Difference between revisions of "AdvGeneMap2018Commands"
From Statistical Genetics Courses
Serveradmin (Talk | contribs) |
Serveradmin (Talk | contribs) |
||
Line 1: | Line 1: | ||
__NOTITLE__ | __NOTITLE__ | ||
+ | __FORCETOC__ | ||
+ | |||
===GenABEL=== | ===GenABEL=== | ||
+ | |||
# Load files | # Load files | ||
library(GenABEL) | library(GenABEL) | ||
convert.snp.tped(tped = "gwa_gabel_qtl.tped", tfam = "gwa_gabel_qtl.tfam", out = "gwa_gabel_qtl.raw", strand = "u") | convert.snp.tped(tped = "gwa_gabel_qtl.tped", tfam = "gwa_gabel_qtl.tfam", out = "gwa_gabel_qtl.raw", strand = "u") | ||
g.dat <- load.gwaa.data(phen = "gwa_gabel_qtl.praw", gen = "gwa_gabel_qtl.raw", force = T) | g.dat <- load.gwaa.data(phen = "gwa_gabel_qtl.praw", gen = "gwa_gabel_qtl.raw", force = T) | ||
− | |||
slotNames(g.dat) | slotNames(g.dat) | ||
slotNames(g.dat@gtdata) | slotNames(g.dat@gtdata) | ||
colnames(g.dat@phdata) | colnames(g.dat@phdata) | ||
− | |||
# sample size | # sample size | ||
sample.size <- g.dat@gtdata@nids | sample.size <- g.dat@gtdata@nids | ||
Line 20: | Line 21: | ||
hist(g.dat@phdata$disease, main="Quantitative Phenotype data summary", xlab = "Systolic pressure measure", freq = F,breaks=20, col="gray") | hist(g.dat@phdata$disease, main="Quantitative Phenotype data summary", xlab = "Systolic pressure measure", freq = F,breaks=20, col="gray") | ||
rug(g.dat@phdata$disease) | rug(g.dat@phdata$disease) | ||
− | |||
### | ### | ||
# tests for association | # tests for association | ||
Line 28: | Line 28: | ||
names(test.snp) | names(test.snp) | ||
alpha <- 5e-8 | alpha <- 5e-8 | ||
− | test.snp$snpnames[test.snp$P1df | + | test.snp$snpnames[test.snp$P1df < alpha] |
− | test.snp$P1df[test.snp$P1df | + | test.snp$P1df[test.snp$P1df < alpha] |
− | + | ||
# Score test | # Score test | ||
test.qt <- qtscore(disease, data = g.dat, trait = "gaussian") | test.qt <- qtscore(disease, data = g.dat, trait = "gaussian") | ||
− | |||
slotNames(test.qt) | slotNames(test.qt) | ||
names(test.qt@results) | names(test.qt@results) | ||
test.qt@lambda | test.qt@lambda | ||
− | |||
descriptives.scan(test.qt) | descriptives.scan(test.qt) | ||
− | rownames(results(test.qt))[results(test.qt)$P1df | + | rownames(results(test.qt))[results(test.qt)$P1df < alpha] |
− | results(test.qt)$P1df[results(test.qt)$P1df | + | results(test.qt)$P1df[results(test.qt)$P1df < alpha] |
− | results(test.qt)$Pc1df[results(test.qt)$Pc1df | + | results(test.qt)$Pc1df[results(test.qt)$Pc1df < alpha] |
− | + | ||
# QQ plot | # QQ plot | ||
obs <- sort(results(test.qt)$P1df) | obs <- sort(results(test.qt)$P1df) | ||
Line 51: | Line 47: | ||
# Manhattan plot | # Manhattan plot | ||
plot(test.qt, col = "black") | plot(test.qt, col = "black") | ||
− | |||
# Adding confounders | # Adding confounders | ||
test.qt.sex <- qtscore(disease ~ sex, data = g.dat, trait = "gaussian") | test.qt.sex <- qtscore(disease ~ sex, data = g.dat, trait = "gaussian") | ||
− | rownames(results(test.qt.sex))[results(test.qt)$P1df | + | rownames(results(test.qt.sex))[results(test.qt)$P1df < alpha] |
− | + | ||
summary(lm(disease ~ sex, data = g.dat)) | summary(lm(disease ~ sex, data = g.dat)) | ||
− | |||
− | |||
### | ### | ||
# MDS | # MDS | ||
### | ### | ||
− | |||
gkin <- ibs(g.dat, weight = "freq") | gkin <- ibs(g.dat, weight = "freq") | ||
gkin[1:10,1:10] | gkin[1:10,1:10] | ||
− | |||
cps.full <- cmdscale(as.dist(.5 - gkin), eig = T, k = 10) | cps.full <- cmdscale(as.dist(.5 - gkin), eig = T, k = 10) | ||
names(cps.full) | names(cps.full) | ||
cps <- cps.full$points | cps <- cps.full$points | ||
− | |||
plot(cps[,1], cps[,2], pch = g.dat@phdata$popn) | plot(cps[,1], cps[,2], pch = g.dat@phdata$popn) | ||
legend(-0.16, 0.06, c("TSI","MEX", "CEU"), pch = c(1,2,3)) | legend(-0.16, 0.06, c("TSI","MEX", "CEU"), pch = c(1,2,3)) | ||
− | |||
− | |||
### | ### | ||
# Corrected test | # Corrected test | ||
### | ### | ||
− | |||
− | |||
# Incorporating PCs as predictors | # Incorporating PCs as predictors | ||
− | |||
colnames(cps)<-c('C1','C2','C3','C4','C5','C6','C7','C8','C9','C10') | colnames(cps)<-c('C1','C2','C3','C4','C5','C6','C7','C8','C9','C10') | ||
gpc.dat <- g.dat | gpc.dat <- g.dat | ||
gpc.dat@phdata<-cbind(g.dat@phdata, cps) | gpc.dat@phdata<-cbind(g.dat@phdata, cps) | ||
test.pc.a <- scan.glm('disease ~ CRSNP + C1 + C2 + C3 + C4 + C5', family=gaussian(), data = gpc.dat) | test.pc.a <- scan.glm('disease ~ CRSNP + C1 + C2 + C3 + C4 + C5', family=gaussian(), data = gpc.dat) | ||
− | test.pc.a$snpnames[test.pc.a$P1df | + | test.pc.a$snpnames[test.pc.a$P1df < alpha] |
− | test.pc.a$P1df[test.pc.a$P1df | + | test.pc.a$P1df[test.pc.a$P1df < alpha] |
− | + | ||
test.pc.b <- qtscore(disease ~ C1 + C2 + C3 + C4 + C5, data = gpc.dat, trait = "gaussian") | test.pc.b <- qtscore(disease ~ C1 + C2 + C3 + C4 + C5, data = gpc.dat, trait = "gaussian") | ||
test.pc.b@lambda | test.pc.b@lambda | ||
− | |||
# scree plot | # scree plot | ||
plot(cps.full$eig[1:10]/sum(cps.full$eig), axes = F, type = "b", xlab = "Components", ylim = c(0,0.05), ylab = "Proportion of Variations", main = "MDS analysis scree plot") | plot(cps.full$eig[1:10]/sum(cps.full$eig), axes = F, type = "b", xlab = "Components", ylim = c(0,0.05), ylab = "Proportion of Variations", main = "MDS analysis scree plot") | ||
axis(1, 1:10) | axis(1, 1:10) | ||
axis(2) | axis(2) | ||
− | |||
# cumulative plot | # cumulative plot | ||
plot(cumsum(cps.full$eig[1:10])/sum(cps.full$eig), axes = F, type = "b", ylim = c(0,0.2), xlab = "Components", ylab = "Proportion of Variations", main = "MDS analysis cumulative plot") | plot(cumsum(cps.full$eig[1:10])/sum(cps.full$eig), axes = F, type = "b", ylim = c(0,0.2), xlab = "Components", ylab = "Proportion of Variations", main = "MDS analysis cumulative plot") | ||
axis(1, 1:10) | axis(1, 1:10) | ||
axis(2) | axis(2) | ||
− | |||
# Genomic control | # Genomic control | ||
− | |||
# Uncorrected GIF | # Uncorrected GIF | ||
test.qt@lambda | test.qt@lambda | ||
− | |||
# Corrected p-value | # Corrected p-value | ||
− | row.names(results(test.qt))[results(test.qt)$Pc1df | + | row.names(results(test.qt))[results(test.qt)$Pc1df < alpha] |
− | results(test.qt)$Pc1df[results(test.qt)$Pc1df | + | results(test.qt)$Pc1df[results(test.qt)$Pc1df < alpha] |
− | + | ||
# Check for inflation of statistic | # Check for inflation of statistic | ||
obs <- sort(results(test.qt)$chi2.1df) | obs <- sort(results(test.qt)$chi2.1df) | ||
Line 116: | Line 93: | ||
abline(0, 1, col = "red") | abline(0, 1, col = "red") | ||
abline(0, test.qt@lambda[1], lty = 2) | abline(0, test.qt@lambda[1], lty = 2) | ||
− | |||
# Definition of GIF | # Definition of GIF | ||
# Conventional definition | # Conventional definition | ||
Line 122: | Line 98: | ||
# GenABEL definition | # GenABEL definition | ||
lm(obs~ept)$coef[2] | lm(obs~ept)$coef[2] | ||
− | |||
# QQ plot | # QQ plot | ||
obs <- sort(results(test.qt)$Pc1df) | obs <- sort(results(test.qt)$Pc1df) | ||
Line 129: | Line 104: | ||
abline(0, 1, col = "red") | abline(0, 1, col = "red") | ||
abline(h = 8, lty = 2) | abline(h = 8, lty = 2) | ||
− | |||
− | |||
# EIGENSTRAT | # EIGENSTRAT | ||
adj.gkin = gkin | adj.gkin = gkin | ||
diag(adj.gkin) = hom(g.dat)$Var | diag(adj.gkin) = hom(g.dat)$Var | ||
− | |||
# naxes = 3 is default value | # naxes = 3 is default value | ||
test.eg <- egscore(disease, data = g.dat, kin = adj.gkin, naxes = 2) | test.eg <- egscore(disease, data = g.dat, kin = adj.gkin, naxes = 2) | ||
descriptives.scan(test.eg) | descriptives.scan(test.eg) | ||
− | + | snp.eg <- row.names(results(test.eg))[results(test.eg)$P1df < alpha] | |
− | snp.eg <- row.names(results(test.eg))[results(test.eg)$P1df | + | pvalue.eg <- results(test.eg)$P1df[results(test.eg)$P1df < alpha] |
− | pvalue.eg <- results(test.eg)$P1df[results(test.eg)$P1df | + | |
lambda.eg <- test.eg@lambda | lambda.eg <- test.eg@lambda | ||
− | |||
snp.eg | snp.eg | ||
pvalue.eg | pvalue.eg | ||
lambda.eg | lambda.eg | ||
− | |||
# Change #PCs | # Change #PCs | ||
for (k in 1:10){ | for (k in 1:10){ | ||
Line 152: | Line 121: | ||
print(test.tmp@lambda$estimate) | print(test.tmp@lambda$estimate) | ||
} | } | ||
− | |||
# QQ plot | # QQ plot | ||
obs <- sort(results(test.eg)$Pc1df) | obs <- sort(results(test.eg)$Pc1df) | ||
Line 163: | Line 131: | ||
add.plot(test.eg, col = "gray", pch = 3) | add.plot(test.eg, col = "gray", pch = 3) | ||
legend("topright", c("Original plot","After correction w/ EIGENSTRAT"), pch = c(1,3)) | legend("topright", c("Original plot","After correction w/ EIGENSTRAT"), pch = c(1,3)) | ||
− | |||
− | |||
### | ### | ||
# Basic test, binary trait | # Basic test, binary trait | ||
### | ### | ||
− | |||
# load files to GenABEL | # load files to GenABEL | ||
convert.snp.tped(tped = "gwa_gabel.tped", tfam = "gwa_gabel.tfam", out = "gwa_gabel.raw", strand = "u") | convert.snp.tped(tped = "gwa_gabel.tped", tfam = "gwa_gabel.tfam", out = "gwa_gabel.raw", strand = "u") | ||
b.dat <- load.gwaa.data(phen = "gwa_gabel.praw", gen = "gwa_gabel.raw", force = T) | b.dat <- load.gwaa.data(phen = "gwa_gabel.praw", gen = "gwa_gabel.raw", force = T) | ||
− | |||
slotNames(b.dat) | slotNames(b.dat) | ||
slotNames(b.dat@gtdata) | slotNames(b.dat@gtdata) | ||
colnames(b.dat@phdata) | colnames(b.dat@phdata) | ||
− | |||
# sample size | # sample size | ||
b.dat@gtdata@nids | b.dat@gtdata@nids | ||
− | |||
# number of cases and controls | # number of cases and controls | ||
case.size <- length(which(b.dat@phdata$disease == 1)) | case.size <- length(which(b.dat@phdata$disease == 1)) | ||
Line 185: | Line 147: | ||
case.size | case.size | ||
control.size | control.size | ||
− | |||
# number of SNPs | # number of SNPs | ||
snpsb.total <- b.dat@gtdata@nsnps | snpsb.total <- b.dat@gtdata@nsnps | ||
− | |||
# GLM test | # GLM test | ||
testb.snp <- scan.glm('disease ~ CRSNP', family = binomial(), data = b.dat) | testb.snp <- scan.glm('disease ~ CRSNP', family = binomial(), data = b.dat) | ||
names(testb.snp) | names(testb.snp) | ||
alpha <- 5e-8 | alpha <- 5e-8 | ||
− | testb.snp$snpnames[testb.snp$P1df | + | testb.snp$snpnames[testb.snp$P1df < alpha] |
− | testb.snp$P1df[testb.snp$P1df | + | testb.snp$P1df[testb.snp$P1df < alpha] |
− | + | ||
# Score test | # Score test | ||
testb.qt <- qtscore(disease, data = b.dat, trait = "binomial") | testb.qt <- qtscore(disease, data = b.dat, trait = "binomial") | ||
− | |||
slotNames(testb.qt) | slotNames(testb.qt) | ||
descriptives.scan(testb.qt) | descriptives.scan(testb.qt) | ||
− | row.names(results(testb.qt))[results(testb.qt)$P1df | + | row.names(results(testb.qt))[results(testb.qt)$P1df < alpha] |
− | results(testb.qt)$P1df[results(testb.qt)$P1df | + | results(testb.qt)$P1df[results(testb.qt)$P1df < alpha] |
− | results(testb.qt)$Pc1df[results(testb.qt)$Pc1df | + | results(testb.qt)$Pc1df[results(testb.qt)$Pc1df < alpha] |
===Plink - Part 1 - Data QC=== | ===Plink - Part 1 - Data QC=== | ||
− | |||
plink --file GWAS | plink --file GWAS | ||
plink --file GWAS --mind 0.10 --recode --out GWAS_clean_mind | plink --file GWAS --mind 0.10 --recode --out GWAS_clean_mind | ||
Line 229: | Line 186: | ||
setwd("to_your_working_directory/") | setwd("to_your_working_directory/") | ||
dups = read.table("duplicates.genome", header = T) | dups = read.table("duplicates.genome", header = T) | ||
− | problem_pairs = dups[which(dups$PI_HAT | + | problem_pairs = dups[which(dups$PI_HAT > 0.4),] |
problem_pairs | problem_pairs | ||
− | problem_pairs = dups[which(dups$PI_HAT | + | problem_pairs = dups[which(dups$PI_HAT > 0.05),] |
myvars = c("FID1", "IID1", "FID2", "IID2", "PI_HAT") | myvars = c("FID1", "IID1", "FID2", "IID2", "PI_HAT") | ||
problem_pairs[myvars] | problem_pairs[myvars] | ||
Line 251: | Line 208: | ||
hardy = read.table("plink.hwe", header = T) | hardy = read.table("plink.hwe", header = T) | ||
names(hardy) | names(hardy) | ||
− | hwe_prob = hardy[which(hardy$P | + | hwe_prob = hardy[which(hardy$P < 0.0000009),] |
hwe_prob | hwe_prob | ||
q() | q() | ||
########## | ########## | ||
plink --file GWAS_clean3 --exclude HWE_out.txt --recode --out GWAS_clean4===Plink - Part 2 - Controlling for Substructure=== | plink --file GWAS_clean3 --exclude HWE_out.txt --recode --out GWAS_clean4===Plink - Part 2 - Controlling for Substructure=== | ||
− | |||
plink --file GWAS_clean4 --genome --cluster --mds-plot 10 | plink --file GWAS_clean4 --genome --cluster --mds-plot 10 | ||
#### in R | #### in R | ||
Line 275: | Line 231: | ||
broadqq <-function(pvals, title) | broadqq <-function(pvals, title) | ||
{ | { | ||
+ | |||
observed <- sort(pvals) | observed <- sort(pvals) | ||
lobs <- -(log10(observed)) | lobs <- -(log10(observed)) | ||
Line 291: | Line 248: | ||
broadqq(aff_C1C2.add.p, "Some Trait Adjusted for PC1 and PC2") | broadqq(aff_C1C2.add.p, "Some Trait Adjusted for PC1 and PC2") | ||
dev.off() | dev.off() | ||
− | gws_unadj = aff_unadj[which(aff_unadj$P | + | gws_unadj = aff_unadj[which(aff_unadj$P < 0.0000001),] |
gws_unadj | gws_unadj | ||
− | gws_adjusted = aff_C1C2[which(aff_C1C2$P | + | gws_adjusted = aff_C1C2[which(aff_C1C2$P < 0.0000001),] |
gws_adjusted===VAT=== | gws_adjusted===VAT=== | ||
− | |||
vtools -h | vtools -h | ||
vtools init VATDemo | vtools init VATDemo |
Revision as of 15:16, 23 January 2018
Contents
GenABEL
# Load files library(GenABEL) convert.snp.tped(tped = "gwa_gabel_qtl.tped", tfam = "gwa_gabel_qtl.tfam", out = "gwa_gabel_qtl.raw", strand = "u") g.dat <- load.gwaa.data(phen = "gwa_gabel_qtl.praw", gen = "gwa_gabel_qtl.raw", force = T) slotNames(g.dat) slotNames(g.dat@gtdata) colnames(g.dat@phdata) # sample size sample.size <- g.dat@gtdata@nids # number of SNPs snps.total <- g.dat@gtdata@nsnps print(c(sample.size, snps.total)) # Trait summary(g.dat@phdata$disease) hist(g.dat@phdata$disease, main="Quantitative Phenotype data summary", xlab = "Systolic pressure measure", freq = F,breaks=20, col="gray") rug(g.dat@phdata$disease) ### # tests for association ### # GLM test test.snp <- scan.glm('disease ~ CRSNP', family = gaussian(), data = g.dat) names(test.snp) alpha <- 5e-8 test.snp$snpnames[test.snp$P1df < alpha] test.snp$P1df[test.snp$P1df < alpha] # Score test test.qt <- qtscore(disease, data = g.dat, trait = "gaussian") slotNames(test.qt) names(test.qt@results) test.qt@lambda descriptives.scan(test.qt) rownames(results(test.qt))[results(test.qt)$P1df < alpha] results(test.qt)$P1df[results(test.qt)$P1df < alpha] results(test.qt)$Pc1df[results(test.qt)$Pc1df < alpha] # QQ plot obs <- sort(results(test.qt)$P1df) ept <- c(1:length(obs)) / (length(obs) + 1) plot(-log10(ept), -log10(obs), main = "GWAS QQ plot, qtl", xlab="Expected -log10(pvalue)", ylab="Observed -log10(pvalue)") abline(0, 1, col = "red") abline(h = 8, lty = 2) # Manhattan plot plot(test.qt, col = "black") # Adding confounders test.qt.sex <- qtscore(disease ~ sex, data = g.dat, trait = "gaussian") rownames(results(test.qt.sex))[results(test.qt)$P1df < alpha] summary(lm(disease ~ sex, data = g.dat)) ### # MDS ### gkin <- ibs(g.dat, weight = "freq") gkin[1:10,1:10] cps.full <- cmdscale(as.dist(.5 - gkin), eig = T, k = 10) names(cps.full) cps <- cps.full$points plot(cps[,1], cps[,2], pch = g.dat@phdata$popn) legend(-0.16, 0.06, c("TSI","MEX", "CEU"), pch = c(1,2,3)) ### # Corrected test ### # Incorporating PCs as predictors colnames(cps)<-c('C1','C2','C3','C4','C5','C6','C7','C8','C9','C10') gpc.dat <- g.dat gpc.dat@phdata<-cbind(g.dat@phdata, cps) test.pc.a <- scan.glm('disease ~ CRSNP + C1 + C2 + C3 + C4 + C5', family=gaussian(), data = gpc.dat) test.pc.a$snpnames[test.pc.a$P1df < alpha] test.pc.a$P1df[test.pc.a$P1df < alpha] test.pc.b <- qtscore(disease ~ C1 + C2 + C3 + C4 + C5, data = gpc.dat, trait = "gaussian") test.pc.b@lambda # scree plot plot(cps.full$eig[1:10]/sum(cps.full$eig), axes = F, type = "b", xlab = "Components", ylim = c(0,0.05), ylab = "Proportion of Variations", main = "MDS analysis scree plot") axis(1, 1:10) axis(2) # cumulative plot plot(cumsum(cps.full$eig[1:10])/sum(cps.full$eig), axes = F, type = "b", ylim = c(0,0.2), xlab = "Components", ylab = "Proportion of Variations", main = "MDS analysis cumulative plot") axis(1, 1:10) axis(2) # Genomic control # Uncorrected GIF test.qt@lambda # Corrected p-value row.names(results(test.qt))[results(test.qt)$Pc1df < alpha] results(test.qt)$Pc1df[results(test.qt)$Pc1df < alpha] # Check for inflation of statistic obs <- sort(results(test.qt)$chi2.1df) ept <- sort(qchisq(1:length(obs) / (length(obs) + 1), df = 1)) plot(ept, obs, main = "Genomic control (slope is the inflation factor)", xlab="Expected chisq, 1df", ylab="Observed chisq, 1df") abline(0, 1, col = "red") abline(0, test.qt@lambda[1], lty = 2) # Definition of GIF # Conventional definition median(results(test.qt)$chi2.1df)/0.456 # GenABEL definition lm(obs~ept)$coef[2] # QQ plot obs <- sort(results(test.qt)$Pc1df) ept <- c(1:length(obs)) / (length(obs) + 1) plot(-log10(ept), -log10(obs), main = "GWAS QQ plot adj. via Genomic Control", xlab="Expected -log10(pvalue)", ylab="Observed -log10(pvalue)") abline(0, 1, col = "red") abline(h = 8, lty = 2) # EIGENSTRAT adj.gkin = gkin diag(adj.gkin) = hom(g.dat)$Var # naxes = 3 is default value test.eg <- egscore(disease, data = g.dat, kin = adj.gkin, naxes = 2) descriptives.scan(test.eg) snp.eg <- row.names(results(test.eg))[results(test.eg)$P1df < alpha] pvalue.eg <- results(test.eg)$P1df[results(test.eg)$P1df < alpha] lambda.eg <- test.eg@lambda snp.eg pvalue.eg lambda.eg # Change #PCs for (k in 1:10){ test.tmp <- egscore(disease, data = g.dat, kin = adj.gkin, naxes = k) print(test.tmp@lambda$estimate) } # QQ plot obs <- sort(results(test.eg)$Pc1df) ept <- c(1:length(obs)) / (length(obs) + 1) qqplot(-log10(ept), -log10(obs), main = "GWAS QQ plot adj. w/ EIGENSTRAT", xlab="Expected -log10(pvalue)", ylab="Observed -log10(pvalue)") abline(0, 1, col = "red") abline(h = 8, lty = 2) # Manhattan plot comparison plot(test.qt, col = "black") add.plot(test.eg, col = "gray", pch = 3) legend("topright", c("Original plot","After correction w/ EIGENSTRAT"), pch = c(1,3)) ### # Basic test, binary trait ### # load files to GenABEL convert.snp.tped(tped = "gwa_gabel.tped", tfam = "gwa_gabel.tfam", out = "gwa_gabel.raw", strand = "u") b.dat <- load.gwaa.data(phen = "gwa_gabel.praw", gen = "gwa_gabel.raw", force = T) slotNames(b.dat) slotNames(b.dat@gtdata) colnames(b.dat@phdata) # sample size b.dat@gtdata@nids # number of cases and controls case.size <- length(which(b.dat@phdata$disease == 1)) control.size <- length(which(b.dat@phdata$disease == 0)) case.size control.size # number of SNPs snpsb.total <- b.dat@gtdata@nsnps # GLM test testb.snp <- scan.glm('disease ~ CRSNP', family = binomial(), data = b.dat) names(testb.snp) alpha <- 5e-8 testb.snp$snpnames[testb.snp$P1df < alpha] testb.snp$P1df[testb.snp$P1df < alpha] # Score test testb.qt <- qtscore(disease, data = b.dat, trait = "binomial") slotNames(testb.qt) descriptives.scan(testb.qt) row.names(results(testb.qt))[results(testb.qt)$P1df < alpha] results(testb.qt)$P1df[results(testb.qt)$P1df < alpha] results(testb.qt)$Pc1df[results(testb.qt)$Pc1df < alpha]
Plink - Part 1 - Data QC
plink --file GWAS plink --file GWAS --mind 0.10 --recode --out GWAS_clean_mind plink --file GWAS_clean_mind --maf 0.05 --recode --out MAF_greater_5 plink --file GWAS_clean_mind --exclude MAF_greater_5.map --recode --out MAF_less_5 plink --file MAF_greater_5 --geno 0.05 --recode --out MAF_greater_5_clean plink --file MAF_less_5 --geno 0.01 --recode --out MAF_less_5_clean plink --file MAF_greater_5_clean --merge MAF_less_5_clean.ped MAF_less_5_clean.map --recode --out GWAS_MAF_clean plink --file GWAS_MAF_clean --mind 0.03 --recode --out GWAS_clean2 plink --file GWAS_clean2 --check-sex --out GWAS_sex_checking #### in R - open R by simply typing R setwd("to_your_working_directory/") sexcheck = read.table("GWAS_sex_checking.sexcheck", header=T) names(sexcheck) sex_problem = sexcheck[which(sexcheck$STATUS=="PROBLEM"),] sex_problem q() ################################## plink --file GWAS_clean2 --genome --out duplicates #### in R setwd("to_your_working_directory/") dups = read.table("duplicates.genome", header = T) problem_pairs = dups[which(dups$PI_HAT > 0.4),] problem_pairs problem_pairs = dups[which(dups$PI_HAT > 0.05),] myvars = c("FID1", "IID1", "FID2", "IID2", "PI_HAT") problem_pairs[myvars] q() ###### plink --file GWAS_clean2 --remove IBS_excluded.txt --recode --out GWAS_clean3 plink --file GWAS_clean3 --het ###### in R Dataset <- read.table("plink.het", header=TRUE, sep="", na.strings="NA", dec=".", strip.white=TRUE) mean(Dataset$F) sd(Dataset$F) jpeg("hist.jpeg", height=1000, width=1000) hist(scale(Dataset$F), xlim=c(-4,4)) dev.off() q() ###### plink --file GWAS_clean3 --pheno pheno.txt --pheno-name Aff --hardy ##### in R hardy = read.table("plink.hwe", header = T) names(hardy) hwe_prob = hardy[which(hardy$P < 0.0000009),] hwe_prob q() ########## plink --file GWAS_clean3 --exclude HWE_out.txt --recode --out GWAS_clean4===Plink - Part 2 - Controlling for Substructure=== plink --file GWAS_clean4 --genome --cluster --mds-plot 10 #### in R mydata = read.table("mds_components.txt", header=T) mydata$pch[mydata$Group==1 ] <-15 mydata$pch[mydata$Group==2 ] <-16 mydata$pch[mydata$Group==3 ] <-2 jpeg("mds.jpeg", height=500, width=500) plot(mydata$C1, mydata$C2 ,pch=mydata$pch) dev.off() q() ###### plink --file GWAS_clean4 --pheno pheno.txt --pheno-name Aff --logistic --adjust --out unadj plink --file GWAS_clean4 --genome --cluster --pca 10 header plink --file GWAS_clean4 --pheno pheno.txt --pheno-name Aff --covar plink.eigenvec --covar-name PC1 --logistic --adjust --out PC1 plink --file GWAS_clean4 --pheno pheno.txt --pheno-name Aff --covar plink.eigenvec --covar-name PC1-PC2 --logistic --adjust --out PC1-PC2 #### in R broadqq <-function(pvals, title) {
observed <- sort(pvals) lobs <- -(log10(observed)) expected <- c(1:length(observed)) lexp <- -(log10(expected / (length(expected)+1))) plot(c(0,7), c(0,7), col="red", lwd=3, type="l", xlab="Expected (-logP)", ylab="Observed (-logP)", xlim=c(0,max(lobs)), ylim=c(0,max(lobs)), las=1, xaxs="i", yaxs="i", bty="l", main = title) points(lexp, lobs, pch=23, cex=.4, bg="black") }
jpeg("qqplot_compare.jpeg", height=1000, width=500) par(mfrow=c(2,1)) aff_unadj<-read.table("unadj.assoc.logistic", header=TRUE) aff_unadj.add.p<-aff_unadj[aff_unadj$TEST==c("ADD"),]$P broadqq(aff_unadj.add.p,"Some Trait Unadjusted") aff_C1C2<-read.table("PC1-PC2.assoc.logistic", header=TRUE) aff_C1C2.add.p<-aff_C1C2[aff_C1C2$TEST==c("ADD"),]$P broadqq(aff_C1C2.add.p, "Some Trait Adjusted for PC1 and PC2") dev.off() gws_unadj = aff_unadj[which(aff_unadj$P < 0.0000001),] gws_unadj gws_adjusted = aff_C1C2[which(aff_C1C2$P < 0.0000001),] gws_adjusted===VAT=== vtools -h vtools init VATDemo vtools import *.vcf.gz --var_info DP filter --geno_info DP_geno --build hg18 -j1 vtools liftover hg19 head phenotypes.csv vtools phenotype --from_file phenotypes.csv --delimiter "," vtools show project vtools show tables vtools show table variant vtools show samples vtools show genotypes vtools show fields vtools select variant --count vtools show genotypes > GenotypeSummary.txt head GenotypeSummary.txt vtools output variant "max(DP)" "min(DP)" "avg(DP)" "stdev(DP)" "lower_quartile(DP)" "upper_quartile(DP)" --header vtools select variant "filter=’PASS’" --count vtools select variant "filter=’PASS’" -o "max(DP)" "min(DP)" "avg(DP)" "stdev(DP)" "lower_quartile(DP)" "upper_quartile(DP)" --header vtools update variant --from_stat ’total=#(GT)’ ’num=#(alt)’ ’het=#(het)’ ’hom=#(hom)’ ’other=#(other)’ ’minDP=min(DP_geno)’ ’maxDP=max(DP_geno)’ ’meanDP=avg(DP_geno)’ ’maf=maf()’ vtools show fields vtools show table variant vtools update variant --from_stat ’totalGD10=#(GT)’ ’numGD10=#(alt)’ ’hetGD10=#(het)’ ’homGD10=#(hom)’ ’otherGD10=#(other)’ ’mafGD10=maf()’ --genotypes "DP_geno > 10" vtools show fields vtools show table variant vtools output variant chr pos maf mafGD10 --header --limit 20 vtools phenotype --set "RACE=0" --samples "filename like ’YRI%’" vtools phenotype --set "RACE=1" --samples "filename like ’CEU%’" vtools show samples --limit 10 vtools update variant --from_stat ’CEU_mafGD10=maf()’ --genotypes ’DP_geno>10’ --samples "RACE=1" vtools update variant --from_stat ’YRI_mafGD10=maf()’ --genotypes ’DP_geno>10’ --samples "RACE=0" vtools output variant chr pos mafGD10 CEU_mafGD10 YRI_mafGD10 --header --limit 10 vtools phenotype --from_stat ’CEU_totalGD10=#(GT)’ ’CEU_numGD10=#(alt)’ --genotypes ’DP_geno>10’ --samples "RACE=1" vtools phenotype --from_stat ’YRI_totalGD10=#(GT)’ ’YRI_numGD10=#(alt)’ --genotypes ’DP_geno>10’ --samples "RACE=0" vtools phenotype --output sample_nameCEU_totalGD10CEU_numGD10YRI_totalGD10YRI_numGD10 --header vtools execute ANNOVAR geneanno vtools output variant chr pos ref alt mut_type --limit 20 --header vtools_report trans_ratio variant -n num vtools_report trans_ratio variant -n numGD10 vtools select variant "DP<15" -t to_remove vtools show tables vtools remove variants to_remove -v0 vtools show tables vtools remove genotypes "DP_geno<10" -v0 vtools select variant "mut_type like ’non%’ or mut_type like ’stop%’ or region_type=’splicing’" -t v_funct vtools show tables vtools show samples --limit 5 vtools select variant --samples "RACE=1" -t CEU mkdir -p ceu cd ceu vtools init ceu --parent ../ --variants CEU --samples "RACE=1" --build hg19 vtools show project vtools select variant "CEU_mafGD10>=0.05" -t common_ceu vtools select v_funct "CEU_mafGD10<0.01" -t rare_ceu vtools use refGene vtools show annotation refGene vtools associate -h vtools show tests vtools show test LinRegBurden vtools associate common_ceu BMI --covariate SEX -m "LinRegBurden --alternative 2" -j1 --to_db EA_CV > EA_CV.asso.res grep -i error *.log less EA_CV.asso.res sort -g -k7 EA_CV.asso.res | head vtools show fields vtools associate rare_ceu BMI --covariate SEX -m "LinRegBurden --alternative 2" -g refGene.name2 -j1 --to_db EA_RV > EA_RV.asso.res grep -i error *.log | tail -10 less EA_RV.asso.res sort -g -k6 EA_RV.asso.res | head vtools associate rare_ceu BMI --covariate SEX -m "VariableThresholdsQt --alternative 2 -p 100000 --adaptive 0.0005" -g refGene.name2 -j1 --to_db EA_RV > EA_RV_VT.asso.res grep -i error *.log | tail -10 less EA_RV_VT.asso.res sort -g -k6 EA_RV_VT.asso.res | head vtools select rare_ceu "refGene.name2=’ABCC1’" -o chr pos ref alt CEU_mafGD10 numGD10 mut_type --header cd .. vtools select variant --samples "RACE=0" -t YRI mkdir -p yri cd yri vtools init yri --parent ../ --variants YRI --samples "RACE=0" --build hg19 vtools select variant "YRI_mafGD10>=0.05" -t common_yri vtools select v_funct "YRI_mafGD10<0.01" -t rare_yri vtools use refGene vtools associate common_yri BMI --covariate SEX -m "LinRegBurden --alternative 2" -j1 --to_db YA_CV > YA_CV.asso.res vtools associate rare_yri BMI --covariate SEX -m "LinRegBurden --alternative 2" -g refGene.name2 -j1 --to_db YA_RV > YA_RV.asso.res vtools associate rare_yri BMI --covariate SEX -m "VariableThresholdsQt --alternative 2 -p 100000 --adaptive 0.0005" -g refGene.name2 -j1 --to_db YA_RV > YA_RV_VT.asso.res cd .. vtools_report meta_analysis ceu/EA_RV_VT.asso.res yri/YA_RV_VT.asso.res --beta 5 --pval 6 --se 7 -n 2 --link 1 > ME\ TA_RV_VT.asso.res cut -f1,3 META_RV_VT.asso.res | head