Difference between revisions of "Mixed models Association Analysis Exercise"
From Statistical Genetics Courses
Serveradmin (Talk | contribs) |
Serveradmin (Talk | contribs) |
||
Line 89: | Line 89: | ||
hist(blupsgenos$BLUP[blupsgenos$combo==21], main="genotype=21", xlab="BLUP") | hist(blupsgenos$BLUP[blupsgenos$combo==21], main="genotype=21", xlab="BLUP") | ||
hist(blupsgenos$BLUP[blupsgenos$combo==22], main="genotype=22", xlab="BLUP") | hist(blupsgenos$BLUP[blupsgenos$combo==22], main="genotype=22", xlab="BLUP") | ||
+ | q() | ||
+ | gcta64 --bfile quantfamdata --blup-snp GCTAblups.indi.blp --out GCTAsnpblups | ||
+ | R | ||
+ | snpblups<-read.table("GCTAsnpblups.snp.blp", header=F) | ||
+ | names(snpblups)=c("SNP","Allele","snpBLUP","snpResidual") | ||
+ | head(snpblups) | ||
+ | res2<-read.table("FLMMresults", header=T) | ||
+ | new2<-data.frame(res2$SNP, res2$Chromosome, res2$Position, res2$Pvalue) | ||
+ | names(new2)<-c("SNP", "CHR", "BP", "P") | ||
+ | head(new2) | ||
+ | mergeblup=merge(snpblups,new2, by="SNP",sort=F) | ||
+ | head(mergeblup) | ||
+ | par(mfrow=c(1,1)) | ||
+ | plot(mergeblup$snpBLUP,-log10(mergeblup$P)) |
Latest revision as of 19:25, 23 January 2019
Mixed models Association Analysis Exercise
head FLMMresults more topsnps.txt plink --bfile quantfamdata --extract topsnps.txt --recodeA --out topsnpsFLMM R fam<-read.table("quantfamdata.fam", header=F) pheno=data.frame(fam[,1:2],fam[,6]) write.table(pheno,file="phenos.txt",col.names=F,row.names=F,quote=F) gcta64 --mlma --bfile quantfamdata --pheno phenos.txt --out GCTAresults R source("qqmanHJCupdated.R") res3<-read.table("GCTAresults.mlma", header=T) head(res3) chi<-(qchisq(1-res3$p,1)) lambda=median(chi)/0.456 lambda new3<-data.frame(res3$SNP, res3$Chr, res3$bp, res3$p) names(new3)<-c("SNP", "CHR", "BP", "P") head(new3) qq(new3$P) manhattan(new3, pch=20, suggestiveline=F, genomewideline=F, ymin=2, cex.x.axis=0.65, colors=c("black","dodgerblue"), cex=0.5) res2<-read.table("FLMMresults", header=T) new2<-data.frame(res2$SNP, res2$Chromosome, res2$Position, res2$Pvalue) names(new2)<-c("SNP", "CHR", "BP", "P") merged=merge(new3,new2, by="SNP", sort=F) head(res2) head(new2) head(new3) head(merged) plot(-log10(merged$P.x),-log10(merged$P.y)) abline(0,1) q() gcta64 --bfile quantfamdata --autosome --make-grm-bin --out GCTAgrm gcta64 --reml --grm-bin GCTAgrm --pheno phenos.txt --out GCTAherit gcta64 --bfile quantfamdata --chr 1 --make-grm-bin --out GCTAgrmchr1 gcta64 --reml --grm-bin GCTAgrmchr1 --pheno phenos.txt --out GCTAheritchr1 gcta64 --bfile quantfamdata --chr 2 --make-grm-bin --out GCTAgrmchr2 gcta64 --reml --grm-bin GCTAgrmchr2 --pheno phenos.txt --out GCTAheritchr2 gcta64 --bfile quantfamdata --chr 6 --make-grm-bin --out GCTAgrmchr6 gcta64 --reml --grm-bin GCTAgrmchr6 --pheno phenos.txt --out GCTAheritchr6 gcta64 --bfile quantfamdata --chr 12 --make-grm-bin --out GCTAgrmchr12 gcta64 --reml --grm-bin GCTAgrmchr12 --pheno phenos.txt --out GCTAheritchr12 gcta64 --bfile quantfamdata --chr 1 --make-grm-bin --out GCTAgrmchr1 gcta64 --bfile quantfamdata --chr 2 --make-grm-bin --out GCTAgrmchr2 gcta64 --bfile quantfamdata --chr 3 --make-grm-bin --out GCTAgrmchr3 gcta64 --bfile quantfamdata --chr 4 --make-grm-bin --out GCTAgrmchr4 gcta64 --bfile quantfamdata --chr 5 --make-grm-bin --out GCTAgrmchr5 gcta64 --bfile quantfamdata --chr 6 --make-grm-bin --out GCTAgrmchr6 gcta64 --bfile quantfamdata --chr 7 --make-grm-bin --out GCTAgrmchr7 gcta64 --bfile quantfamdata --chr 8 --make-grm-bin --out GCTAgrmchr8 gcta64 --bfile quantfamdata --chr 9 --make-grm-bin --out GCTAgrmchr9 gcta64 --bfile quantfamdata --chr 10 --make-grm-bin --out GCTAgrmchr10 gcta64 --bfile quantfamdata --chr 11 --make-grm-bin --out GCTAgrmchr11 gcta64 --bfile quantfamdata --chr 12 --make-grm-bin --out GCTAgrmchr12 gcta64 --bfile quantfamdata --chr 13 --make-grm-bin --out GCTAgrmchr13 gcta64 --bfile quantfamdata --chr 14 --make-grm-bin --out GCTAgrmchr14 gcta64 --bfile quantfamdata --chr 15 --make-grm-bin --out GCTAgrmchr15 gcta64 --bfile quantfamdata --chr 16 --make-grm-bin --out GCTAgrmchr16 gcta64 --bfile quantfamdata --chr 17 --make-grm-bin --out GCTAgrmchr17 gcta64 --bfile quantfamdata --chr 18 --make-grm-bin --out GCTAgrmchr18 gcta64 --bfile quantfamdata --chr 19 --make-grm-bin --out GCTAgrmchr19 gcta64 --bfile quantfamdata --chr 20 --make-grm-bin --out GCTAgrmchr20 gcta64 --bfile quantfamdata --chr 21 --make-grm-bin --out GCTAgrmchr21 gcta64 --bfile quantfamdata --chr 22 --make-grm-bin --out GCTAgrmchr22 gcta64 --reml --mgrm-bin multipleGRMs.txt --pheno phenos.txt --out GCTAherit22GRMs gcta64 --mgrm-bin multipleGRMsnot6.txt --make-grm --out GCTAgrmnot6 gcta64 --reml --mgrm-bin multipleGRMs6andnot6.txt --pheno phenos.txt --out GCTAherit6andnot6 gcta64 --reml --reml-pred-rand --grm-bin GCTAgrm --pheno phenos.txt --out GCTAblups R blups<-read.table("GCTAblups.indi.blp", header=F) names(blups)=c("FID","IID","intV1","BLUP", "intV2", "Residual") head(blups) hist(blups$BLUP) topgenos<-read.table("topsnpsFLMM.raw",header=T) blupsgenos=data.frame(blups, topgenos) blupsgenos$combo=10*blupsgenos$rs9271209_G+blupsgenos$rs233722_G head(blupsgenos) par(mfrow=c(3,3)) hist(blupsgenos$BLUP[blupsgenos$combo==0], main="genotype=0", xlab="BLUP") hist(blupsgenos$BLUP[blupsgenos$combo==1], main="genotype=1", xlab="BLUP") hist(blupsgenos$BLUP[blupsgenos$combo==2], main="genotype=2", xlab="BLUP") hist(blupsgenos$BLUP[blupsgenos$combo==10], main="genotype=10", xlab="BLUP") hist(blupsgenos$BLUP[blupsgenos$combo==11], main="genotype=11", xlab="BLUP") hist(blupsgenos$BLUP[blupsgenos$combo==12], main="genotype=12", xlab="BLUP") hist(blupsgenos$BLUP[blupsgenos$combo==20], main="genotype=20", xlab="BLUP") hist(blupsgenos$BLUP[blupsgenos$combo==21], main="genotype=21", xlab="BLUP") hist(blupsgenos$BLUP[blupsgenos$combo==22], main="genotype=22", xlab="BLUP") q() gcta64 --bfile quantfamdata --blup-snp GCTAblups.indi.blp --out GCTAsnpblups R snpblups<-read.table("GCTAsnpblups.snp.blp", header=F) names(snpblups)=c("SNP","Allele","snpBLUP","snpResidual") head(snpblups) res2<-read.table("FLMMresults", header=T) new2<-data.frame(res2$SNP, res2$Chromosome, res2$Position, res2$Pvalue) names(new2)<-c("SNP", "CHR", "BP", "P") head(new2) mergeblup=merge(snpblups,new2, by="SNP",sort=F) head(mergeblup) par(mfrow=c(1,1)) plot(mergeblup$snpBLUP,-log10(mergeblup$P))