Difference between revisions of "GWAS Controlling for Population Substructure"

From Statistical Genetics Courses

Jump to: navigation, search
(Created page with "<pre> plink --file GWAS_clean4 --genome --cluster --mds-plot 10 #### in R mydata = read.table("mds_components.txt", header=T) mydata$pch[mydata$Group==1 ] <...")
(No difference)

Revision as of 01:40, 7 June 2018

plink --file GWAS_clean4 --genome --cluster --mds-plot 10
#### in R
mydata = read.table("mds_components.txt", header=T)
mydata$pch[mydata$Group==1 ] <-15
mydata$pch[mydata$Group==2 ] <-16
mydata$pch[mydata$Group==3 ] <-2
jpeg("mds.jpeg", height=500, width=500)
plot(mydata$C1, mydata$C2 ,pch=mydata$pch)
dev.off()
q()
######
plink --file GWAS_clean4 --pheno pheno.txt --pheno-name Aff --logistic --adjust --out unadj
plink --file GWAS_clean4 --genome --cluster --pca 10 header
plink --file GWAS_clean4 --pheno pheno.txt --pheno-name Aff --covar plink.eigenvec --covar-name PC1 --logistic --adjust --out PC1
plink --file GWAS_clean4 --pheno pheno.txt --pheno-name Aff --covar plink.eigenvec --covar-name PC1-PC2 --logistic --adjust --out PC1-PC2
#### in R
broadqq <-function(pvals, title)
{
    observed <- sort(pvals)
    lobs <- -(log10(observed))
    expected <- c(1:length(observed))
    lexp <- -(log10(expected / (length(expected)+1)))
    plot(c(0,7), c(0,7), col="red", lwd=3, type="l", xlab="Expected (-logP)", ylab="Observed (-logP)", xlim=c(0,max(lobs)), ylim=c(0,max(lobs)), las=1, xaxs="i", yaxs="i", bty="l", main = title)
    points(lexp, lobs, pch=23, cex=.4, bg="black") }
jpeg("qqplot_compare.jpeg", height=1000, width=500)
par(mfrow=c(2,1))
aff_unadj<-read.table("unadj.assoc.logistic", header=TRUE)
aff_unadj.add.p<-aff_unadj[aff_unadj$TEST==c("ADD"),]$P
broadqq(aff_unadj.add.p,"Some Trait Unadjusted")
aff_C1C2<-read.table("PC1-PC2.assoc.logistic", header=TRUE)
aff_C1C2.add.p<-aff_C1C2[aff_C1C2$TEST==c("ADD"),]$P
broadqq(aff_C1C2.add.p, "Some Trait Adjusted for PC1 and PC2")
dev.off()
gws_unadj = aff_unadj[which(aff_unadj$P < 0.0000001),]
gws_unadj
gws_adjusted = aff_C1C2[which(aff_C1C2$P < 0.0000001),]
gws_adjusted