AdvGeneMap2018Commands

From Statistical Genetics Courses

Revision as of 17:09, 22 January 2018 by Serveradmin (Talk | contribs)

Jump to: navigation, search

Data QC Plink

#PLINK

plink --file GWAS

plink --file GWAS --mind 0.10 --recode --out GWAS_clean_mind

plink --file GWAS_clean_mind --maf 0.05 --recode --out MAF_greater_5

plink --file GWAS_clean_mind --exclude MAF_greater_5.map --recode --out MAF_less_5

plink --file MAF_greater_5 --geno 0.05 --recode --out MAF_greater_5_clean

plink --file MAF_less_5 --geno 0.01 --recode --out MAF_less_5_clean

plink --file MAF_greater_5_clean --merge MAF_less_5_clean.ped MAF_less_5_clean.map --recode --out GWAS_MAF_clean

plink --file GWAS_MAF_clean --mind 0.03 --recode --out GWAS_clean2

plink --file GWAS_clean2 --check-sex --out GWAS_sex_checking

#### in R - open R by simply typing R

setwd("to_your_working_directory/")

sexcheck = read.table("GWAS_sex_checking.sexcheck", header=T)
names(sexcheck)
sex_problem = sexcheck[which(sexcheck$STATUS=="PROBLEM"),]
sex_problem

q()

##################################

plink --file GWAS_clean2 --genome --out duplicates

#### in R

setwd("to_your_working_directory/")

dups = read.table("duplicates.genome", header = T)
problem_pairs = dups[which(dups$PI_HAT > 0.4),]
problem_pairs
problem_pairs = dups[which(dups$PI_HAT > 0.05),]
myvars = c("FID1", "IID1", "FID2", "IID2", "PI_HAT")
problem_pairs[myvars]

q()

######

plink --file GWAS_clean2 --remove IBS_excluded.txt --recode --out GWAS_clean3

plink --file GWAS_clean3 --het

###### in R

Dataset <- read.table("plink.het", header=TRUE, sep="", na.strings="NA", dec=".", strip.white=TRUE)

mean(Dataset$F)
sd(Dataset$F)

jpeg("hist.jpeg", height=1000, width=1000)
hist(scale(Dataset$F), xlim=c(-4,4))
dev.off()

q()

######

plink --file GWAS_clean3 --pheno pheno.txt --pheno-name Aff --hardy 

##### in R

hardy = read.table("plink.hwe", header = T)
names(hardy)
hwe_prob = hardy[which(hardy$P < 0.0000009),]
hwe_prob


q()


##########

plink --file GWAS_clean3 --exclude HWE_out.txt --recode --out GWAS_clean4

###############################################
##### Part 2: controlling for substructure#####
###############################################

plink --file GWAS_clean4 --genome --cluster --mds-plot 10

#### in R

mydata = read.table("mds_components.txt", header=T)

mydata$pch[mydata$Group==1 ] <-15
mydata$pch[mydata$Group==2 ] <-16
mydata$pch[mydata$Group==3 ] <-2

jpeg("mds.jpeg", height=500, width=500)
plot(mydata$C1, mydata$C2 ,pch=mydata$pch)
dev.off()

q()

######

plink --file GWAS_clean4 --pheno pheno.txt --pheno-name Aff --logistic --adjust --out unadj

plink --file GWAS_clean4 --genome --cluster --pca 10 header

plink --file GWAS_clean4 --pheno pheno.txt --pheno-name Aff --covar plink.eigenvec --covar-name PC1 --logistic --adjust --out PC1

plink --file GWAS_clean4 --pheno pheno.txt --pheno-name Aff --covar plink.eigenvec --covar-name PC1-PC2 --logistic --adjust --out PC1-PC2

#### in R

broadqq <-function(pvals, title)
{
	observed <- sort(pvals)
	lobs <- -(log10(observed))

	expected <- c(1:length(observed)) 
	lexp <- -(log10(expected / (length(expected)+1)))

	plot(c(0,7), c(0,7), col="red", lwd=3, type="l", xlab="Expected (-logP)", ylab="Observed (-logP)", xlim=c(0,max(lobs)), ylim=c(0,max(lobs)), las=1, xaxs="i", yaxs="i", bty="l", main = title)
	points(lexp, lobs, pch=23, cex=.4, bg="black") }

jpeg("qqplot_compare.jpeg", height=1000, width=500)
par(mfrow=c(2,1))
aff_unadj<-read.table("unadj.assoc.logistic", header=TRUE)
aff_unadj.add.p<-aff_unadj[aff_unadj$TEST==c("ADD"),]$P
broadqq(aff_unadj.add.p,"Some Trait Unadjusted")
aff_C1C2<-read.table("PC1-PC2.assoc.logistic", header=TRUE)
aff_C1C2.add.p<-aff_C1C2[aff_C1C2$TEST==c("ADD"),]$P
broadqq(aff_C1C2.add.p, "Some Trait Adjusted for PC1 and PC2")
dev.off()

gws_unadj = aff_unadj[which(aff_unadj$P < 0.0000001),]
gws_unadj
gws_adjusted = aff_C1C2[which(aff_C1C2$P < 0.0000001),]
gws_adjusted