = ZE,‘XU
j

Non-causal SNPs

Y R

al SNPs

Estimated effect sizes (f;)

P-value thresholding can be reformulated as “shrinking” The optimal polygenic score can be constructed with
estimated effect sizes “conditional mean effects”
‘ p-value Thresholding ‘ 9 = ZE[ﬁJ ”?J]Xij
9= 10| < @)y ’
J
§ é Conditional mean effect
Estimated effect sizes (£;) Estimated effect sizes (£)
Goddard et al. 2009

Accounting for LD in summary data is a major challenge

« Correlation between apparent true genetic effects

Estimated effects: A A
True effects: By B2
@ sne

——— LD effect

LD block

Accounting for LD in summary data is a major challenge

« Correlation between apparent true genetic effects

Estimated effects:

B, b2

True effects: By

« Correlation between sampling errors

. S e

e e e e

—O0—0— 00—

—0—-0—~ —O0 0 —
GWAS Controls GWAS Cases

23
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Our approach (“Non-Parametric Shrinkage” or NPS)
* No explicit specification of genetic architecture prior, thus “non-

parametric”

* Learn conditional mean effects directly from training data

« Fully account for correlation in summary statistics

Our approach (“Non-Parametric Shrinkage” or NPS)

* No explicit specification of genetic architecture prior, thus “non-
parametric”

* Learn conditional mean effects directly from training data

1. How to estimate E[Bj | Bj] without a Bayesian prior on 8

* Fully account for correlation in summary statistics

—'{ 2. How to deal with LD

Partitioned risk scores Piecewise linear interpolation on shrinkage curve
Estimates of genetic effects in GWAS data (4))
Individual i "
u Partition SNPs into K subgroups: i
] B cwassignificant Se={j:ber <|B| < b} g
[ Gua = Byl (an < 1B1) H
" = i Partitioned risk scores: Gy, = z Bixij »
S I =
[ | B sub-threshold l cases
cases -
| | Gir= Z/?,x”l(nz <IBjl<a) controls COHUO‘SE Estimated effect sizes ()
n ' LA |
[ [ Noise Partition 1 Partition K
= Gis = Bl (] < @)
7
How to deal with LD? Decorrelating linear projection P
AB/ab
T is a local LD matrix and £ = Q A Q" by eigenvalue decomposition
I =QA7 Q" = (QAT*) (472 Q")
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Accuracy of the 5% tail

Method

Loprea
ors-cs
I e

or

Other shrinkage methods: PRS-CS

02
B~ N(Owwj) ¥ ~g,

Prior density of f;: central region

-
.
W e wm e e we e Chun et al. AJHG 2020 3 ) 3
BayesR .
LDAK-Bolt-Predict
0 with probability 7, ,
. - b Existing Tools
N(0,y,03)  with probability ,, (same prior parameters for all SNPs) (SNP-specife prior parameters)
Al = D U U S W
A
WeT s s e

EMise7  ENRSe7  Endise EMioer  EMieer Ehiees ENieer ertse

N(0,yc0%) with probability 1 — Y7 7,

Lassosum — extension of LASSO

33

34

What makes PRS non-transferrable?

« Differences in allele frequencies between populations

« Differences in LD between populations

« Differences in effect sizes (although likely a minor contribution)

Slight differences in genetic effects between
populations

Genetic correlations between populations are close but not equal to 1.
They are not uniformly distributed along the genome.

: iﬂﬂﬂmﬂﬂ T

R P

35
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PolyPred

PolyPred

Large European sample

(n>100,000) BOLT-LMM effect sizes.

PP o ) -

L b e

PolyPred effect sizes

L

Small training sample
from target cohort (n = 500)

Weissbrod et al., Nature Genetics 2022

37
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Forces responsible for genetic change

Mutation

. Sie
Population structure RS.)) Fsr

2.5x108 (Nachman & Crowell) 1.8x108 (Kondrashov)

NGS estimates ~1.2X108 per nt changes genome
~70 per nt changes genome

Other events: indels (10-9)

repeat extensions/contractions (10-°)

3
Mutation rate is variable along the genome
» = RARRRRRRRRY
0503z 1y

DNA damage

DNA repair

CpG deamination

Regional variation of mutation rate

Context dependence of mutation rate

118

Mutations

Number of de novo mutations per
individual

204

.i"l il -,

40 80 120 160
Number of de novo mutations per proband

od 1

Jonsson et al., Nature 2017

Genetic drift




Drift is a random change of allele
frequencies

Genetic Drift in 100 Diploids

! L R
100 120 140 180 180 200
Generation

L L L L
1) 20 40 B0 80

Effective population size

* In an idealized model, the intensity of
genetic drift depends on population size
(mean squared change in allele frequency is
proportional to 1/Ne)

* In more realistic situations, effective
population size (Ne) is a parameter
characterizing intensity of drift

Past Population Size
51] OQAsplitandbottleneck _ __ _______M____.
=
<
o
£
a 23 European second bottleneck, . _ |
growth begins
5.1} Accelerated growth begins _ _ _ _ _ _ _ _
Today
Africans (N_=424,000] Europeans (N_=512,000)
(N, ) 80%\ 7 20% peans (N, )
Tennessen et al. Science 2012
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Drift depends on population size

0.4 4

o+ R4
a0l Ny ANy
S 10 15 20 25 30 35 40 45 S0

Allele frequency

Generations

8
Demographic history
10
Selection
12




Most functional mutations are deleterious

Selective effect of mutation
|

r 1
Deleterious Neutral Advantageous

Functional
New
mutation

Nonfunctional

Selection indicates functional mutations, whether or
not the tested trait is under selection

13

Conservation can be due to very weak
selection!

Every new mutation eventually will ither fixi rl
s — selection coefficient

N, - effective population size

For humans estimated to be ~ 10 000

(1-e)

K=Ky2N,
0N S )

K/Ko CRe—
N
\
\

X Complete

Neutral

behavior \\
\

\
=
10°  10°  10*

103  Selection coefficient, s

15

Methods of mathematical
population genetics

17

120

Selection coefficient

+ Selection coefficient (s) is the expected
relative loss of fitness due to the
sequence variant

« Variants with selection coefficients less
than ~1/Ne are insensitive to selection.
This is the drift barrier

14

Basic facts about human genetic variation

* Nucleotide diversity (density of nucleotide
differences between two randomly chosen
chromosomes) is about 0.001

* Most common SNPs are very old (~300-400K
years old)

+ Protein coding regions are showing clear signs
of selection (reduced diversity and excess of
rare alleles)

16

Dynamic of allelic substitution

Mathematically, allele frequency change in a population
follows a one-dimensional random walk

time

18



Diffusion approximation

Random walk that does not jump long distances can be
approximated by a diffusion process

I¢(x.p.t)  IM(x,p.1) l 3*Ve(x,p.t)

a ax 2 o’

19

Signatures of purifying selection

Reduced variation

Excess of rare alleles

21
Number of segregating sites
.TCAAGTCAAGCGATCATG.
.TCAAGTCAAGCGATCAFGG .
.TCAGGTCAAGITGATCATG .
. TcA@GecTCARAGEGATCATG.
. TCAAGTCAAGCGATCA@EG .
.TCAAGTCAAGCGARBCA@GG .
k — number of sites variable in the sample
density of segregating sites is also frequently used
k is dominated by rare alleles
k strongly depend on sample size
23

121

Coalescent theory

Instead of modeling a population, we can model our sample

Time goes backwards !

20

Commonly used summary statistics
to characterize variation

22

Nucleotide diversity
= n(nz_—l)zdij

= %ZZpk (1 —px)

dj; - number of nucleotide differenced
between sequences i and j

P« — allele frequency at site k

n — the average density of nucleotide differences
between two sequences

n — per nucleotide heterozygosity
mis dominated by common alleles

7 is independent of sample size

24



Site Frequency Spectrum (SFS)

expected

4000

number of sites
2000 3000
relative number of sites
o

1000

N UUUUDUU,

0123456782910

R HDDDDDDDDD g

0123456780910

derived allele frequency derived allle frequency

SFS — expected number of variants at every frequency

25

Presence of recurrent mutations induces
dependency of the shape of SFS on mutation
rate!

« Rapid recent growth of the human population
« Rapid growth of available datasets

Lek et al., Nature 2016
Harpak et al., PLOS Genetics 2016
Agarwal & Przeworski, eLife 2021

27

The effect of recurrent mutation

5 count allele

SNy Ryropes

29
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A standard model of allele frequencies in a
sample

® Free recombination between sites
® 7;: branch length subtending i
descendants N\
® @: mutation rate parameter
© L: number of sites / length of
sequence

S [ S S
- - L

If every segregating site originated from just a single mutation, the distribution of allele
frequencies (shape of SFS) does not depend on mutation rate!

Both #and k depend on mutation rate linearly!

26

A mutation rate model at the basepair resolution identifies the mutagenic effect of
Polymerase Ill transcription

Viadimir Seplyarskiy’ ", Daniel J. Lee'>*, Evan M. Koeh'*", Joshua S, Lichtman’, Harding H. Luau’, Shamil
R Sunyaev'?

"Department of Biomedical Tnformaties, Harvard Medical Schoal, Boston, MA, USA

*Brigham and Women’s Hospital, Division of Genetics, Harvard Medical School, Boston, MA, USA
NGM Biopharmaceuticals, South San Francisco, CA, USA

*Contributed equally

Recurrent, mutation in the ancestry of a rare variant

28

Constant Population Size

n: rare allele count k: number of latent mutations
A o

~ =002

om=002
~ om,-02

O
pln) o 5
(k)

pk|n) o M

30



More generally, we can sum over
latent mutations

5 count allele

— |
; e ]

Desai & Plotkin., Genetics 2008

31

Predict SFS for high mutation rate sites from
low mutation rate sites

ey

12| === Lowrate (4=1x10")

ol == Recurrence extrapolation \m

103, == High rate (=3x1077)
0 10° 160 107 107 10° 100

Allele count

Estimate E[7;] by assuming no recurrent mutations at low-rate sites.

33

In order to measure selection, we
need a good handle on mutation rate!

RESEARCH

Population sequencing data reveal a compendium
of mutational processes in the human germ line

Vadini . Sephyarsiy, Rstan A. Sodato, Evan Koch?, Ryan J. MeGinty?,

Jakob M. Gokimann’, Ryan D. Hemandez*, Kathleen Bames®, Adolfo Correa™,

Esteban G. Burchard®, Patrck T. Elfnor”, Stephen T. McGarvey ™, Bracton D. Mitchel/ .
Ramachandran . Vasan*®*®, Susan Redline®*?!, Edwin Silverman®?, Scott T. Weiss*?%2,

Donna K. Amett?, John Blangero®*, Erc Boerwinkle™", Jiang He®™, Courtney Mmt:umery
D.C. Rao™, Jerome I. Rotter™, Kent D. Taylor™, Jennifer A. Brody™, Vi Der Ida Cher’

Lisa de las Fuentes™®, Chii-Min Hwu™®, Stephen . Rich”, Ani W. Manichaikuf””,

Josyf C. Mychaleckyj””, Nicholette D. Palmer®, Jennifer A. Smith***, Sharon L. R. Kardia®,
Patricia A. Peyser*®, Lawrence F. Bielak®, Timothy D. O'Connor 243 Lesle S, Emery®*,
NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium:
TOPMed Population Genetics Working Group, Christian Gilisser”,
Peter V. Kharchenke?, Shamil Sunyaev'*

[ St

The origin of human mutation in light
of genomic data

Viadimir B Seplyarskiy'? and Shamil Sunyaev' =

35
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p(n)=)_ p(nlk)p(k)
k=

® sum over recurrence

® sum over partitions, e.g
(n=5k=3): 1+1+3, 2+2+1

plnlk) = Z i

B[ Tmar]

k ~ Poisson(#L[ Tyora]) ® latent mutations

® p(n): allele frequency distribution

© p(k|n): recurrence distribution

o 72 total branch length with i descendants
® Troa: total size of the genealogy

© 4 mutation rate per generation

® 0: scaled mutation rate

32

This works very well on real data

, .
10 pu=2e-09 12, p=2.01e-08 . n=2.07e-07
£ 10
31 10" ?
o .
5 0 10
10 10
o 0 0

0 2 '

10 10° 10" 10 10°
Allele frequency Allele frequency

10 10° 10°
Allele frequency

34

Features of mutation rate variation

Direction of transcription and

replication (DNA repair recruitment) . o .
Regional variation associated

with replication timing

Methylation rate (CpG transitions)

Enzymatic demelythation rate (CpG transversions)

Regions mutagenic in arrested oocytes

Mutagenic LINE elements
Sequence context

Transcription by RNA polymerase Il

Transcription factor binding in testis

36



Deamination and demethylation

Component 10
01251 cop C>G C>T T>A T>C TG
— e

w

0.025
0000 ol w il

CpG>TpG

- Component 11
2] A o6 oT A o TG
e T e
||I|

' | ‘ ‘
° 000
CpG>ApG CpG>GpG

37

Oocyte-specific process

By

2
Clustered de novo mu nins ' "
of maternal origin

39

Am J Hum Genet 26:669-673, 1974
MAILON V. R FATEMAN, M D
The Age of a Rare Mutant Gene in a Large Population

TAKEO MARUYAMA!

41
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Oocyte-specific clusters

Cluster

X

s

<50kb

38
Roulette: estimating mutation rate
for each possible human mutation
40

At a given frequency deleterious and

advantageous alleles are younger than
neutral

Maruyama effect (1974): at any frequency advantageous ,
or deleterious alleles are younger than neutral alleles

Frequency x

Frequency 0%

Time
>

42



Intuition: shorter trajectories require

fewer lucky jumps

Frequency x
Frequency 0%
Shorter trajectory: 4 jumps
Longer trajectory: 6 jumps ]
Time }

Q Neighborhood clock
(fuzzy clock)

& A

° ° Py

\ 4 \ L4

& ®

° ° °

\ 4 ® \
Closest variant beyond Closest rarer
recombination event Variant linked variant

Inferring whole-genome histories in large
population datasets
Jerome Kelleher ©*, Yan Wong, Anthony W. Wohns ©, Chaimaa Fadil @, Patrick K. Albers
and Gil McVean
15000.00-
4
3
Fronnc ]
o l IR .“...L . --“‘nl--l -
abcdedfgh i abcd fgh i abcdefgh i
0 580 633 1000
Genome position

47

3%

Selection coefficient (2Ns)
— 0 (neutral)

—2 (weakly deleterious)
— 10 (deleterious)

Intermediate allele frequency (%)

Kiezun et al. PLOS Genetics 2013

44
Ancestral Recombination Graph (ARG) is the
full representation of the geneology
ACGT
[ @
m,(A->T)?
my (C->G) A (2,3) Ams(G->CQ)
23) |
7\ (3.,4) | m, (T->A)
e o VL O
TGGT TGGT TCCT ACCT ACGA
A mutation
L] recombination
46

Stabilizing selection is the most common

type of selection on a quantitative trait

Stabilizing selection

Selection may be related or unrelated to the trait

48



Technically, non-neutral genetic variation

should not exist!

Forces to maintain variation:
Selection

Mutation

49

Shades of pleiotropy

Koch & Sunyaev Front. Genet. 202

51
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Possible theoretical models

D, Apparent stabilzing selection

LT

Koch & Sunyaev Front. Genet. 202

A Hyperspherein B
n-dimensions (n-2)-dimensional P~ 0.4
cross-section (7"
503
a
2o2
Trait1 =
(focaltrait) S 0.1
Q
e
0.0
[l -2 0 2 4

Effect size (in units ofy/ (W?/n)s

Simons et al, PLOS Biology 2018
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Functional annotation of
genes and variants

Map variants onto genomic annotation

Watch for multiple transcripts!

Watch for conflicting annotations!

Nonsense variants

One of most significant types of variants usually leading to the
complete loss of function.

Nonsense variants are enriched in sequencing artifacts

Important considerations: i) location along the gene, ii) does the
variant cause NMD? iii) is the variant in a commonly skipped exon?

Tool: LOFTEE

Selection inference from frequency of individual
SNVs

Change in allele
frequency

= Mugftion + Selection + Drift

N

Of the order of 108 Demographic history  Population structure

Focusing on rare deleterious PTVs

PTV — protein truncating variant
(a.k.a. nonsense)

Combine all PTVs per gene — we assume that they
have identical effects

Consider each gene as a bi-allelic locus — PTV / no
PTV

Selection inference using combined frequency of
PTVs

Change in allele
frequency

= Mutation +  Selection +

Assuming string selection and a very large population,

combined frequency of rare deleterious PTVs is expected to be
Poisson distributed with A=U/hs
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Applicability of the Mutation-Selection Balance Model to
Population Genetics of Heterozygous Protein-Truncating
Variants in Humans

Donate Weghorn,""'* Daniel . Balick " Chistopher Cassa,” Jack A Kosmicki** Mark ). Daly**
David R.Beier* and Shamil R Sunyaev**

O

3
=

x €W
Vet

N

Fold change relative to deterministic case

0.005 0.010 0.050 0.100 0500 1

Heterozygous selection strength, Snet

Loss-of-function observed/expected upper
bound fraction (LOEUF)

* LOEUF is based on the number if segregating sites as the statistic

* LEOUF assumes Poisson distribution for the number of segregating

sites. It computes the expectation. The constraint metric is based on
the Poisson likelihood ratio upper bound.

Treating combined PTVs as a bi-allelic locus

* We can use the total frequency of PTVs in the locus

* Theoretically, we can simply treat all PTV variation as a single bi-allelic
locus with high mutation rate

40

P(Shetl&.B)
8

20

Distribution of selection coefficients

P(nag, By, N, p) = f Pois(n| shet, N, W) InvGauss(spee|ay, B InvGam(a) InvGam(B)dsher
P(Setla, By N, 1) o Pois(n| sper, N, ) InvGauss(spetl o, Bo)InvGam (a) InvGam(B,)

10 0.001 0.010 0.100 1

Heterozygous selection coefficient, spa:
Cassa, Weghorn, Balick, Jordan et al. Nature Genetics

10

Distribution of selection coefficients

1) The approach fails if selection is weak
2) The approach fails if mutational target is small
3) These considerations are important for regional constraint scores

4) Overall, the approach is non-informative in case of recessivity

Overcoming constraints on the detection
of recessive selection in human genes
from population frequency data

Daniel J. Balick,'>*+> Daniel M. Jordan,*** Shamil Sunyaev,'>** and Ron Do***
A Recessive test set
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Dominant and recessive genes
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Concordance with the mouse knockout data

[a] Orthologous mouse knockouts by phenotype
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Applications to Mendelian genetics —
large cohorts make Mendelian genetics a data science

De Novo mutations in ASD

. 1000 ol 0531
020
Article
Evidence for 28 genetic disorders discovered §on
by combining healthcare and research data : '
] g
EE 0.10 §
o 2 i s H
e — L : H
fp———— Alson Yeung">,Holgr G. Yok’ DociphringDevelopmental isordrs S, ®
ot pena 200
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Fuscao 0 00 novo prteintruncatng vrars
o Class 1 137),P=7x10"
£196% confidonco s — Fomaining PTVe (1 - 256, P 0.7
DeNovoWEST — a method to identify significant recurrent de novo mutations
controlling for mutation rate, weighting genes with shet and
weighting variants using variant effect predictors
Kosmicki et al. Nature Genetics 2017
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0.100

Fraction de novo, 7

0,001

Selection in the present-day population

e Fraction of de novo mutations (out of all variants)
approximately equals selection coefficient.

{/ This result does not depend on phenotypic
+ ascertainment.
*\ %
Y
/ol

/
[ —

0001 0010 0100 1
Shet (deter istic, NFE)
e (RHIAGEC, NFE) Weghorn et al., MBE 2019
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Article

Reduced reproductive success is associated
withselective constraint onhuman genes

itpei/doiora/101038/641586-022.04549-9 _ Eugene J.Gardner™, Matthow D.C. Nevile Kailin . Samocha’ Koron Barclay™",
Received: 21 May 2020 Martin Koll Kirov’ )

Variants involved in splicing
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T ISE  ISEISS
3'Splicesite Exonic substitutions ' Splice site  Deep intronic
mutations mutations mutations

1) Variants in canonic splice sites
2) Variants in exonic or intronic splicing enhancers
3) Gain of splicing variants

Experimental Methods: Minigene Assay and
Massively Parallel Splicing Assay (MPSA)

Computational Predictions: SpliceAl,
MMSplice and other methods

SpliceAl training

—a

- _, mmm

acalm

pre-mRNA GENCODE
GTEX

sequences.

Identify cryptic splice mutations

‘wildtype.
: .
2

mutant

De novo pathogenic mutations
22228222 cryptic splice: 10%
SpliceAl

protein coding: 90%

Missense variants: computational predictions

His66Arg.
P23946: Chymase precursor v
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Sequence alignment
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PREDICTION

Does the mutation fit the pattern of past
evolution?
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Statistical issues:

-sequences are related by phylogeny
-generally, we have too few sequences
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Does the mutation fit the pattern of past
evolution?

We assume a constant fitness landscape: what is good for
fish is good for human!

We can estimate whether the mutation fits the pattern of
amino acid changes.

We can also estimate rate of evolution at the amino acid site

Protein structure view

—_—
Iy,

i N

Most of pathogenic mutations are important for stability (good news?).

AAG is difficult to estimate.

Unfolded protein response pathway has to be taken into account.

Heuristic structural parameters help but less than comparative genomics.

PolyPhen2

Inter

y
Sequence
MSA creation profile based scores.
nomogysaarn
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o ROC confidence
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Structure
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Annotation

Annotation
ACT_SITE 66, 110 208

www.genetics.bwh.harvard.edu/pph2 Adzhubei, et al. Nature Methods 2010

SIFT is based on multiple sequence alignment
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Umbrella methods - CADD

Phylogenetic Tree 60 different annotations
User provided

variants

- conservation
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simulate variants

Umbrella methods - REVEL

Random Forest Simplified

AnESvs
= Neural variants

Tistencn = Disease variants
Random Forest __— | s
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Umbrella methods

* VEST4 — also an umbrella method using Random Forest

* VARITY — a new method using Gradient Boosting and focusing on de
novo mutations and ultra rare variants

Weakly deleterious mutations

« Multiple independent lines of evidence suggest abundance of weakly
deleterious alleles in humans

» Weakly deleterious variants may occur in highly conserved positions

» Weakly deleterious alleles probably contribute to complex phenotypes but
not to simple Mendelian phenotypes

13 14
Conservation can be due to very weak selection! Constant fitness landscape
£ i il be either f
. . A A
" s— selectlpn coefﬁcle_nt ) b B
K=K,2V, (1 _iv) N, - effective population size
(1=e") ‘For humans estimated to be ~ 10 000 ‘
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Neutral Ve \\ conservation
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A A o -
b B
A
B
17 18

134



Ridges on the fitness landscape

Dobzhansky-Muller incompatibility

Fixation of
New mutation new mutation
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Nature Reviews | Genetics
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Looking at vertebrate species

e

" Ray-finned Roderts Dinosaurs
Sharks  fish  Amphbians Primees & rabbts Crocodles & birds

Pre-orbital
fenestra

Amriotic egy

Bony skeleton

Vertebrae

Many human pathogenic mutations are found in
vertebrates

HumVar "Disease”
(22,207 variants)  ClinVar "Pathogenic"
(10,596 variants)

-

</

5.5-6.5% of presumably
pathogenic human
mutations are detected in
mammals

24,304,185

Found in MultiZ 100-Way alignment
(24,307,128 variants)
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Zebrafish model

Normal

Model of Bardet-BiedI
Syndrome (obesity, renal
failure, vision loss)

Caused by defects in primary
cilium Class |
-

® Embryonic convergence /
extension phenotype in
zebrafish

Class Il

Easily scorable phenotype e

Images: Phoebe

Testing double mutants

P Z)S) Human gene with @
No injection R
3 disease mutant a
Knockdown @ Double mutant @
(no suppression) "
Rescue with Double mutant
human gene (full suppression)

Images: Phoebe
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A newly identified gene

0 062
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Global developmental delay
microcephaly

feeding issues

failure to thrive

abnormal muscle tone

low immunoglobulins
frequent respiratory infections

normal female microarray
metabolic testing - negative
extensive genetic testing —
negative

BTG2 TTN
Compound het

NOS2 LAMA1
Compound het

Stephan Frangal
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The mutation is a reversal to the mammalian
ancestral state

BTG2

H. sapiens

P. troglodytes
G. gorilla

M. musculus

R. norvegicus

H. glaber

S. domesticus
B. primigenius
E. ferus caballus
F. catus

C. lupus familiaris
D. novemcinctus
G. gallus

Y

.

.

M
M
M
M
M
M
M
M
M

ARXRAXXXX e XXe e
<< <<<<<<< e 0o ™
SZIZIZIZIZIZIZZZ e o

eeecces 0

New methods directions

« Machine learning techniques have the potential to solve the epistasis problem

« Measures of population level constraint have the potential to solve the
problem of distinguishing between strongly and weakly deleterious mutations.

EVE — Variational Autoencoder

For sacn proven

Bayesian variational autoencoder
g constaint at each postion by loaring
the istributon of sequences I evolutionary data.

One-hot encoding of reconstruction :

Evolutionary index Gaussian mixture mode!

£ - o P
M Plxyl0)

Approximating the.

wpe | Frazer et al., Nature 2021

Large Language Models (VariPred)
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® oses oses 0823

onyun Oy embeckdogs LR+ embeddng

Lin et al., biorxiv 2023

PrimateAl-3D

3D Convolutional
Neural Network
t—{ 3D conv., (1,1,1)

Voxelization

Human variants

Batch norm. & ReLU .
e e Common primate variants)

3D conv., (333
com oSl Language models

Batch norm. & RoLU
— =  —
Repeat 3x O 1
2z G B Variational Transformer
channels 84 Autoencoder

Batch norm. & ReLU

Fixed species MSA Dropout & sigmoid
& Ol ] Loss function

Pathogenicity predictions'
for 20 amino acids

o —

\

PrimateAl-3D

Gao et al., Science 2023
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Applications

* Mendelian genetics

* Rare variant association studies

Rare variant collapsing study

Disease Control

Rare variant collapsing study

Disease Control

Functional variants Neutral variants

Predicting functional consequences increases
power

* Inclusion of neutral variants reduces power of the test

* Combining variants with vastly different effect sizes reduces power of the
test

* Most groups limit the tests to nonsense, splicing and missense variants that
are predicted functional

* Assigning quantitative weights is probably a better approach, but nobody
uses it in practice

10

Damaging missense variants (as predicted by PrimateAl-3D) are
enriched among de novo mutations in developmental disorders

-+ pathogenic missense
~ benign missense g

3
g
g
4
3
H
2
3
2
8

observed/expected

————
PTV benign pathogenic 06 07 08 09
missense missonse PrimateAl-3D threshold

PrimateAl-3D > 0.621

0
synonymous  missense

Consequence

Gao etal., Science 2023

Burden heritability is significant for damaging
missense variants (as predicted by PolyPhen2)

o
-3
B

&

Proportion of variants
Burden heritability (%)
&

°

Uttrarare

Ultrarare Rare Common Rare
(n=5379,342) (n=1,564,529) (1 =32,539)

Variant group: B pLoF B Missense: damaging @ Missense: benign B Synonymous
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UK Biobank results (Wang et al.)
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Variant grouping: nonsense, splicing, missense predicted by REVEL and MTR

Count of associations

UK Biobank results (Backman et al.)

1000

Burden Association
I pL0Fs only

I pLOF and deleterious missense variants only
W shared

Singletons  0.001% _ <0.01%  =0.1%
Allele frequency bin

Deleterious missense variants:

SIFT

PolyPhen2

LRT

Mutation Taster

13

Experimental technologies — deep mutational
scanning (DMS)
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Wei & Li, Frontiers in Genetics 2023
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MC4R example

o

Lotta et al., Cell 2023

Non-coding variants

Regulatory variants

* Regulation: variants in promoters, enhancers,
silencers, insulators

—
chromatin modifiers
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Zoonomia conservation

Christmas, Kaplow et al., Science 2023
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Heritability enrichment

25 8
A « Mammals (phyloP) B
« Primates (PhastCons)
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Distance to constrained base

Sullivan, Meadows et al.

. Science 2023
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Population constraint in non-coding regions

Article

The sequences 0f150,119 genomesin the UK
Biobank
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Extreme purifying selection against point mutations
in the human genome
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Chromatin accessibility

nucleosome-free
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Epigenomics

EPIGENETIC MECHANISMS.
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Enrichment of GWAS signals in regulatory elements

Crohn's disease QRS duration

Fold snrichment of SNPs in DHSs ©
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GWAS P-value threshold
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A F S FI S Maurano et al., Science, 2012
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Enrichment of GWAS signals in regulatory elements
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Trynka et al., Nature Genetics, 2014

Partitioning heritability

1000 Genomes Imputed SNPs

0 Mean observed azett

0 Expected (% SNPs)

18003 14002 200-01

Nnslss]==

ng  UTR Promoter DHS Inronic Intergenic
(1380 B4 @89 G OW (019

Gusev & Price, AJHG, 2014

Functonal category
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Heritability partitioning across annotations

Finucane et al., Nature Genetics, 2015

Application — function informed fine-mapping

Functionally informed fine-mapping and polygenic
localization of complex trait heritability

s, i1, Christ
Steven Gazal ©', Armin P. Schoech’
Luke O'Connor’, Matti Pirinen®*#”, Hilary K. Finucane:

" Ran Cu’, Jacob Ulirsch ™,
" Yakir Reshef’
34and Alkes L. Price 135

« Estimate heritability enrichment and convert the estimates into prior
probabilities

* Use these prior in fine-mapping (with SuSiE or FINEMAP)
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Translating GWAS findings into mechanistic
models

GWAS peak

}

Controlled model system

!

Biochemistry

Human Genetics all the way

GWAS peak

N

Endophenotype Endophenotype

Gene expression (eQTL)

Molecular phenotype (molecular_QTL)

19 20
Causality Co-localization
Mediation Same causal variant
G E P G E P
Independent effects Distinct variants
E
e
3 LD I
Reverse causation
G P E G — P
21 22
Co-localization problem Methods
Ma
- 4 1 Couststes
: 3 N N o Coloc
?., % “““““ eCAVIAR
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Genetic variants differ between Mendelian
and complex traits

* Complex trait variants * Mendelian & somatic cancer
variants

« Small effect size * Large effect sizes

* Extremely large number of loci

« Mostly non-coding (regulatory)  * Mostly coding
* Are in “putatively causative”
genes

* Small number of loci

25

144



The basic model
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By now we know that most complex trait loci never harbor mutations of large effect

Hypothesis

* Most genes involved in Mendelian components of complex traits are
also causative for cognate common forms.

* Variants involved in common forms alter regulatory sequence of
these genes.

* This in turn induces changes in gene expression; regulatory variants
are eQTLs.

Genes and phenotypes
(for complex traits, GWAS is restricted to non-coding variants)

Mend. trait GWAS trait Tissue Overall, 139 genes

Breast cancer Breast cancer | breast mammary tissue

89 (64%) fall under a GWAS peak

Small ntestine terminal fleum

Crohn disease Crohw's disease | colon sigmo of a cognate complex trait
colon ta

Dysipidera Toer

Hyperipidemia oL adipose Examples include:

Tangers disease whle blood

Duarfsm Height sletal muscle

LDL Receptor under
a GWAS peak for LDL Cholesterol

Teart Ul appendage
Blood pressure Blood pressure | kidney
heart lft ventricle
Trver
oL adipose tissue

whole blood

Dystipidemia
Hyperlpidemia Estrogen receptor under
pancress a GWAS peak for breast cancer
scltal musclo

ipose

Mnogenic diabetes | Type Il diabetes
whole blood
<l intesting tarminal fleum
Ulcerative colitis | colon sigmoid

colon transverse

These genes are highly likely to

Ulcarative colitis

mediate the effects of regulatory variants

Statistical methods to locate the causative
gene under GWAS peak

* Closest gene to peak

* Colocalization methods
- Jum
* Coloc
* eCAVIAR

« Transcriptome-wide association
* FUSION

* Chromatin marks
* Fine-mapping using SuSiE
* Locate fine-mapped variants under chromatin modification peaks

Distance of fine-mapped SNPs (by SuSiE) to the
closest gene

ol o
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Gene A '—‘} Qene B GeneC
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Colocalization of GWAS and eQTLs

GeneAeQTL  GeneBeQTL  GeneCeQTL

Methods effectively compare the shape of two peaks.
Colocalization often returns multiple hits per locus.
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Transcriptome-wide association (TWAS)

< - o = 3
Ten ETE O cenepeqrl

TWAS often returns multiple hits per locus.

Results

endeion 1 Sacoman

W e

Genes

I cene uncer ek witheamt.

Method

Connally et al., eLife, 2022

Our curated genes rarely

colocalize

e This s true across all tested traits
e We also tried a chromatin method
o It worked better
o In large part because it favors the
closest gene

But why?

Are eQTLs specific to...

e certain cell types?
e certain developmental stages?

e certain environmental conditions?

Are there inconsistent relationships...

e between gene expression and protein levels?
e between rate of transcription and gene expression?
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| find it highly surprising that

* A context independent large change in expression of LDLR due to a
nonsense mutation leads to a large phenotypic change

* A smaller change in expression does not affect LDL levels, while non-
coding effect on LDLR does

Quantifying genetic effects on disease mediated
by assayed gene expression levels
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Where Are the Disease-Associated eQTLs?
Benjamin D. Umans,"* Alexis Battle,*** and Yoav Gilad'*

Limited overlap of eQTLs and GWAS hits due to systematic

differences in discovery
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Modeling eQTL effects at  |fingiecelicaimodelsreveal dynamic
single cell resolution
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