Difference between revisions of "AdvGeneMap2018Commands"
From Statistical Genetics Courses
Serveradmin (Talk | contribs) |
Serveradmin (Talk | contribs) |
||
Line 214: | Line 214: | ||
########## | ########## | ||
plink --file GWAS_clean3 --exclude HWE_out.txt --recode --out GWAS_clean4 | plink --file GWAS_clean3 --exclude HWE_out.txt --recode --out GWAS_clean4 | ||
− | |||
− | |||
Revision as of 15:20, 23 January 2018
Contents
GenABEL
# Load files library(GenABEL) convert.snp.tped(tped &eq; "gwa_gabel_qtl.tped", tfam &eq; "gwa_gabel_qtl.tfam", out &eq; "gwa_gabel_qtl.raw", strand &eq; "u") g.dat <- load.gwaa.data(phen &eq; "gwa_gabel_qtl.praw", gen &eq; "gwa_gabel_qtl.raw", force &eq; T) slotNames(g.dat) slotNames(g.dat@gtdata) colnames(g.dat@phdata) # sample size sample.size <- g.dat@gtdata@nids # number of SNPs snps.total <- g.dat@gtdata@nsnps print(c(sample.size, snps.total)) # Trait summary(g.dat@phdata$disease) hist(g.dat@phdata$disease, main&eq;"Quantitative Phenotype data summary", xlab &eq; "Systolic pressure measure", freq &eq; F,breaks&eq;20, col&eq;"gray") rug(g.dat@phdata$disease) ### # tests for association ### # GLM test test.snp <- scan.glm('disease ~ CRSNP', family &eq; gaussian(), data &eq; g.dat) names(test.snp) alpha <- 5e-8 test.snp$snpnames[test.snp$P1df < alpha] test.snp$P1df[test.snp$P1df < alpha] # Score test test.qt <- qtscore(disease, data &eq; g.dat, trait &eq; "gaussian") slotNames(test.qt) names(test.qt@results) test.qt@lambda descriptives.scan(test.qt) rownames(results(test.qt))[results(test.qt)$P1df < alpha] results(test.qt)$P1df[results(test.qt)$P1df < alpha] results(test.qt)$Pc1df[results(test.qt)$Pc1df < alpha] # QQ plot obs <- sort(results(test.qt)$P1df) ept <- c(1:length(obs)) / (length(obs) + 1) plot(-log10(ept), -log10(obs), main &eq; "GWAS QQ plot, qtl", xlab&eq;"Expected -log10(pvalue)", ylab&eq;"Observed -log10(pvalue)") abline(0, 1, col &eq; "red") abline(h &eq; 8, lty &eq; 2) # Manhattan plot plot(test.qt, col &eq; "black") # Adding confounders test.qt.sex <- qtscore(disease ~ sex, data &eq; g.dat, trait &eq; "gaussian") rownames(results(test.qt.sex))[results(test.qt)$P1df < alpha] summary(lm(disease ~ sex, data &eq; g.dat)) ### # MDS ### gkin <- ibs(g.dat, weight &eq; "freq") gkin[1:10,1:10] cps.full <- cmdscale(as.dist(.5 - gkin), eig &eq; T, k &eq; 10) names(cps.full) cps <- cps.full$points plot(cps[,1], cps[,2], pch &eq; g.dat@phdata$popn) legend(-0.16, 0.06, c("TSI","MEX", "CEU"), pch &eq; c(1,2,3)) ### # Corrected test ### # Incorporating PCs as predictors colnames(cps)<-c('C1','C2','C3','C4','C5','C6','C7','C8','C9','C10') gpc.dat <- g.dat gpc.dat@phdata<-cbind(g.dat@phdata, cps) test.pc.a <- scan.glm('disease ~ CRSNP + C1 + C2 + C3 + C4 + C5', family&eq;gaussian(), data &eq; gpc.dat) test.pc.a$snpnames[test.pc.a$P1df < alpha] test.pc.a$P1df[test.pc.a$P1df < alpha] test.pc.b <- qtscore(disease ~ C1 + C2 + C3 + C4 + C5, data &eq; gpc.dat, trait &eq; "gaussian") test.pc.b@lambda # scree plot plot(cps.full$eig[1:10]/sum(cps.full$eig), axes &eq; F, type &eq; "b", xlab &eq; "Components", ylim &eq; c(0,0.05), ylab &eq; "Proportion of Variations", main &eq; "MDS analysis scree plot") axis(1, 1:10) axis(2) # cumulative plot plot(cumsum(cps.full$eig[1:10])/sum(cps.full$eig), axes &eq; F, type &eq; "b", ylim &eq; c(0,0.2), xlab &eq; "Components", ylab &eq; "Proportion of Variations", main &eq; "MDS analysis cumulative plot") axis(1, 1:10) axis(2) # Genomic control # Uncorrected GIF test.qt@lambda # Corrected p-value row.names(results(test.qt))[results(test.qt)$Pc1df < alpha] results(test.qt)$Pc1df[results(test.qt)$Pc1df < alpha] # Check for inflation of statistic obs <- sort(results(test.qt)$chi2.1df) ept <- sort(qchisq(1:length(obs) / (length(obs) + 1), df &eq; 1)) plot(ept, obs, main &eq; "Genomic control (slope is the inflation factor)", xlab&eq;"Expected chisq, 1df", ylab&eq;"Observed chisq, 1df") abline(0, 1, col &eq; "red") abline(0, test.qt@lambda[1], lty &eq; 2) # Definition of GIF # Conventional definition median(results(test.qt)$chi2.1df)/0.456 # GenABEL definition lm(obs~ept)$coef[2] # QQ plot obs <- sort(results(test.qt)$Pc1df) ept <- c(1:length(obs)) / (length(obs) + 1) plot(-log10(ept), -log10(obs), main &eq; "GWAS QQ plot adj. via Genomic Control", xlab&eq;"Expected -log10(pvalue)", ylab&eq;"Observed -log10(pvalue)") abline(0, 1, col &eq; "red") abline(h &eq; 8, lty &eq; 2) # EIGENSTRAT adj.gkin &eq; gkin diag(adj.gkin) &eq; hom(g.dat)$Var # naxes &eq; 3 is default value test.eg <- egscore(disease, data &eq; g.dat, kin &eq; adj.gkin, naxes &eq; 2) descriptives.scan(test.eg) snp.eg <- row.names(results(test.eg))[results(test.eg)$P1df < alpha] pvalue.eg <- results(test.eg)$P1df[results(test.eg)$P1df < alpha] lambda.eg <- test.eg@lambda snp.eg pvalue.eg lambda.eg # Change #PCs for (k in 1:10){ test.tmp <- egscore(disease, data &eq; g.dat, kin &eq; adj.gkin, naxes &eq; k) print(test.tmp@lambda$estimate) } # QQ plot obs <- sort(results(test.eg)$Pc1df) ept <- c(1:length(obs)) / (length(obs) + 1) qqplot(-log10(ept), -log10(obs), main &eq; "GWAS QQ plot adj. w/ EIGENSTRAT", xlab&eq;"Expected -log10(pvalue)", ylab&eq;"Observed -log10(pvalue)") abline(0, 1, col &eq; "red") abline(h &eq; 8, lty &eq; 2) # Manhattan plot comparison plot(test.qt, col &eq; "black") add.plot(test.eg, col &eq; "gray", pch &eq; 3) legend("topright", c("Original plot","After correction w/ EIGENSTRAT"), pch &eq; c(1,3)) ### # Basic test, binary trait ### # load files to GenABEL convert.snp.tped(tped &eq; "gwa_gabel.tped", tfam &eq; "gwa_gabel.tfam", out &eq; "gwa_gabel.raw", strand &eq; "u") b.dat <- load.gwaa.data(phen &eq; "gwa_gabel.praw", gen &eq; "gwa_gabel.raw", force &eq; T) slotNames(b.dat) slotNames(b.dat@gtdata) colnames(b.dat@phdata) # sample size b.dat@gtdata@nids # number of cases and controls case.size <- length(which(b.dat@phdata$disease &eq;&eq; 1)) control.size <- length(which(b.dat@phdata$disease &eq;&eq; 0)) case.size control.size # number of SNPs snpsb.total <- b.dat@gtdata@nsnps # GLM test testb.snp <- scan.glm('disease ~ CRSNP', family &eq; binomial(), data &eq; b.dat) names(testb.snp) alpha <- 5e-8 testb.snp$snpnames[testb.snp$P1df < alpha] testb.snp$P1df[testb.snp$P1df < alpha] # Score test testb.qt <- qtscore(disease, data &eq; b.dat, trait &eq; "binomial") slotNames(testb.qt) descriptives.scan(testb.qt) row.names(results(testb.qt))[results(testb.qt)$P1df < alpha] results(testb.qt)$P1df[results(testb.qt)$P1df < alpha] results(testb.qt)$Pc1df[results(testb.qt)$Pc1df < alpha]
Plink - Part 1 - Data QC
plink --file GWAS plink --file GWAS --mind 0.10 --recode --out GWAS_clean_mind plink --file GWAS_clean_mind --maf 0.05 --recode --out MAF_greater_5 plink --file GWAS_clean_mind --exclude MAF_greater_5.map --recode --out MAF_less_5 plink --file MAF_greater_5 --geno 0.05 --recode --out MAF_greater_5_clean plink --file MAF_less_5 --geno 0.01 --recode --out MAF_less_5_clean plink --file MAF_greater_5_clean --merge MAF_less_5_clean.ped MAF_less_5_clean.map --recode --out GWAS_MAF_clean plink --file GWAS_MAF_clean --mind 0.03 --recode --out GWAS_clean2 plink --file GWAS_clean2 --check-sex --out GWAS_sex_checking #### in R - open R by simply typing R setwd("to_your_working_directory/") sexcheck &eq; read.table("GWAS_sex_checking.sexcheck", header&eq;T) names(sexcheck) sex_problem &eq; sexcheck[which(sexcheck$STATUS&eq;&eq;"PROBLEM"),] sex_problem q() ################################## plink --file GWAS_clean2 --genome --out duplicates #### in R setwd("to_your_working_directory/") dups &eq; read.table("duplicates.genome", header &eq; T) problem_pairs &eq; dups[which(dups$PI_HAT > 0.4),] problem_pairs problem_pairs &eq; dups[which(dups$PI_HAT > 0.05),] myvars &eq; c("FID1", "IID1", "FID2", "IID2", "PI_HAT") problem_pairs[myvars] q() ###### plink --file GWAS_clean2 --remove IBS_excluded.txt --recode --out GWAS_clean3 plink --file GWAS_clean3 --het ###### in R Dataset <- read.table("plink.het", header&eq;TRUE, sep&eq;"", na.strings&eq;"NA", dec&eq;".", strip.white&eq;TRUE) mean(Dataset$F) sd(Dataset$F) jpeg("hist.jpeg", height&eq;1000, width&eq;1000) hist(scale(Dataset$F), xlim&eq;c(-4,4)) dev.off() q() ###### plink --file GWAS_clean3 --pheno pheno.txt --pheno-name Aff --hardy ##### in R hardy &eq; read.table("plink.hwe", header &eq; T) names(hardy) hwe_prob &eq; hardy[which(hardy$P < 0.0000009),] hwe_prob q() ########## plink --file GWAS_clean3 --exclude HWE_out.txt --recode --out GWAS_clean4
===Plink - Part 2 - Controlling for Substructure=== plink --file GWAS_clean4 --genome --cluster --mds-plot 10 #### in R mydata &eq; read.table("mds_components.txt", header&eq;T) mydata$pch[mydata$Group&eq;&eq;1 ] <-15 mydata$pch[mydata$Group&eq;&eq;2 ] <-16 mydata$pch[mydata$Group&eq;&eq;3 ] <-2 jpeg("mds.jpeg", height&eq;500, width&eq;500) plot(mydata$C1, mydata$C2 ,pch&eq;mydata$pch) dev.off() q() ###### plink --file GWAS_clean4 --pheno pheno.txt --pheno-name Aff --logistic --adjust --out unadj plink --file GWAS_clean4 --genome --cluster --pca 10 header plink --file GWAS_clean4 --pheno pheno.txt --pheno-name Aff --covar plink.eigenvec --covar-name PC1 --logistic --adjust --out PC1 plink --file GWAS_clean4 --pheno pheno.txt --pheno-name Aff --covar plink.eigenvec --covar-name PC1-PC2 --logistic --adjust --out PC1-PC2 #### in R broadqq <-function(pvals, title) {
observed <- sort(pvals) lobs <- -(log10(observed)) expected <- c(1:length(observed)) lexp <- -(log10(expected / (length(expected)+1))) plot(c(0,7), c(0,7), col&eq;"red", lwd&eq;3, type&eq;"l", xlab&eq;"Expected (-logP)", ylab&eq;"Observed (-logP)", xlim&eq;c(0,max(lobs)), ylim&eq;c(0,max(lobs)), las&eq;1, xaxs&eq;"i", yaxs&eq;"i", bty&eq;"l", main &eq; title) points(lexp, lobs, pch&eq;23, cex&eq;.4, bg&eq;"black") }
jpeg("qqplot_compare.jpeg", height&eq;1000, width&eq;500) par(mfrow&eq;c(2,1)) aff_unadj<-read.table("unadj.assoc.logistic", header&eq;TRUE) aff_unadj.add.p<-aff_unadj[aff_unadj$TEST&eq;&eq;c("ADD"),]$P broadqq(aff_unadj.add.p,"Some Trait Unadjusted") aff_C1C2<-read.table("PC1-PC2.assoc.logistic", header&eq;TRUE) aff_C1C2.add.p<-aff_C1C2[aff_C1C2$TEST&eq;&eq;c("ADD"),]$P broadqq(aff_C1C2.add.p, "Some Trait Adjusted for PC1 and PC2") dev.off() gws_unadj &eq; aff_unadj[which(aff_unadj$P < 0.0000001),] gws_unadj gws_adjusted &eq; aff_C1C2[which(aff_C1C2$P < 0.0000001),] gws_adjusted
VAT
vtools -h vtools init VATDemo vtools import *.vcf.gz --var_info DP filter --geno_info DP_geno --build hg18 -j1 vtools liftover hg19 head phenotypes.csv vtools phenotype --from_file phenotypes.csv --delimiter "," vtools show project vtools show tables vtools show table variant vtools show samples vtools show genotypes vtools show fields vtools select variant --count vtools show genotypes > GenotypeSummary.txt head GenotypeSummary.txt vtools output variant "max(DP)" "min(DP)" "avg(DP)" "stdev(DP)" "lower_quartile(DP)" "upper_quartile(DP)" --header vtools select variant "filter&eq;’PASS’" --count vtools select variant "filter&eq;’PASS’" -o "max(DP)" "min(DP)" "avg(DP)" "stdev(DP)" "lower_quartile(DP)" "upper_quartile(DP)" --header vtools update variant --from_stat ’total&eq;#(GT)’ ’num&eq;#(alt)’ ’het&eq;#(het)’ ’hom&eq;#(hom)’ ’other&eq;#(other)’ ’minDP&eq;min(DP_geno)’ ’maxDP&eq;max(DP_geno)’ ’meanDP&eq;avg(DP_geno)’ ’maf&eq;maf()’ vtools show fields vtools show table variant vtools update variant --from_stat ’totalGD10&eq;#(GT)’ ’numGD10&eq;#(alt)’ ’hetGD10&eq;#(het)’ ’homGD10&eq;#(hom)’ ’otherGD10&eq;#(other)’ ’mafGD10&eq;maf()’ --genotypes "DP_geno > 10" vtools show fields vtools show table variant vtools output variant chr pos maf mafGD10 --header --limit 20 vtools phenotype --set "RACE&eq;0" --samples "filename like ’YRI%’" vtools phenotype --set "RACE&eq;1" --samples "filename like ’CEU%’" vtools show samples --limit 10 vtools update variant --from_stat ’CEU_mafGD10&eq;maf()’ --genotypes ’DP_geno>10’ --samples "RACE&eq;1" vtools update variant --from_stat ’YRI_mafGD10&eq;maf()’ --genotypes ’DP_geno>10’ --samples "RACE&eq;0" vtools output variant chr pos mafGD10 CEU_mafGD10 YRI_mafGD10 --header --limit 10 vtools phenotype --from_stat ’CEU_totalGD10&eq;#(GT)’ ’CEU_numGD10&eq;#(alt)’ --genotypes ’DP_geno>10’ --samples "RACE&eq;1" vtools phenotype --from_stat ’YRI_totalGD10&eq;#(GT)’ ’YRI_numGD10&eq;#(alt)’ --genotypes ’DP_geno>10’ --samples "RACE&eq;0" vtools phenotype --output sample_nameCEU_totalGD10CEU_numGD10YRI_totalGD10YRI_numGD10 --header vtools execute ANNOVAR geneanno vtools output variant chr pos ref alt mut_type --limit 20 --header vtools_report trans_ratio variant -n num vtools_report trans_ratio variant -n numGD10 vtools select variant "DP<15" -t to_remove vtools show tables vtools remove variants to_remove -v0 vtools show tables vtools remove genotypes "DP_geno<10" -v0 vtools select variant "mut_type like ’non%’ or mut_type like ’stop%’ or region_type&eq;’splicing’" -t v_funct vtools show tables vtools show samples --limit 5 vtools select variant --samples "RACE&eq;1" -t CEU mkdir -p ceu cd ceu vtools init ceu --parent ../ --variants CEU --samples "RACE&eq;1" --build hg19 vtools show project vtools select variant "CEU_mafGD10>&eq;0.05" -t common_ceu vtools select v_funct "CEU_mafGD10<0.01" -t rare_ceu vtools use refGene vtools show annotation refGene vtools associate -h vtools show tests vtools show test LinRegBurden vtools associate common_ceu BMI --covariate SEX -m "LinRegBurden --alternative 2" -j1 --to_db EA_CV > EA_CV.asso.res grep -i error *.log less EA_CV.asso.res sort -g -k7 EA_CV.asso.res | head vtools show fields vtools associate rare_ceu BMI --covariate SEX -m "LinRegBurden --alternative 2" -g refGene.name2 -j1 --to_db EA_RV > EA_RV.asso.res grep -i error *.log | tail -10 less EA_RV.asso.res sort -g -k6 EA_RV.asso.res | head vtools associate rare_ceu BMI --covariate SEX -m "VariableThresholdsQt --alternative 2 -p 100000 --adaptive 0.0005" -g refGene.name2 -j1 --to_db EA_RV > EA_RV_VT.asso.res grep -i error *.log | tail -10 less EA_RV_VT.asso.res sort -g -k6 EA_RV_VT.asso.res | head vtools select rare_ceu "refGene.name2&eq;’ABCC1’" -o chr pos ref alt CEU_mafGD10 numGD10 mut_type --header cd .. vtools select variant --samples "RACE&eq;0" -t YRI mkdir -p yri cd yri vtools init yri --parent ../ --variants YRI --samples "RACE&eq;0" --build hg19 vtools select variant "YRI_mafGD10>&eq;0.05" -t common_yri vtools select v_funct "YRI_mafGD10<0.01" -t rare_yri vtools use refGene vtools associate common_yri BMI --covariate SEX -m "LinRegBurden --alternative 2" -j1 --to_db YA_CV > YA_CV.asso.res vtools associate rare_yri BMI --covariate SEX -m "LinRegBurden --alternative 2" -g refGene.name2 -j1 --to_db YA_RV > YA_RV.asso.res vtools associate rare_yri BMI --covariate SEX -m "VariableThresholdsQt --alternative 2 -p 100000 --adaptive 0.0005" -g refGene.name2 -j1 --to_db YA_RV > YA_RV_VT.asso.res cd .. vtools_report meta_analysis ceu/EA_RV_VT.asso.res yri/YA_RV_VT.asso.res --beta 5 --pval 6 --se 7 -n 2 --link 1 > ME\ TA_RV_VT.asso.res cut -f1,3 META_RV_VT.asso.res | head