2016-genetic-association-commands
From Statistical Genetics Courses
Revision as of 14:16, 27 June 2016 by Serveradmin (Talk | contribs)
GeneABEL
plink --file GWAS_clean4 --pheno pheno.phen --pheno-name Aff --transpose --recode --out gwa_gabel plink --file GWAS_clean4 --pheno pheno.phen --pheno-name systolic --transpose --recode --out gwa_gabel_qtl R library(GenABEL) convert.snp.tped(tped = "gwa_gabel_qtl.tped", tfam = "gwa_gabel_qtl.tfam", out = "gwa_gabel_qtl.raw", strand = "u") g.dat <- load.gwaa.data(phen = "gwa_gabel_qtl.praw", gen = "gwa_gabel_qtl.raw", force = T) slotNames(g.dat) slotNames(g.dat@gtdata) colnames(g.dat@phdata) sample.size <- g.dat@gtdata@nids snps.total <- g.dat@gtdata@nsnps print(c(sample.size, snps.total)) summary(g.dat@phdata$disease) hist(g.dat@phdata$disease, main="Quantitative Phenotype data summary", xlab = "Systolic pressure", freq = F,breaks=20, col="gray") rug(g.dat@phdata$disease) test.snp <- scan.glm('disease ~ CRSNP', family = gaussian(), data = g.dat) names(test.snp) alpha <- 5e-8 test.snp$snpnames[test.snp$P1df < alpha] test.snp$P1df[test.snp$P1df < alpha] test.qt <- qtscore(disease, data = g.dat, trait = "gaussian") slotNames(test.qt) names(test.qt@results) head(results(test.qt)) test.qt@lambda descriptives.scan(test.qt) row.names(results(test.qt))[results(test.qt)$P1df < alpha] results(test.qt)$P1df[results(test.qt)$P1df < alpha] results(test.qt)$Pc1df[results(test.qt)$Pc1df < alpha] obs <- sort(results(test.qt)$P1df) ept <- ppoints(obs) plot(-log10(ept), -log10(obs), main = "GWAS QQ plot, qtl", xlab="Expected -log10(pvalue)", ylab="Observed -log10(pvalue)") abline(0, 1, col = "red") abline(h = 8, lty = 2) plot(test.qt, col = "black") test.qt.sex <- qtscore(disease ~ sex, data = g.dat, trait = "gaussian") row.names(results(test.qt.sex))[results(test.qt)$P1df < alpha] summary(lm(disease ~ sex, data = g.dat)) convert.snp.tped(tped = "gwa_gabel.tped", tfam = "gwa_gabel.tfam", out = "gwa_gabel.raw", strand = "u") b.dat <- load.gwaa.data(phen = "gwa_gabel.praw", gen = "gwa_gabel.raw", force = T) slotNames(b.dat) slotNames(b.dat@gtdata) colnames(b.dat@phdata) b.dat@gtdata@nids case.size <- length(which(b.dat@phdata$disease == 1)) control.size <- length(which(b.dat@phdata$disease == 0)) case.size control.size snpsb.total <- b.dat@gtdata@nsnps testb.snp <- scan.glm('disease ~ CRSNP', family = binomial(), data = b.dat) names(testb.snp) alpha <- 5e-8 testb.snp$snpnames[testb.snp$P1df < alpha] testb.snp$P1df[testb.snp$P1df < alpha] testb.qt <- qtscore(disease, data = b.dat, trait = "binomial") slotNames(testb.qt) descriptives.scan(testb.qt) row.names(results(testb.qt))[results(testb.qt)$P1df < alpha] results(testb.qt)$P1df[results(testb.qt)$P1df < alpha] results(testb.qt)$Pc1df[results(testb.qt)$Pc1df < alpha] gkin <- ibs(g.dat, weight = "freq") gkin[1:10,1:10] cps.full <- cmdscale(as.dist(.5 - gkin), eig = T, k = 10) names(cps.full) cps <- cps.full$points plot(cps[,1], cps[,2], pch = g.dat@phdata$popn) legend(”topright”, c("TSI","MEX", "CEU"), pch = c(1,2,3)) colnames(cps)<-c('C1','C2','C3','C4','C5','C6','C7','C8','C9','C10') gpc.dat <- g.dat gpc.dat@phdata<-cbind(g.dat@phdata, cps) test.pc.a <- scan.glm('disease ~ CRSNP + C1 + C2 + C3 + C4 + C5', family=gaussian(), data = gpc.dat) test.pc.a$snpnames[test.pc.a$P1df < alpha] test.pc.a$P1df[test.pc.a$P1df < alpha] test.pc.b <- qtscore(disease ~ C1 + C2 + C3 + C4 + C5, data = gpc.dat, trait = "gaussian") test.pc.b@lambda plot(cps.full$eig[1:10]/sum(cps.full$eig), axes = F, type = "b", xlab = "Components", ylim = c(0,0.05), ylab = "Proportion of Variations", main = "MDS analysis scree plot") axis(1, 1:10) axis(2) plot(cumsum(cps.full$eig[1:10])/sum(cps.full$eig), axes = F, type = "b", ylim = c(0,0.2), xlab = "Components", ylab = "Proportion of Variations", main = "MDS analysis cumulative plot") axis(1, 1:10) axis(2) row.names(results(test.qt))[results(test.qt)$Pc1df < alpha] results(test.qt)$Pc1df[results(test.qt)$Pc1df < alpha] test.qt@lambda obs <- sort(results(test.qt)$chi2.1df) ept <- sort(qchisq(ppoints(obs), df = 1)) plot(ept, obs, main = "Genomic control (lambda = slope of the dashed line)", xlab="Expected chisq, 1df", ylab="Observed chisq, 1df") abline(0, 1, col = "red") abline(0, test.qt@lambda[1], lty = 2) median(results(test.qt)$chi2.1df)/0.456 obs <- sort(results(test.qt)$Pc1df) ept <- ppoints(obs) plot(-log10(ept), -log10(obs), main = "GWAS QQ plot adj. via Genomic Control", xlab="Expected -log10(pvalue)", ylab="Observed -log10(pvalue)") abline(0, 1, col = "red") abline(h = 8, lty = 2) adj.gkin = gkin diag(adj.gkin) = hom(g.dat)$Var test.eg <- egscore(disease, data = g.dat, kin = adj.gkin, naxes = 2) descriptives.scan(test.eg) snp.eg <- row.names(results(test.eg))[results(test.eg)$P1df < alpha] pvalue.eg <- results(test.eg)$P1df[results(test.eg)$P1df < alpha] lambda.eg <- test.eg@lambda snp.eg pvalue.eg lambda.eg for (k in 1:10){ test.tmp <- egscore(disease, data = g.dat, kin = adj.gkin, naxes = k) print(test.tmp@lambda$estimate) } obs <- sort(results(test.eg)$Pc1df) ept <- ppoints(obs) plot(-log10(ept), -log10(obs), main = "GWAS QQ plot adj. w/ EIGENSTRAT", xlab="Expected -log10(pvalue)", ylab="Observed -log10(pvalue)") abline(0, 1, col = "red") abline(h = 8, lty = 2) plot(test.qt, col = "black") add.plot(test.eg, col = "gray", pch = 3) legend("topright", c("Original plot","After correction w/ EIGENSTRAT"), pch = c(1,3))
Imputation exercise
plink --file chr22_imputation_ex plink --file chr22_imputation_ex --maf 0.01 --mind 0.02 --geno 0.05 --hwe 0.001 --out qc_check plink --file chr22_imputation_ex --maf 0.01 --mind 0.02 --geno 0.05 --hwe 0.001 --recode --out chr22_clean1 plink --file chr22_clean1 --maf 0.01 --mind 0.02 --geno 0.05 --hwe 0.001 --out qc_check_2 plink --file chr22_clean1 --filter-cases --hwe 0.001 --recode --out chr22_cases_clean plink --file chr22_clean1 --filter-controls --recode --out chr22_controls_clean plink --file chr22_controls_clean --merge chr22_cases_clean.ped chr22_cases_clean.map -–hwe 0.001 --recode --out chr22_all_clean plink --file chr22_all_clean --logistic --out chr22_all_clean_geno R mydata = read.table(“chr22_all_clean_geno.assoc.logistic”, header=T) names(mydata) plot(mydata$BP, -log10(mydata$P)) smallp = mydata[which(mydata$P < 1E-4),] smallp smallp = smallp[order(smallp$BP),] smallp q() mach1 --hapmapFormat -d chr22_mach_merlin.map -p chr22_mach_merlin.ped --haps genotypes_chr22_CEU_r22_nr.b36_fwd.phase.gz –-snps genotypes_chr22_CEU_r22_nr.b36_fwd_legend.txt.gz --greedy --rounds 100 --mle --mldetails --autoflip -o chr22_HIHII plink –-dosage chr22_HIHII_dose_mach4plink.txt.gz Zin –-fam chr22_imputation_ex.fam –-map chr22_imputed_snps_positions.map --out chr22_HIHII_dosage R dosage = read.table("chr22_HIHII_dosage.assoc.dosage", header= T) names(dosage) plot(dosage$BP, -log10(dosage$P)) dosagep = dosage[which(dosage$P < 5E-8),] dosagep = dosagep[order(dosagep$BP),] dosagep interest = dosage[which(dosage$SNP=='rs715586'),] interest
PLINK_R
Introduction
plink --ped dbp.cc.ped --map dbp.map --map3 --missing --noweb plink --ped dbp.cc.ped --map dbp.map --map3 --mind 0.10 --geno 0.05 --recode --out cleaned --noweb plink --ped cleaned.ped --map cleaned.map --freq --out cleaned --noweb plink --ped cleaned.ped --map cleaned.map --hardy --out cleaned --noweb plink --ped cleaned.ped --map cleaned.map --out cleaned.R --recode --tab --noweb R city = c("Oslo", "Bergen", "Munich", "Berlin", "Rome", "Milan") population = c(0.58, 0.25, 1.3, 3.4, 2.7, 1.3) country = factor( c("Norway" , "Norway", "Germany", "Germany", "Italy", "Italy" )) capital = c(TRUE, FALSE, FALSE, TRUE, TRUE, FALSE) updated = 2009 city population country capital c(city, city) c(population, updated) summary (city) summary (population) summary (country) summary (capital) is.numeric(city) is.character(city) is.factor(city) class (city) class (population) class (country) class (capital) length(city) names(population) = city population city [3] city [2:4] city[c(1,5:6)] population[3] population capital population[capital] population>=1.0 population[population>=1.0] cities = data.frame (city=city, pop=population, country=country, capital=capital, stringsAsFactors=F) cities length(cities) dim(cities) is.data.frame(cities) is.list(cities) colnames(cities) rownames(cities) cities$city cities[,1] cities[2,] cities[2,3] cities$pop[3] cities[capital,] cities[cities$pop>=1.0,] ls() save(cities, city, country, file="myobjects.R") write.table(cities, file="cities.txt") sink("cities.output.txt") print(cities) sink() dir() rm(list=ls()) ls() new.table = read.table ("cities.txt") ls() new.table load ("myobjects.R") ls() cities new.table q()
GWAS Data QC
cd plink/exercise/ plink --file GWAS plink –-file GWAS –-mind 0.10 –-recode –-out GWAS_clean_mind plink –-file GWAS_clean_mind –-maf 0.05 –-recode –-out MAF_greater_5 plink –-file GWAS_clean_mind –-exclude MAF_greater_5.map –-recode –-out MAF_less_5 plink --file MAF_greater_5 --geno 0.05 --recode --out MAF_greater_5_clean plink --file MAF_less_5 --geno 0.01 --recode --out MAF_less_5_clean plink --file MAF_greater_5_clean --merge MAF_less_5_clean.ped MAF_less_5_clean.map --recode --out GWAS_MAF_clean plink --file GWAS_MAF_clean --mind 0.03 --recode --out GWAS_clean2 R plink –-file GWAS_clean2 –-check-sex –-out GWAS_sex_checking sexcheck = read.table("GWAS_sex_checking.sexcheck", header=T) names(sexcheck) sex_problem = sexcheck[which(sexcheck$STATUS=="PROBLEM"),] sex_problem q() plink –-file GWAS_clean2 –-genome –-out duplicates R dups = read.table(“duplicates.genome”, header = T) problem_pairs = dups[which(dups$PI_HAT > 0.4),] problem_pairs problem_pairs = dups[which(dups$PI_HAT > 0.05),] myvars = c("FID1", "IID1", "FID2", "IID2", "PI_HAT") problem_pairs[myvars] q() plink --file GWAS_clean2 --remove IBS_excluded.txt --recode --out GWAS_clean3 plink –-file GWAS_clean3 –-het R Dataset <- read.table("plink.het", header=TRUE, sep="", na.strings="NA", dec=".", strip.white=TRUE) mean(Dataset$F) sd(Dataset$F) jpeg("hist.jpeg", height=1000, width=1000) hist(scale(Dataset$F), xlim=c(-4,4)) dev.off() q() plink –-file GWAS_clean3 –-pheno pheno.txt –-pheno-name Aff –-hardy R hardy = read.table(“plink.hwe”, header = T) names(hardy) hwe_prob = hardy[which(hardy$P < 0.0000009),] hwe_prob q() plink –-file GWAS_clean3 –-exclude HWE_out.txt –-recode –-out GWAS_clean4
Multifactorial
plink --ped dbp.cc.ped --map dbp.map --map3 --out logreg.add --logistic --noweb plink --ped dbp.cc.ped --map dbp.map --map3 --out logreg.add.ci --logistic --ci 0.95 --noweb plink --ped dbp.cc.ped --map dbp.map --map3 --out logreg.age.add --logistic --covar dbp.age.pheno --noweb plink --ped dbp.cc.ped --map dbp.map --map3 --out logreg.sex.add --logistic --sex --noweb plink --ped dbp.cc.ped --map dbp.map --map3 --out logreg.sexage.add --logistic --sex --covar dbp.age.pheno --noweb plink --ped dbp.cc.ped --map dbp.map --map3 --out logreg.snp1112.add --logistic --condition rs1112 --noweb plink --ped dbp.cc.ped --map dbp.map --map3 --out logreg.snp1117.add --logistic --condition rs1117 plink --ped dbp.qt.ped --map dbp.map --map3 --out linreg.sex.add --linear --sex --noweb plink --ped dbp.cc.ped --map dbp.map --map3 --out logreg.sex.inter.add --logistic --sex --interaction --noweb plink --ped dbp.cc.ped --map dbp.map --map3 --out logreg.snp1112.inter.add --logistic --condition rs1112 --interaction --noweb R load("dbp.R") ls() dbp[1:5,] result.snp12 = glm (affection ~ rs1112, family=binomial("logit"), data=dpb) print (result.snp12) print ( class (result.snp12) ) print ( summary(result.snp12) ) dev.geno = anova (result.snp12, test="Chi") lrt.pvalue = pchisq(dev.geno[dim(dev.geno)[1],"Deviance"], df=2, ncp=0, FALSE) print ( lrt.pvalue ) print ( summary(result.snp12)$coefficients ) snp.beta = summary(result.snp12)$coefficients[2:3,1] print ( snp.beta ) print ( exp(snp.beta) ) ci = confint (result.snp12) print (ci) print ( exp(ci) ) snp.data = dpb[,c("affection", "rs1112")] summary(snp.data) snp.data[,"rs1112"] summary(snp.data) result.all = glm (affection ~ rs1112, family=binomial("logit"), data=snp.data) dev.all = anova (result.all, test="Chi") summary(result.all) print(dev.all) snp.data = dpb[,c("affection", "trait","sex", "age", "rs1112", "rs1117")] summary(snp.data) snp.data[,"rs1112"] snp.data[,"rs1117"] result.adj = glm (affection ~ sex + rs1112 , family=binomial("logit"), data=snp.data) summary(result.adj) result.adj = glm (affection ~ age + rs1112 , family=binomial("logit"), data=snp.data) summary(result.adj) result.adj = glm (affection ~ sex + age + rs1112, family=binomial("logit"), data=snp.data) summary(result.adj) result.adj = glm (affection ~ rs1117 + rs1112, family=binomial("logit"), data=snp.data) summary(result.adj) anova (result.adj, test="Chi") result.adj = glm (affection ~ rs1112 + rs1117, family=binomial("logit"), data=snp.data) summary(result.adj) anova (result.adj, test="Chi") result.adj = lm (trait ~ rs1112, data=snp.data) summary(result.adj) result.adj = lm (trait ~ sex + rs1112, data=snp.data) summary(result.adj) result.inter = glm (affection ~ sex * rs1112, family=binomial("logit"), data=snp.data) summary(result.inter) result.inter = glm (affection ~ age * rs1112, family=binomial("logit"), data=snp.data) summary(result.inter) result.inter = glm (affection ~ rs1112 * rs1117, family=binomial("logit"), data=snp.data) summary(result.inter) result.reg = glm (affection ~ sex + age + rs1112 + rs1117, family=binomial("logit"), data=snp.data) summary(result.reg) modelchoice.result summary(modelchoice.result) q()
GWAS Control Substructure
plink –-file GWAS_clean4 –-genome –-mds-plot 10 R mydata = read.table("mds_components.txt", header=T) mydata$pch[mydata$Group==1 ] <-15 mydata$pch[mydata$Group==2 ] <-16 mydata$pch[mydata$Group==3 ] <-2 jpeg("mds.jpeg", height=1000, width=1000) plot(mydata$C1, mydata$C2 ,pch=mydata$pch) dev.off() q() plink –-file GWAS_clean4 –-pheno pheno.txt –-pheno-name Aff –-logistic --adjust –-out unadj plink –-file GWAS_clean4 –-pheno pheno.txt –-pheno-name Aff –-covar plink.mds –-covar-name C1 –-logistic –-adjust –-out C1 plink –-file GWAS_clean4 –-pheno pheno.txt –-pheno-name Aff –-covar plink.mds –-covar-name C1-C2 –-logistic –-adjust –-out C1-C2 R broadqq <-function(pvals, title) { observed <- sort(pvals) lobs <- -(log10(observed)) expected <- c(1:length(observed)) lexp <- -(log10(expected / (length(expected)+1))) plot(c(0,7), c(0,7), col="red", lwd=3, type="l", xlab="Expected (-logP)", ylab="Observed (-logP)", xlim=c(0,max(lobs)), ylim=c(0,max(lobs)), las=1, xaxs="i", yaxs="i", bty="l", main = title) points(lexp, lobs, pch=23, cex=.4, bg="black") } jpeg("qqplot_compare.jpeg", height=1000, width=1000) par(mfrow=c(2,1)) aff_unadj<-read.table("unadj.assoc.logistic", header=TRUE) aff_unadj.add.p<-aff_unadj[aff_unadj$TEST==c("ADD"),]$P broadqq(aff_unadj.add.p,"Some Trait Unadjusted") aff_C1C2<-read.table("C1-C2.assoc.logistic", header=TRUE) aff_C1C2.add.p<-aff_C1C2[aff_C1C2$TEST==c("ADD"),]$P broadqq(aff_C1C2.add.p, "Some Trait Adjusted") dev.off() gws_unadj = aff_unadj[which(aff_unadj$P < 0.0000001),] gws_unadj gws_adjusted = aff_C1C2[which(aff_C1C2$P < 0.0000001),] gws_adjusted q()
Multiple Testing
plink --ped dbp.cc.ped --map dbp.map --map3 --out multtest --assoc --adjust --noweb plink --ped dbp.cc.ped --map dbp.map --map3 --out multperm5000 --assoc --mperm 5000 --noweb plink --ped dbp.cc.ped --map dbp.map --map3 --out multperm100000 --assoc --mperm 100000 --noweb R load("p.values.R") ls() p.values library (multtest) adj.p.values = mt.rawp2adjp(p.values,c("Bonferroni","Holm","SidakSS","BH")) adj.p.values rownames(adj.p.values$adjp) = names(p.values[adj.p.values$index]) adj.p.values$adjp
SEQPower
spower -h spower LOGIT -h spower LOGIT Kryukov2009European1800.sfs --sample_size 1000 --OR_rare_detrimental 1.5 --method "CFisher --name CMC" -r 100 -j 4 -l 1 -o exercise spower show exercise.csv spower show exercise.csv power* spower show exercise.loci.csv spower show exercise.loci.csv maf spower show tests spower show test SKAT spower LOGIT Kryukov2009European1800.sfs --def_rare 0.01 --def_neutral -0.00001 0.00001 --moi A --proportion_detrimental 1 --proportion_protective 0 --OR_rare_detrimental 1.5 --OR_common_detrimental 1 --baseline_effect 0.01 --sample_size 1000 --p1 0.5 --limit 1 --alpha 0.05 --method "KBAC --name K1 --mafupper 0.01 --maflower 0 --alternative 1 --moi additive --permutations 1000 --adaptive 0.1" --replicates 1000 --jobs 4 -o exercise spower LOGIT Kryukov2009European1800.sfs --sample_size 1000 --OR_rare_detrimental 1.2 --ORmax_rare_detrimental 3.0 --method CFisher -r 100 -j 4 -l 1 -o exercise spower LOGIT Kryukov2009European1800.sfs --sample_size 1000 --OR_rare_detrimental 1.2 --ORmax_rare_detrimental 3.0 --method CFisher -r 100 -j 4 -l 1 -o exercise spower show exercise.loci.csv effect* spower LOGIT Kryukov2009European1800.sfs --sample_size 1000 --OR_rare_detrimental 1.2 --ORmax_rare_detrimental 3.0 --proportion_detrimental 0.8 --method CFisher -r 100 -j 4 -l 1 -o exercise spower LOGIT Kryukov2009European1800.sfs --sample_size 1000 --OR_rare_detrimental 1.5 --missing_sites 0.05 --method CFisher -r 100 -j 4 -l 1 -o exercise spower LOGIT Kryukov2009European1800.sfs --sample_size 1000 --OR_rare_detrimental 1.5 --missing_sites 0.05 --method CFisher -r 100 -j 4 -l 1 -o exercise spower LOGIT Kryukov2009European1800.sfs --sample_size 1000 --OR_rare_detrimental 1.5 --missing_low_maf 0.000125 --method CFisher -r 100 -j 4 -l 1 -o exercise spower LOGIT Kryukov2009European1800.sfs --sample_size 1000 --OR_rare_detrimental 1.5 --missing_low_maf 0.000125 --method CFisher -r 100 -j 4 -l 1 -o exercise spower LOGIT Kryukov2009European1800.sfs --sample_size 1000 --OR_rare_detrimental 1.5 --method "CFisher --alternative 1 --name CMC" "KBAC --permutations 1000 --alternative 1" "WSSRankTest --alternative 1 --name WSS" "VTtest --alternative 1 --permutations 1000" "SKAT disease" -r 100 -j 4 -l 1 -o exercise spower LNR Kryukov2009European1800.sfs --sample_size 1000 --meanshift_rare_detrimental 0.2 --method "CollapseQt --name CMC --alternative 2" -r 100 -j 4 -l 1 -o exercise spower LNR Kryukov2009European1800.sfs --sample_size 1000 --meanshift_rare_detrimental 0.2 --meanshiftmax_rare_detrimental 0.5 --method "CollapseQt --alternative 2" -r 100 -j 4 -l 1 -o exercise spower ELNR Kryukov2009European1800.sfs --sample_size 1000 --meanshift_rare_detrimental 0.2 --QT_thresholds 0.4 0.6 --method "CollapseQt --alternative 2" -r 100 -j 4 -l 1 -o exercise spower ELNR Kryukov2009European1800.sfs --sample_size 1000 --p1 0.5 --meanshift_rare_detrimental 0.5 --QT_thresholds 0.4 0.6 --method "CollapseQt --alternative 2" -r 100 -j 4 -l 1 -o exercise spower LOGIT Kryukov2009European1800.sfs --sample_size 1000 --OR_rare_detrimental 1.5 --method "GroupWrite ExerciseSimulation" -j 4 -o exercise -v1 spower show exercise.SEQPowerDB LOGIT method power title --condition "where power between 0.25 and 0.95" for i in 1 1.5 2 2.5 3 3.5 4; do spower LOGIT Kryukov2009European1800.sfs --sample_size 1000 --OR_rare_detrimental $i --method "CFisher --name CMC$i" --title FixedOR$i -r 100 -j 4 -l 1 -o exercise2 done==Unphased== unphased.sh unphased mypeds.ped –marker 1 2 3 –missing –permutation 10 unphased mypeds.ped –permuation 10 morepeds.ped unphased mypeds.ped –window 2 –reference 1 2 unphased mypeds.ped –window 2 –reference 1 2 1 1 unphased all.ped -window 2 -LD unphased all.ped -window 2 -LD >> results.txt
VAT
ulimit -s 8000 vtools -h vtools init VATDemo vtools import *.vcf.gz --var_info DP filter --geno_info DP_geno --build hg18 -j1 vtools liftover hg19 head phenotypes.csv vtools phenotype --from_file phenotypes.csv --delimiter "," vtools show project vtools show tables vtools show table variant vtools show samples vtools show genotypes vtools show fields vtools select variant --count vtools show genotypes > GenotypeSummary.txt head GenotypeSummary.txt vtools output variant "max(DP)" "min(DP)" "avg(DP)" "stdev(DP)" "lower_quartile(DP)" "upper_quartile(DP)" --header vtools select variant "filter='PASS'" --count vtools select variant "filter='PASS'" -o "max(DP)" "min(DP)" "avg(DP)" "stdev(DP)" "lower_quartile(DP)" "upper_quartile(DP)" --header vtools update variant --from_stat 'total=#(GT)' 'num=#(alt)' 'het=#(het)' 'hom=#(hom)' 'other=#(other)' 'minDP=min(DP_geno)' 'maxDP=max(DP_geno)' 'meanDP=avg(DP_geno)' 'maf=maf()' vtools show fields vtools show table variant vtools update variant --from_stat 'totalGD10=#(GT)' 'numGD10=#(alt)' 'hetGD10=#(het)' 'homGD10=#(hom)' 'otherGD10=#(other)' 'mafGD10=maf()' --genotypes "DP_geno > 10" vtools show fields vtools show table variant vtools output variant chr pos maf mafGD10 --header --limit 20 vtools phenotype --set "RACE=0" --samples "filename like 'YRI%'" vtools phenotype --set "RACE=1" --samples "filename like 'CEU%'" vtools show samples --limit 10 vtools update variant --from_stat 'CEU_mafGD10=maf()' --genotypes 'DP_geno>10' --samples "RACE=1" vtools update variant --from_stat 'YRI_mafGD10=maf()' --genotypes 'DP_geno>10' --samples "RACE=0" vtools output variant chr pos mafGD10 CEU_mafGD10 YRI_mafGD10 --header --limit 10 vtools phenotype --from_stat 'CEU_totalGD10=#(GT)' 'CEU_numGD10=#(alt)' --genotypes 'DP_geno>10' --samples "RACE=1" vtools phenotype --from_stat 'YRI_totalGD10=#(GT)' 'YRI_numGD10=#(alt)' --genotypes 'DP_geno>10' --samples "RACE=0" vtools phenotype --output sample_name CEU_totalGD10 CEU_numGD10 YRI_totalGD10 YRI_numGD10 --header vtools select variant 'maf>=0.01' -t variant_MAFge01 'Variants that have MAF >= 0.01' vtools show tables vtools execute KING --var_table variant_MAFge01 vtools_report plot_pheno_fields KING_MDS1 KING_MDS2 RACE --dot KING.mds.race.pdf --discrete_color Dark2 vtools_report plot_pheno_fields KING_MDS1 KING_MDS2 panel --dot KING.mds.panel.pdf --discrete_color Dark2 vtools execute ANNOVAR geneanno vtools output variant chr pos ref alt mut_type --limit 20 --header vtools_report trans_ratio variant -n num vtools_report trans_ratio variant -n numGD10 vtools select variant "DP<15" -t to_remove vtools show tables vtools remove variants to_remove -v0 vtools show tables vtools remove genotypes "DP_geno<10" -v0 vtools select variant "mut_type like 'non%' or mut_type like 'stop%' or region_type='splicing'" -t v_funct vtools show tables vtools show samples --limit 5 vtools select variant --samples "RACE=1" -t CEU mkdir -p ceu cd ceu vtools init ceu --parent ../ --variants CEU --samples "RACE=1" --build hg19 vtools show project vtools select variant "CEU_mafGD10>=0.05" -t common_ceu vtools select v_funct "CEU_mafGD10<0.01" -t rare_ceu vtools use refGene vtools show annotation refGene vtools associate -h vtools show tests vtools show test LinRegBurden vtools associate common_ceu BMI --covariate SEX -m "LinRegBurden --alternative 2" -j1 --to_db EA_CV > EA_CV.asso.res grep -i error *.log less EA_CV.asso.res sort -g -k7 EA_CV.asso.res | head vtools show fields vtools associate rare_ceu BMI --covariate SEX -m "LinRegBurden --alternative 2" -g refGene.name2 -j1 --to_db EA_RV > EA_RV.asso.res grep -i error *.log | tail -22 less EA_RV.asso.res sort -g -k6 EA_RV.asso.res | head vtools associate rare_ceu BMI --covariate SEX -m "VariableThresholdsQt --alternative 2 -p 100000 --adaptive 0.0005" -g refGene.name2 -j1 --to_db EA_RV > EA_RV_VT.asso.res grep -i error *.log | tail -22 less EA_RV_VT.asso.res sort -g -k6 EA_RV_VT.asso.res | head vtools select rare_ceu "refGene.name2='ABCC1'" -o chr pos ref alt CEU_mafGD10 numGD10 mut_type --header vtools_report plot_association qq -o QQRV -b --label_top 2 -f 6 < EA_RV.asso.res vtools_report plot_association manhattan -o MHRV -b --label_top 5 --color Dark2 --chrom_prefix None -f 6 < EA_RV.asso.res vtools associate rare_ceu BMI --covariate SEX KING_MDS1 KING_MDS2 -m "LinRegBurden --name RVMDS2 --alternative 2" -g refGene.name2 -j1 --to_db EA_RV > EA_RV_MDS2.asso.res vtools_report plot_association qq -o QQRV_MDS2 -b --label_top 2 -f 6 < EA_RV_MDS2.asso.res cd .. vtools select variant --samples "RACE=0" -t YRI mkdir -p yri cd yri vtools init yri --parent ../ --variants YRI --samples "RACE=0" --build hg19 vtools select variant "YRI_mafGD10>=0.05" -t common_yri vtools select v_funct "YRI_mafGD10<0.01" -t rare_yri vtools use refGene vtools associate common_yri BMI --covariate SEX -m "LinRegBurden --alternative 2" -j1 --to_db YA_CV > YA_CV.asso.res vtools associate rare_yri BMI --covariate SEX -m "LinRegBurden --alternative 2" -g refGene.name2 -j1 --to_db YA_RV > YA_RV.asso.res vtools associate rare_yri BMI --covariate SEX -m "VariableThresholdsQt --alternative 2 -p 100000 --adaptive 0.0005" -g refGene.name2 -j1 --to_db YA_RV > YA_RV_VT.asso.res cd .. vtools_report meta_analysis ceu/EA_RV_VT.asso.res yri/YA_RV_VT.asso.res --beta 5 --pval 6 --se 7 -n 2 --link 1 > META_RV_VT.asso.res cut -f1,3 META_RV_VT.asso.res | head